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Revealing the spatio-temporal
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service values in China
at the municipal scale
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In the context of the “dual-carbon” goal, studying the complex relationship

between carbon emissions and ecosystem service values brought about by land-

use change is of great significance in promoting regional low-carbon

optimization, territorial spatial governance, and the achievement of the goal of

carbon peaking and carbon neutrality. This study takes 286 cities in China as the

research object, and based on the data of China’s land use and ecosystem service

value (ESV) from 2012 to 2022, adopts geo-spatial analysis techniques such as

spatial autocorrelation and geographically-weighted regression models to study

the spatial and temporal characteristics, the degree of coupling coordination,

and the influencing factors of China’s municipal total land use carbon emissions

and ESV. The results show that (1) China’s total land-use carbon emissions have

exhibited an overall increasing trend from 2012 to 2022. The total ESV has shown

a downward trend characterized by an inverted “N” shape. (2) The coupling

coordination effect between land-use carbon emissions and ESV in China

generally shows a mirrored “L” growth shape. (3) There is a significant spatial

negative correlation between land-use carbon emissions and ESV, primarily

manifested as “high-high,” “high-low,” and “low-low” clustering characteristics.

(4) Three socio-economic factors—local fiscal general budget expenditure,

energy utilization efficiency, and total population—positively influence the

coupling coordination of land-use carbon emissions and ESV. Strictly

controlling the local fiscal general budget expenditure, energy utilization

efficiency, and total population can effectively promote China's green,

low-carbon development and ecological security.
KEYWORDS

land-use carbon emissions, ecosystem service value, coupling coordination degree,
influencing mechanisms, geographical ly weighted regression models ,
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1 Introduction

Land serves as a carrier for various ecosystems, and human

activities on land significantly impact surface land cover conditions,

driving changes in the capacity of ecosystems to provide services

(Xiong et al., 2018). Under global warming, carbon reduction has

become a critical global issue (Chuai et al., 2015; Ding et al., 2022; Li

et al., 2024; Liu B. et al., 2024). With the rapid development of

industrialization and urbanization, land use changes have been

drastic, and the problems of irrational land use, uncoordinated

industrial structure, and low awareness of emission reduction have

become increasingly prominent (Su et al., 2024). The carbon

emission carrying capacity of urban construction land occupies

an important position in China’s urban environment, and the

carbon emission carrying capacity of China’s urban construction

land exceeds 70% of total carbon emissions, making it the country

with the highest carbon emissions in the world (He et al., 2018). To

mitigate carbon emissions and global warming, China has

developed various environmental policies and implemented

effective measures (Ding et al., 2024; Wu et al., 2016, 2024). In

particular, following the announcement of China’s “dual carbon”

goals in September 2020, a series of climate change mitigation

policies were introduced, emphasizing the need to continuously

strengthen and enhance the carbon sink capacity of ecosystems.

There is an essential correlation between ecosystems and carbon

emissions. Therefore, in the dual context of carbon emission

reduction policy and improvement of the ecological environment,

it is of great significance to study the pattern of the spatial
Frontiers in Ecology and Evolution 02
relationship between the two to solve the difficult problem of

maintaining economic growth while taking into account the

ecological environment in the process of social development.

China’s rapid economic development has resulted in radical

changes in land use patterns in recent years. Changes in land use

have contributed to the rapid growth of carbon emissions, including

both direct carbon emissions, which are caused by the direct

participation of arable land, forest land, grassland, watersheds, and

unutilized land in social production, and indirect carbon emissions,

which are caused by the action of human production activities on the

land on which the land is constructed (Goldewijk and Ramankutty,

2004) (Figure 1). To more intuitively identify the differences in land

type structure and development levels within the research areas,

many scholars have also conducted studies on the efficiency (Feng

et al., 2023) and intensity (Li et al., 2023) of land-use carbon

emissions. In foundational research on land-use carbon emission

accounting, methods such as the emission factor method (Peng et al.,

2016), factor decomposition method (Zhang and Xu, 2017), and

remote sensing estimation method (Mo and Wang, 2021) are

commonly used. The various benefits and wellbeing that humans

obtain from natural ecosystems during production and daily life are

referred to as ecosystem services value (ESV), which include both

tangible material product supply that can be directly perceived and

intangible service provision (Li et al., 2022; Sun and Li, 2017).

Economic value is typically used to evaluate ecosystem services to

determine the benefits humans derive from nature, allowing for

comparability across different regions. Research on ecosystem

service values originated in the 1960s and gained momentum in
FIGURE 1

Theoretical framework diagram.
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the late 1990s with the publication of studies by scholars such as

Costanza et al. (1997). Currently, the main methods used to calculate

ESV under land use changes include the equivalence factor method,

benefit transfer method, and ESV index method. Research primarily

focuses on the temporal and spatial patterns of ESV (Chen et al.,

2019; Yuan et al., 2019), simulation predictions (Akhtar et al., 2020),

trade-offs and synergies between ESV (Liu et al., 2021), and temporal

and spatial correlations of ESV (Zhao et al., 2023).

Since the 1990s, on the one hand, scholars at home and abroad

have centered on the issue of land-use carbon emissions from

different scales such as national, provincial, urban, and regional

(Lin et al., 2021; Rong et al., 2022; Xu et al., 2018; Zhou et al., 2019)

and analyses of the measurement of carbon emissions (Dai et al.,

2024; Lin et al., 2024; Liu D. et al., 2024), the decoupling effect of

carbon emissions and economic growth (Xiao et al., 2022), the

mechanistic dissection of carbon emissions from single land classes

(Ma et al., 2020), the influencing factors (Dong et al., 2018), the

relationship between land class changes and carbon sources/sinks

(Xi et al., 2016), and the spatial differences and correlations of

carbon emissions (Yu et al., 2022), and other perspectives have been

carried out in a large number of studies. On the other hand, scholars

have also conducted many studies to assess the fluctuation of ESV

due to land use changes (Chen et al., 2020; Zhao et al., 2023), such as

the spatial and temporal characteristics of ESV and land use (Song

and Deng, 2017), and the interaction relationship (Arowolo et al.,

2018). In summary, it can be seen that previous studies have been

carried out on the two individually from different perspectives and

scales, but there are fewer studies on the spatial relationship

between land-use carbon emissions and ESV (Zhang et al., 2024;

Zhou et al., 2024). Understanding the homogeneity and

heterogeneity of the spatial distributions of ecosystem services

and land-use carbon emissions and examining the mechanisms

influencing their spatial interactions can reveal the spatial effects of

ecological and geographical processes at the county scale, which is

crucial for formulating ecologically oriented land-use policies.

In summary, based on the relevant data at the municipal scale in

China from 2012 to 2022, this study explores the coupled and

coordinated relationship between land-use carbon emissions and

ESV and their spatial and temporal evolution characteristics using

the coupled coordination degree model based on the quantitative

measurement of land-use carbon emissions and ESV. At the same

time, the geographically weighted regression model is used to

identify the main factors affecting the coupled and coordinated

development of land-use carbon emissions and ESV to provide

support for China to propose carbon emission reduction policies,

establish a low-carbon land use structure, and strive to improve the

overall quality of the ecological environment to move towards the

path of green and low-carbon development. The innovativeness of

this paper is mainly reflected in the following two aspects: first, it

summarizes the spatio-temporal evolution characteristics and

influence mechanism of inter-municipal land-use carbon

emissions and ecosystem services in China; second, it introduces

land-use carbon emissions and ecosystem services into the study of
Frontiers in Ecology and Evolution 03
coordinated development of the ecological environment, which

more scientifically and objectively measures the functional

services provided by the ecological environment to human society

and promotes empirical research on the coordinated development

of the two. The theoretical framework diagram is shown in Figure 1.
2 Data and methods

2.1 Study area

The uniqueness of China as a research case is mainly reflected in

the following aspects. First, China is located in the eastern part of

the Asia-Europe continent, on the west coast of the Pacific Ocean. It

has a vast territory with a total land area of approximately 9.6

million km2. The terrain is generally high in the west and low in the

east, with three significant steps according to the difference in

altitude, and the geomorphology is diversified, with mountains,

highlands, basins, hills, and plains. China has a variety of landforms,

including mountains, plateaus, basins, hills, and plains, and is rich

in natural resources (Lv et al., 2017). Second, China has large-scale

backbone enterprises such as petroleum, iron, steel, electric power,

coal, and building materials. The energy-consuming industries that

drive economic development have also led to a significant increase

in China’s energy consumption from 3.62 billion tons of standard

coal in 2012 to 5.41 billion tons of standard coal in 2022. China’s

significant land use and energy consumption changes significantly

impact the total regional CO2 emissions and patterns (Tang et al.,

2022). Therefore, this study takes China as the study area and is

conducted at the municipal level. Data from 286 prefecture-level

cities were selected as the study sample because some cities had

important missing data and were excluded. The study area is shown

in Figure 2.
2.2 Data sources

The data for this study include land use, energy consumption,

socio-economic, and driving factor data; the specific contents and

sources are shown in Table 1. The land use data are obtained from

the China Land Science Data Center (MNR), with a resolution of 30

m. Based on the land use classification standards of the Chinese

Academy of Sciences (CAS), the land classes in the study area were

classified into six first-level types, which are, in order, cropland,

forest land, grassland, watersheds, construction land, and unutilized

land. The average annual precipitation and Normalized Difference

Vegetation Index (NDVI) were obtained from the Resource

Environment Science and Data Centre of the Chinese Academy

of Sciences. The energy consumption and socioeconomic data were

obtained from the corresponding years of China Energy Statistical

Yearbook, Statistical Yearbook, and National Compendium of Cost

and Benefit Information of Agricultural Products, respectively.

Linear interpolation was used to complete the missing values.
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2.3 Research methods

2.3.1 Measurement of ecosystem service values
In this study, we refer to relevant studies on ESV assessment

(Yin et al., 2023; Yang et al., 2022). This study classifies ecosystem

services into four categories: provisioning services, regulating

services, supporting services, and cultural services. Among them,

provisioning services refer to ecosystems that provide natural

resources to meet the spatial and material needs for human

survival and development, including food production, raw

material production, and water supply; regulating services refer to

ecosystems’ function of regulating the natural environment,

including climate regulation and hydrological regulation;
Frontiers in Ecology and Evolution 04
supporting services are the basis of other ecosystem service

functions, including gas regulation, climate regulation,

environment purification, and hydrological regulation; cultural

services refer to the non-material benefits of ecosystems such as

places, inspiration, and spiritual enjoyment from human cultural

activities. These include soil conservation, maintenance of nutrient

cycles, biodiversity, and aesthetic landscapes.

Based on the China Statistical Yearbook and the China

Agricultural Product Price Survey Yearbook for 2012-2022 and other

information and reference to relevant studies, this study uses the unit

area production, planted area, and average grain prices of three major

crops, namely wheat, corn, and rice, as basic data. The exchange rate of

this study refers to the data released by the State Administration of
TABLE 1 List of data used, along with their main characteristics and sources.

Type Data Source

Land use data
Remote sensing data on land use for six
periods: 2012, 2014, 2016, 2018, 2020,

and 2022

China Land Science Data Center
(https://dc.landcloud.org.cn/tdkx/#/)

Energy consumption data

Annual consumption of raw coal, coke,
crude oil, gasoline, kerosene, diesel fuel,
fuel oil, natural gas, and electricity,

2012–2022

China Energy Statistical Yearbook
(https://www.stats.gov.cn/hd/lyzx/zxgk/nytj/index.html)

Socio-economic data
Yield per unit area, acreage, and average
grain prices of three major crops: wheat,

maize and rice

National Compendium of Cost and Benefit Information of
Agricultural Products

(https://www.ndrc.gov.cn/)

Driving factor data

Natural environmental factors

Average annual precipitation
Resource Environment Science and Data Centre of the

Chinese Academy of Sciences
(https://www.resdc.cn/Default.aspx)

NDVI
Resource Environment Science and Data Centre of the

Chinese Academy of Sciences
(https://www.resdc.cn/Default.aspx)

Socioeconomic factors General budget expenditures of local
finances, Total population

China Statistical Yearbook
(https://www.stats.gov.cn/sj/)
FIGURE 2

Location maps of the study area (Revision No. GS(2022)4316): (a) elevation map; (b) land use map in 2023; (c, d) ecosystem service value map.
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Foreign Exchange (SAFE) (http://www.safe.gov.cn/), and the

economic value of one standard unit equivalent factor in the

study area was calculated as 161.59 US$·hm−1 a−1 by Equation 1,

from which the ESV equivalent table per unit area was calculated.

Then, the total ESV for 2012–2022 was calculated using Equation 2.

Since the construction land has lost its basic ecosystem service

function, this land type is not accounted for in this study.

EC =
1
7o

n

i=1

mipiqi
M

(1)

where Ec is the economic value of the function of providing

production services per unit area in the farmland ecosystem, i is the

type of crop, Pi is the average price of food crop i over the period

2012–2022 ($/kg), qi is the yields of the ith food crop, M is the area

planted with food crops, and n is the type of food crop.

ESV =o(AK � VCk) (2)

where ESV represents the total ESV in the study area, Ak

represents the area of the seeded land type, and VCk is the ESV

of the kth land type.

2.3.2 Measurement of land-use carbon emissions
In this study, the direct carbon emissions of different land use

types are estimated based on the area of different land use types in

each of China’s cities from 2012 to 2022. The calculation method is

to multiply the area of different types of land use and the

corresponding carbon emission factors and then sum them up

with Equation 3:

EK =oei =oSi � ∂i (3)
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where EK denotes the total direct carbon emissions, ei denotes

the total carbon emissions of different site types i, and Si and ∂i
denote the area and carbon emission coefficients of different site

types i, respectively (Table 2).

Since the carbon emissions from construction land are the main

carbon source, the carbon emissions from construction land were

indirectly estimated based on the panel data of China’s fossil energy

consumption from 2012 to 2022 using the carbon emission

coefficient method (Cao et al., 2022; Fan et al., 2018). The nine

types of energy consumption selected were raw coal, coke, crude oil,

gasoline, kerosene, diesel fuel, fuel oil, natural gas, and electricity,

which were estimated by combining the energy consumption data,

standard coal conversion coefficients, and carbon emission

coefficients (Table 3). Total carbon emissions are the sum of

direct and indirect carbon emissions (Lin et al., 2024).

2.3.3 Coupled coordination degree model
The coupled coordination degree model of ESV and land-use

carbon emissions in China was constructed to quantify the

coordination between the two systems (Yu et al., 2024) using

Equation 4:

D =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(a1U1 + a2U2)

ffiffiffiffiffiffiffiffiffiffiffi
U1U2

p
(U1 + U2)

s
(4)

where D is the degree of coupling coordination, the value range

is 0–1, and a larger value indicates that the coordination effect

between the systems is better. U2 is the standardized ESV index. a1

and a2 are the coefficients to be determined. Since this study

considers ESV and land-use carbon emissions as two systems of

equal importance, it is taken as a1 = a2 = 0:5. Combined with the

existing research results, the coupling coordination degree is

divided into the following types (Table 4).

2.3.4 Spatial autocorrelation analysis
Spatial autocorrelation can be used to reveal the aggregation

characteristics of spatial elements, which are divided into global
TABLE 2 Carbon emission factors for various land use types.

Land use type Cropland Woodland Grassland Waters Unused land

Carbon emission factor/t • hm2) 0.422 -0.644 -0.021 -0.253 -0.005
TABLE 3 Standard coal conversion factors and carbon emission factors
for various energy sources.

Energy
type

Conversion factor of standard
coal (kgce/kg, kgce/104KJ, kgce/

kW • h)

Carbon
emission
factor

Raw coal 0.7143 0.7559

Coke 0.9714 0.855

Crude oil 1.4286 0.5857

Gasoline 1.4714 0.5538

Kerosene 1.4714 0.5714

Diesel oil 1.5714 0.5912

Fuel Oil 1.4286 0.6185

Natural
gas

1.2143 0.4483

Electricity 0.1229 2.5255
TABLE 4 Classification of coupling coordination types.

Degree of coupling
coordination

Types of coupled
coordination

0.8<D ≤ 1.0 Excellent coordination

0.6<D ≤ 0.8 Intermediate coordination

0.5<D ≤ 0.6 Elementary coordination

0.4<D ≤ 0.5 Borderline disorder

0.2<D ≤ 0.4 Moderate disorder

0<D ≤ 0.2 Severe disorder
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spatial autocorrelation and local spatial autocorrelation, and the degree

of its correlation is characterized by Moran’s I. In 1995, Anselin (1995)

proposed bivariate spatial autocorrelation, which reveals the spatial

correlation of spatial variables with domain variables. Among them, the

global spatial autocorrelation is able to analyze the degree of

aggregation between spatial parcels with Equation 5:

I =
o
n

i=1
o
n

j=1
wij Yi − Y

� �
Yj − Y
� �

S2o
n

i=1
o
n

j=1
wij

(5)

Local spatial autocorrelation can measure the correlation of

individual spatial parcels, and the Z-score-based LISA map can

clearly and unambiguously express the characteristics of local

spatial changes with Equation 6:

Ii =

Yi − Y
� �

o
n

j=1
wij Yi − Y

� �
S2

(6)

where I and Ii denote the global bivariate Moran’s I and the local

bivariateMoran’s Ii for land-use carbon emissions and ESV, respectively.

Yi, Yj is the value of the ith, jth region;Y and S2 denote themean and the

variance, respectively; Wij is the element of the spatial-geographic

distance weighting matrix; and n is the number of cells.

2.3.5 Ordinary least squares
Ordinary least squares (OLS) is a parameter evaluation method

commonly used in linear regression models for parameter

estimation and fitting prediction. It is based on the assumption of

linear regression relationships, thus generating unique regression

equations matching all variables. Equation 7 is as follows:

y = b0 +o
k

i=1
bkxk + e (7)
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where yi is the dependent variable; xk is the independent

variable; b is the coefficient to be estimated, reflecting the linear

correlation between y and x, where b0 denotes the intercept

constant; bk is the correlation coefficient of each influencing

factor of xk with the degree of coordination of the coupling of

ESV and land-use carbon emissions; and e is the error term.

2.3.6 Geographically weighted regression models
The geographically weighted regression model can visualize the

heterogeneous characteristics of the spatial relationship and clarify

the driving mechanism of different factors on the coordination

degree of the coupling of ESV and land-use carbon emissions in

China. Equation 8 is as follows:

yi = b0(ui, vi) +o
k

i=1
bk(ui, vi) xik + ei (8)

where yi is the dependent variable of variable i and is the coupled

coordination degree of ESV and land use carbon emissions; xik is the

observed value of the kth variable at the ith sample point; (ui, vi) is the

geospatial coordinate of sample point i; b0(ui, vi) is the constant term
of the regression; bk(ui, vi) is the regression parameter of the kth

variable at the ith sample point; and ei is the error term.
3 Results

3.1 Land-use carbon emissions and
ecosystem service valuation

3.1.1 Spatial and temporal characteristics of land-
use carbon emissions

The change in land-use carbon emissions in the study area is

influenced by land type and land use degree. In terms of the total

amount, the carbon emission capacity from 2012 to 2022 shows a

stable growth trend from 246,259.605×104t to 328,413.301×104t,
FIGURE 3

Trends in land-use carbon emissions in China, 2012–2022.
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with an average annual growth rate of 3.34%, and the growth rate of

the total amount of land-use carbon emission is characterized as

“slow and then fast” (Figure 3; Table 5). Specifically, carbon

emissions from construction land use grow rapidly, from

250,982.136×104t in 2012 to 333,243.693×104t in 2022, with the

growth rate characterized as “slow and then fast”, which is due to

the substantial increase in the urbanization level in the study area,

accompanied by a large amount of energy consumption and an

increase in construction land use. This is due to the substantial

increase in urbanization level in the study area, accompanied by a

large amount of energy consumption and the increase of

construction land; the carbon emission of cropland shows a slow

decreasing trend due to the reduction of its own area, decreasing

from 7,105.086 × 104t in 2012 to 7,048.593 × 104t in 2022, with an

average annual decrease rate of 0.08%; the carbon absorption of

grasslands and waters continues to decline after 2014, the unused

land basically remains unchanged, and the forest land fluctuates

more obviously, showing a decrease in carbon absorption.

Analyzing the composition of carbon sources/sinks, in terms of

carbon sources, carbon emissions from construction land is the

most important source of carbon, accounting for 97.24% to 97.93%

of the total amount of carbon sources and showing a trend of

growth year by year. Meanwhile, cropland, as one of the carbon

sources, has a low carbon emission contribution rate but a higher

area share. As for carbon sinks, the contribution rates of watershed

and grassland to carbon absorption are comparable, and the sum of

the two accounts for 2.84%–3.08% of the total carbon sink; the

contribution rate of forest land to carbon absorption is the largest,

accounting for 96.82%–97.06% of the total carbon sink, which

indicates that the forest land has a vital carbon sinking capacity;

in addition, the unutilized land has the smallest amount of carbon

absorption. Since there is a huge difference between the amount of

carbon sources and carbon sinks, future work will focus on

controlling carbon sources and increasing carbon sinks.

The natural breakpoint method was used to classify the land-use

carbon emissions of each city in the study time series into five levels.

Namely, a high-level zone, higher-level zone, medium-level zone,

lower-level zone, and low-level zone, and six cross-sections in 2012,

2014, 2016, 2018, 2020, and 2022 were selected to draw a map of the

distributional characteristics of land-use carbon emissions in China

(Figure 4). The results show that the low values of inter-municipal
Frontiers in Ecology and Evolution 07
land-use carbon emissions during the 10 years are stably distributed

in the outer edge of the first step of China’s terrain and the middle

and lower reaches of the Yangtze River, with a few located in the

northeast. With the increasing level of urbanization and the

continuous increase in energy development intensity, the high-

value areas begin to gather in large areas in energy-rich regions of

Shanxi and Inner Mongolia, such as Taiyuan, Yuncheng, and

Hohhot. The percentage of cities with total carbon emissions

higher than 1500 × 104t rises from 16.78% in 2012 to 23.43% in

2022, and the carbon emissions of the entire municipal area of Shanxi

in 2022 reach 2180 ×104t or more. The number of cities with carbon

emissions lower than 200×104t decreased from 32 to 23, mainly in

Sichuan, Gansu, Yunnan, and other provinces with large forested and

mountainous areas. The lowest value of carbon emissions during the

10 years is located in Yichun City, Heilongjiang Province, with an

average annual carbon emission of 51.45×104t.

3.1.2 Spatial and temporal characterization of
ecosystem services

This study measured ESV based on a table of ESV equivalents

per unit area (Table 6). The results showed that from 2012 to 2022,

China’s ESV exhibited a fluctuating downward trend, decreasing

from 16538.28 billion dollars in 2012 to 16072.91 billion dollars in

2022, representing a total decrease of 465.37 billion dollars, with an

average annual reduction of 46.54 billion dollars (Figure 5; Table 7).

Specifically, from 2012 to 2022, ESV experienced an inverted “N”-

shaped process of sudden decrease, followed by a slow increase and

then a decrease. It plummeted from 16538.28 billion dollars in 2012

to 16143.32 billion dollars in 2014, a reduction rate of 2.39%, and

then phased in a slow increase to 10856.919 billion dollars in 2018, a

growth rate of 0.08%, but still well below the 2012 level.

Subsequently, from 2018 to 2022, the ESV slowly decreases, with

a cumulative decrease of 83.21 billion dollars.

Regarding ecosystem service types, the relative proportions of

the four types of ecosystem services have not changed significantly

over the past 10 years, and the structure of ESV is relatively stable.

Among them, the value of regulating services accounted for the

highest proportion (67.77%), followed by the value of supporting

services (21.97%). In comparison, the value of provisioning services

(5.81%) and cultural services (4.45%) accounted for the least. The

above results indicate that China’s natural ecosystem mainly
TABLE 5 Accounting results of land-use carbon emissions in China (Unit:104/t).

Year Cropland
Building
land

Woodland Grassland Waters
Unused
land

Carbon
sources

Carbon
sinks

Net carbon
emissions

2012 7 105.086 250 982.136 -11 454.725 -145.067 -216.223 -11.602 258 087.222 -11827.617 246 259.605

2014 7 113.969 252 493.384 -11 403.149 -143.680 -218.979 -11.526 259 607.353 -11777.334 247 830.019

2016 7 073.585 256 561.897 -11 431.433 -142.880 -216.820 -11.555 263 635.482 -11 802.688 251 832.794

2018 7 049.428 274 422.274 -11 476.127 -141.456 -212.083 -11.529 281 471.702 -11 841.195 269 630.507

2020 7 029.195 286 502.586 -11 501.931 -140.055 -210.123 -11.454 293 531.781 -11 863.563 281 668.218

2022 7 048.593 333 243.693 -11 529.152 -137.758 -200.539 -11.536 340 292.286 -11 878.985 328 413.301
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TABLE 6 ESV equivalent per unit area (US$•hm−1 a−1).

Primary type Secondary type Cropland Woodland Grassland Waters Unutilized land

Provisioning services

Food production 178.56 40.80 37.71 70.56 0.81

Raw material production 39.59 93.73 55.48 39.32 2.42

Water resource supply -210.88 48.48 30.71 702.41 1.61

Regulating services

Gas regulation 143.82 308.25 194.99 153.52 10.50

Climate regulation 75.14 922.32 515.49 346.36 8.08

Environmental purification 21.81 270.27 170.22 501.49 33.13

Hydrological regulation 241.59 603.57 377.60 7250.35 19.39

Supporting services

Soil conservation 84.03 375.31 237.55 174.5254623 12.12

Maintenance of
nutrient cycling

25.05 28.68 18.31 13.46 0.81

Biodiversity 27.47 341.78 216.01 567.75 11.31

Cultural services Aesthetic landscape 12.12 149.88 95.34 361.44 4.85

Total — 638.30 3183.07 1949.41 10181.19 105.03
F
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FIGURE 4

Spatial distribution of land-use carbon emission levels in China, 2012–2022.
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regulates human pollution, safeguards the ecosystem’s stability, and

maintains the natural environment on which human beings depend

for survival. Specifically, all four categories of ESV in China have

decreased to different degrees from 2012 to 2022. The supply service

has the largest reduction, totaling 3.77%. In the phased change,

supply services, regulating services, support services, and cultural

services have experienced the inverted “N” shape fluctuation change
Frontiers in Ecology and Evolution 09
of a sudden decrease, followed by a rebound and then a decrease,

which is consistent with the change process of the total value of ESV

in this period.

In terms of spatial distribution, the overall spatial differentiation

is high in the east and low in the west, decreasing from the southeast

to the northwest (Figure 6). The reason for this is that, on the one

hand, the equivalent ecological value (ESV) of forest land is higher
FIGURE 5

Trends in the ESV in China, 2012–2022.
TABLE 7 ESV in China, 2012–2022.

Year Supply service Regulatory services Support Services Cultural service Total

ESV (billion dollars)

2012 968.25 11246.93 3590.34 732.76 16538.28

2014 937.44 10935.66 3552.31 717.91 16143.32

2016 938.24 10941.66 3556.56 718.71 16155.17

2018 938.37 10942.79 3556.19 718.77 16156.12

2020 937.84 10936.92 3552.45 718.21 16145.42

2022 931.73 10878.46 3547.19 715.53 16072.91

Change in ESV

2012–2014 -30.81 -311.27 -38.03 -14.85 -394.96

2012–2014 (%) -3.18 -2.77 -1.06 -2.03 -2.39

2014–2016 0.80 6 4.25 0.80 11.85

2014–2016 (%) 0.08 0.05 0.12 0.11 0.07

2016–2018 0.13 1.13 -0.37 0.06 0.95

2016–2018 (%) 0.01 0.01 -0.01 0.01 0.01

2018–2020 -0.53 -5.87 -3.74 -0.56 -10.70

2018–2020 (%) -0.05 -0.05 -0.11 -0.08 -0.07

2020–2022 -6.11 -58.46 -5.26 -2.68 -72.51

2020–2022 (%) -0.65 -0.53 -0.15 -0.37 -0.45

2012–2022 -36.52 -368.47 -43.15 -17.23 -465.37

2012–2022 (%) -3.77 -3.27 -1.20 -2.35 -2.81
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than that of cropland, grassland, and waters. China’s northeastern

and southwestern regions are mostly characterized by mountainous

and hilly terrain with higher forest cover. For example, the Great

and Small Hinggan Mountains are important ecological barriers in

China, so the ESV is higher. On the other hand, with the increase in

human activities such as population migration, land use change,

and economic development, the ecosystem services have changed,

and the spatial difference is significant. Overall, the spatial

distribution pattern of high and low-level zones expanded from

2012 to 2022 with little change in the overall spatial distribution

pattern. In 2012, high-level areas were mainly distributed in

Hulunbeier City, Inner Mongolia, and Chongqing Municipality;

higher-level areas were distributed in the middle and lower reaches

of the Yangtze River; and low-level areas were mainly distributed in

the areas along the Yellow River. The high-level areas were in a state

of contraction in 2012–2018, which was manifested in the

transformation of Chongqing Municipality from a high-level area

to a lower-level area; in comparison, low-level areas were

expanding, such as Yancheng City, Jiangsu Province, Lijiang City,

Yunnan Province, and Yancheng City, Yunnan Province. Yancheng

City in Jiangsu Province, Lijiang City in Yunnan Province, and

Anshun City in Guizhou Province are identified as key locations.

Between 2018 and 2022, both high-level and low-level zones

experienced expansion, with Chongqing City transitioning from a

higher-level zone to a high-level zone, while Guiyang City in
Frontiers in Ecology and Evolution 10
Guizhou Province and Huai’an City in Jiangsu Province shifted

from lower-level zones to low-level zones.
3.2 Temporal changes in coupling
coordination degree

Based on the coupling degree model, the CCD between ESV and

tourism economic resilience was measured from 2012 to 2022 in

inter-city China and was divided into three regional sub-samples in

the eastern, central, and western regions for further comparison

(Figure 7; Table 8). The results show that the CCD of land-use

carbon emissions and ESV in 2012-2022 shows a mirror-image “L”-

shaped growth, and the average value of the CCD of the two systems

increases from 0.613 in 2012 to 0.621 in 2022, reaching a peak in

2022. Most of the CCD are in the intermediate and elementary

coordination stages, and the coordinated development between the

systems still needs to be further enhanced.

From a subregional perspective, disparities exist in the coupling

coordination levels across different regions; specifically, the

coupling coordination levels in the central and eastern parts of

the country exceed the national average. In contrast, the western

part of the country still has a certain gap from the national average.

On the city level, there is a big difference between cities in terms of

economic development, political support, and resource endowment,
FIGURE 6

Spatial distribution of the value of ecosystem services in China, 2012–2022.
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resulting in a significant difference in the coupling coordination

level. It is also found that Hulunbeier has the highest coupling

coordination level, which grew from 0.861 in 2012 to 0.907 in 2022,

all in the transition stage of excellent coordinated development.

This is due to Hulunbeier’s higher elevation and wider distribution

of grassland, which generates higher ecological service value, but its

economic development still relies on high energy-consuming

industries. In addition, Hulunbeier’s industrialization and

urbanization are accelerating, with a consequent increase in

energy consumption, further driving up carbon emissions.

Chifeng and Taiyuan have the second highest CCD, with their

coupling coordination evolving from intermediate to excellent

coordination. In contrast, the coupling coordination degree of

Jiayuguan, Neijiang, Ziyang, and some other cities in the western

region is low (mean<0.561) but relatively stable (change<0.02).
3.3 Spatial evolution of coupling
coordination degree

The years 2012, 2014, 2016, 2018, 2020, and 2022 were chosen

as cross-sectional time points to investigate the spatial

differentiation and evolutionary characteristics of the coupling
Frontiers in Ecology and Evolution 11
and coordination levels between land-use carbon emissions and

ESV in China (Figure 8). The results show that the CCD of land-use

carbon emission and ESV in China presents a distribution

characteristic of “high in the north and low in the south,”

especially in Hulunbeier and Chifeng in North China, where the

polar nucleus is obvious. Overall, the CCD of the two systems

fluctuates and rises from 2012 to 2022, with the high-value areas

mainly concentrated in Inner Mongolia in North China and

Chongqing in Southwest China, while the low-value areas are

mostly distributed in Central China; the high-value area tends to

expand, and the low-value area tends to contract, and the change of

spatial distribution pattern is relatively small.

Specifically, in 2012, most regions in China were in elementary

and intermediate coordination. Hulunbeier and Chongqing had the

highest level of coupled coordination, which was excellent

coordination; Jiayuguan, Sanya, Jingdezhen, and other 114

(39.86%) cities had the lowest level of coupled coordination,

which was elementary coordination; Chifeng, Shanghai, Harbin,

Tianjin, and other 170 (59.44%) cities had an intermediate level.

From 2012 to 2014, excellent coordination and intermediate

coordination regions tended to contract, while elementary

coordination regions tended to expand, and the overall spatial

evolution was smaller. Hulunbeier has excellent coordination;

Chongqing falls back from the excellent coordination stage to the

intermediate; Baoshan and Qinhuangdao turn from the

intermediate to the elementary coordination stage. From 2014–

2018, the cities in the excellent coordination area remain

unchanged, with only one city, Hulunbeier; the intermediate

coordination area expanded, with five cities, Chuzhou, Suzhou,

Ningde, and Shaoguan, jumping up to the intermediate

coordination stage from the elementary coordination stage to the

intermediate coordination stage. The five cities of Chuzhou,

Suzhou, Ningde, and Shaoguan jumped from the elementary to
FIGURE 7

Trends in CCD between land-use carbon emissions and ecosystem services in the subregion, 2012–2022.
TABLE 8 CCD between land-use carbon emissions and ecosystem
services in the subregion, 2012–2022.

Region 2012 2014 2016 2018 2020 2022

National 0.613 0.613 0.613 0.615 0.617 0.621

East 0.616 0.616 0.617 0.619 0.620 0.621

Central 0.614 0.614 0.614 0.617 0.618 0.629

West 0.606 0.606 0.605 0.607 0.609 0.613
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the intermediate coordination stage. From 2018 to 2022, the

excellent and intermediate coordination zones expanded, while

the elementary coordination zones contracted. Hulunbeier is in

the excellent coordination stage, Chifeng and Taiyuan leap from the

intermediate to the excellent coordination stage, and eight cities,

including Shizuizu, Zhangye, Mianyang, and Xiamen, move from

the elementary to the intermediate coordination stage.
3.4 Spatial correlation of coupling
coordination degree

In the analysis of carbon emissions and ESV related to land use

in China, it is shown that the central area of the study region has a

higher carbon emission but lower ESV, while the opposite is true for

the peripheral areas. This suggests a potential correlation between

the two. A spatial correlation analysis of carbon emissions and ESV

within the study area was conducted to gain deeper insights into

their interaction. A bivariate spatial autocorrelation model was

employed to explore the spatial relationship between land-use

carbon emissions and ESV. The results indicate a significant

negative spatial correlation between the two; as carbon emissions

increase, ESV tends to decline. Furthermore, Moran’s I values
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ranged from -0.364 to -0.237, indicating that the spatial

dispersion effect of both persisted during the study period (Table 9).

Furthermore, the LISA agglomeration map of land-use carbon

emissions and ESV was compared and analyzed (Figure 9). The

results show that the following.

In 2012, the “high-high” agglomeration area was mainly

concentrated in 27 cities in North China and Southwest China,

such as Wuzhong, Chifeng, and Zunyi; the “high-low”

agglomeration area is mainly concentrated in Chongqing; and the

“low-low” agglomeration area is only in Zigong. The “high-low”

agglomeration area is mainly concentrated in Chongqing; the “low-

low” agglomeration area is only one city, Zigong.

In 2014, the overall number of “high-high” agglomerations

increased by one, with Qiqihar and Taiyuan leaping from

insignificant agglomerations to “high-high” agglomerations, and

Tianjin leaping from a “high-high” agglomeration to a “high-high”

agglomeration. The number of “high-high” agglomerations

changed to insignificant agglomerations in Tianjin, while the

number of “high-low” agglomerations remained unchanged.

In 2016, only two cities, Weifang and Linyi, were added to the

“high-high” agglomeration area; only one city, Leshan, was added to

the “low-low” agglomeration area.

In 2018, the number of “high-high” agglomerations decreased;

Zunyi, Suzhou, and Beijing changed from “high-high”
FIGURE 8

Spatial distribution of coupled coordination types of ecosystem services and land-use carbon emissions.
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agglomerations to insignificant agglomerations; and only Yinchuan

jumped from ins ignificant agglomerat ions to “high-

high” agglomerations.

In 2020, the number of “high-high” agglomerations and “low-

low” agglomerations were further reduced. Linyi and Zhangjiakou

turn from “high-high” agglomerations to insignificant

agglomerations, while Changzhi turns from an insignificant

agglomeration to a “high-high” agglomeration; Leshan turns from

“low - low” agglomeration to “high - low” agglomeration; and

Changzhi turns from “high - high” agglomeration to “high - high”

a g g l ome r a t i o n . L ow - l ow ” a g g l ome r a t i o n t o non -

significant agglomeration.
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In 2022, the number of “high-high” agglomerations and “low-

low” agglomerations will remain unchanged. Five cities, namely

Shanghai, Tianjin, Weifang, Heihe, and Chengde, will change from

“high - high” agglomeration to non-significant agglomeration,

while five cities, namely Yuncheng, Jincheng, Xi’an, Shuozhou,

and Yangquan, jumped from non-significant agglomerations to

“high - high” agglomerations. In contrast, the five cities of

Yuncheng, Jincheng, Xi’an, Shuozhou, and Yangquan jumped

from insignificant to “high-high” agglomerations. Overall,

through the analysis of the typical year agglomeration map, it can

be found that the coupling and coordination of land-use carbon

emission and ESV are mainly characterized by the spatial

correlation of “low-low” agglomeration and “high-high”

aggregation and that the”low-high” agglomerations and “high-

high” agglomerations have the same spatial characteristics. It can

be found that the coupling and coordination of land-use carbon

emissions and ESV mainly show the spatial correlation

characteristics of “low-low” agglomeration and “high-high”

agglomeration, and “low-low” agglomerations are mainly

concentrated in Zigong and Leshan in Southwest China, while

“high-high” agglomerations are widely concentrated in North

China. The high ESV in North China is due to the high value of

ecosystem regulation services provided by the Yellow River Basin

and the Haihe River Basin. Although the region has quantitative
TABLE 9 Global Moran Index results.

Year Moran’s I Z P

2012 -0.364 -9.412 0.000

2014 -0.267 -6.954 0.000

2016 -0.266 -6.957 0.000

2018 -0.264 -6.877 0.000

2020 -0.238 -6.229 0.000

2022 -0.237 -6.206 0.000
FIGURE 9

Coupling coordination LISA clustering map.
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carbon sinks due to its proximity to water, land-use carbon

emissions are relatively high due to the overexploitation of

mineral resources and the irrational development of heavy industry.
3.5 The driving mechanism of coupling
coordination degree

There are many factors affecting the coupling and coordination

of land-use carbon emissions and ESV, and this study fully draws

on previous studies to explore the processes influencing the

coupling and coordination of land-use carbon emissions and ESV

from two dimensions, namely socioeconomic and natural

environment, based on the availability of data. Thus, in this

study, there were three socio-economic factors, including general

budget expenditure of local finance, energy utilization efficiency,

and total population, and three natural environment factors,

including land resettlement rate, rainfall, and NDVI, and each

independent variable was standardized to eliminate the effect of

the scale (Table 10). Furthermore, two key time nodes, 2012 and

2022, were selected for comparative analysis, the six drivers were

used as model explanatory variables, and the degree of coupling

coordination was used as an explanatory variable. Since the

coupling coordination degree of land-use carbon emissions and

ESV has a significant positive correlation in spatial distribution, the

regression analysis using the traditional OLS model may ignore the

spatial factors, so the OLS model was performed before the GWR

model test. The regression results showed that the variance inflation

factor (VIF) of all explanatory variables for the two time points of

2012 and 2022 was less than 7.5, indicating no multicollinearity

problem in the model. According to the R2 results of the adjusted

goodness-of-fit for the two representative years measured by the

GWR model, it can be seen that the explanatory strength of the

GWR model is 57.25% and 41.86%, respectively. The goodness-of-

fit is 8.62% and 5.93% higher than that of the OLS model,
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respectively, and its AICc value is also smaller, which fully

indicates that the GWR is the model with a greater goodness-of-fit.

The regression analysis of the GWR model showed that three

socioeconomic factors, namely, general budget expenditure of local

finance, energy use efficiency, and total population, positively

influenced the coupling and coordination of land-use carbon

emissions and ESV. However, the effects of natural environmental

factors show instability. Among them, land resettlement rate and

average annual precipitation are the main factors leading to a

decrease in coupling coordination, both of which show negative

impacts in the study area, while NDVI has both positive and

negative impacts on coupling coordination. According to the

absolute value of the influence degree of each driving factor, the

order is X4>X6>X5>X2>X3>X1. The spatial and temporal

differentiation characteristics of the influence of each driving

factor on the coupling coordination of land-use carbon emissions

and ESV in China are as follows:
1. Local finance general budget expenditure: From 2012 to

2022, Shanghai, Beijing, Tianjin, Chongqing, Guangzhou,

and Shenzhen east of the Hu Huanyong line have a higher

intensity of local finance general budget expenditure, while

Wuhai, Zhangye, Jiayuguan, and other areas located west of

the Huanyong line have a lower intensity of local finance

general budget expenditure. Regarding the fitting

coefficient, the general budget expenditure of local

finance contributes positively to the enhancement of

regional land-use carbon emissions and ESV coupling

coordination. Among them, the fitting coefficients of the

western regions of China, such as Pu’er, Jiuquan, and

Baoshan, are larger, while the fitting coefficients of the

central and eastern regions are relatively smaller, and the

overall trend gradually decreases from southwest to

northeast (Figures 10-a1, 10-b1). The reason is that the

economic scale of the eastern coastal region is larger, and

the increase in public expenditure intensity leads to the

intensification of regional land use changes and the

consequent increase in carbon emissions, which in turn

affects the coordination effect of the coupling of regional

land-use carbon emissions and ESV.

2. Energy utilization efficiency: From 2012 to 2022, energy

utilization efficiency is characterized as “high in the north

and south, low in the center”; in 2012, the areas with energy

utilization efficiency exceeding 2.0 t/thousand dollars

includes 19 cities such as Dingxi, Baoshan, Jiamusi, etc.,

which are mainly located in the western and northeastern

parts of China. In 2022, the number of regions with energy

utilization efficiency exceeding 2.0 t/thousand dollars

remained roughly the same, mainly clustered in

Northeast China, with Heihe City having the highest level

with 4.13 t/thousand dollars. Regarding the fitting

coefficient, energy use efficiency contributes positively to

the enhancement of the coupling and coordination effect of

land-use carbon emissions and ESV in all regions. In 2012,

energy use efficiency showed a significant positive effect on
TABLE 10 Descriptive variables for factors affecting the coupling
coordination degree between land-use carbon emissions and
ecosystem services.

Dimension Variable Measurement Indicator

Socio-
economic
factors

X1 General budget
expenditures of
local finances

General budget expenditure of local
finances/billion dollars

X2 Energy efficiency
Energy consumption per unit
of GDP

X3 Total population
Total resident population of
prefecture-level cities

Natural
environmental

factors

X4 land
resettlement rate

Cultivated land area as a
proportion of the total area of the
administrative unit

X5 Average
annual precipitation

Average annual precipitation/mm

X6 NDVI Normalized Vegetation Index
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the coupling and coordination of the two, mainly in the

northeastern part of China. By 2022, the positive impact of

energy utilization efficiency continued to increase,

expanding over time in the northeastern and southeastern

regions (Figures 10-a2, 10-b2). The reason is that the

eastern region prioritizes economic development. Its

industrial and energy consumption structure is better

than that of the central and western regions. The increase

in energy dependence will increase land-use carbon

emissions, so safeguarding the energy-use efficiency of the
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region has a more significant impact on the coupling and

coordination of regional land-use carbon emissions

and ESV.

3. Total population: From 2012 to 2022, cities with more than

10 million people were mainly located in the eastern coastal

and central regions, such as Chongqing, Shanghai, Beijing,

and Harbin. Regarding the fitting coefficients, the total

population positively contributes to coupling land-use

carbon emissions and ESV. The differences in the fitting

coefficients of various regions are relatively small, with the
FIGURE 10

Estimated distribution of regression coefficients for the coordinated change in the level of coupling between land-use carbon emissions and ESV in
2012 and 2022.
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regression coefficients displaying a ladder-like feature of

“high in the northeast and low in the southwest”

(Figures 10-a3, 10-b3). On the whole, the increase in total

population increased the efficiency of the coupling of land-

use carbon emissions and ESV in the northeast region in

cities with a relatively small population, such as Heihe,

Hulunbeier, and Shuangyashan, to a greater extent than in

the central and western regions. The influence of human

activity intensity on ecosystems and land-use carbon

emissions should continue to be controlled in the future.

4. Land resettlement rate: From 2012 to 2022, the land

resettlement rate of 22 cities in the eastern region,

including Guyuan, Changchun, Zhoukou, and Jiamusi,

exceeded 60%, with Guyuan and Changchun exceeding

80%. In contrast, the land resettlement rate in the central

and western parts of the country is relatively low due to the

land quality, the resettlement history, and the economic

and technical strength. In terms of the fitting coefficient,

the land resettlement rate contributes negatively to the

enhancement of the coupling coordination between

regional land-use carbon emissions and ESV, and the

absolute value of the regression coefficient shows a “high

in the south and low in the north” stepped characteristic,

with a large difference in the fitting coefficient. The high

negative impact area is distributed in the southeast region,

while the low negative impact area is concentrated in the

northeast region. It shows that the reduction of the land

resettlement rate promotes the improvement of the

coupling coordination efficiency of land-use carbon

emission and ESV and also shows that the land

resettlement rate enhances the coupling coordination

efficiency of the two systems to a greater extent in each

region (Figures 10-a4, 10-b4). The reason is that the higher

the land resettlement rate and the lower the vegetation

cover, the more fragile the ecological environment and the

lower the land-use carbon emissions, negatively affecting

the efficiency of the coupling and coordination between

land-use carbon emissions and ESV.

5. Mean annual precipitation: From 2012 to 2022, areas with

higher mean annual rainfall were mainly distributed in

southeast China, such as Guangzhou, Dongguan, Sanming,

Fuzhou, and other areas south of the Qinling–Huaihe

River, while northwestern China had a relatively lower

mean annual precipitation due to geographic location,

climate type, and other factors. As far as the fitting

coefficient is concerned, the absolute value of the fitting

coefficient is relatively small in those regions with higher

average annual precipitation. Overall, the average annual

precipitation makes a consistently stronger negative

contribution to the coupled coordination efficiency of

land-use carbon emissions and ESV in each region, and

the intensity of its influence is roughly opposite to the

distribution of average annual precipitation in China. The

high negative impact area is mainly located in north China,

while the low negative impact area is mainly distributed in
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south China (Figures 10-a5, 10-b5). The reason is that the

average annual precipitation in the southeast is higher than

in the north. The strong precipitation directly affects the

soil carbon storage and sequestration capacity by

influencing land-use efficiency and the functions of the

ecosystem to provide food and habitat. It then indirectly

affects the efficiency of the coupling and coordination

between the land-use carbon emissions and ESV.

6. NDVI: From 2012 to 2022, the NDVI of Hechi, Baise,

Dandong, and other areas east of the Hu Huanyong Line

in China was high, while the NDVI of Jiuquan, Ulanqab,

Wuwei, and other areas west of the Hu Huanyong Line in

China was low due to the impacts of factors such as climate

change and human activities, showing an overall spatial

pattern of “high in the southeast and low in the

northwest.” In terms of fitting coefficients, in 2012, NDVI

had a global positive effect on the improvement of the

coordination efficiency of the coupling of regional land-use

carbon emissions and ESV, showing a gradient pattern of

gradual enhancement from the middle and lower reaches of

the Yellow River. In 2022, the influence of NDVI was

unstable, with the high positive influence area gradually

shifting to the northwest. In addition, in the northeast,

NDVI negatively enhances the coupling coordination

efficiency of land-use carbon emissions and ESV

(Figures 10-a6, 10-b6). The reason is that the northwest

region has low vegetation cover and a fragile ecological

environment, which is not conducive to the healthy

development of the local economy, and the land-use

carbon emissions are relatively low, so it has a stronger

impact on the efficiency of coupling and coordination of

land-use carbon emissions and ESV. In addition, due to the

higher ESV in the northeast, the carbon emissions of the land

in the northeast, in which the main land use type is cropland,

are significantly higher than the same area of land in which

the main land use type is non-cropland, i.e., the reduction of

vegetation cover effectively promotes the coupling and

coordination of ESV and land-use carbon emissions.
4 Discussion

4.1 Spatial and temporal evolution of land-
use carbon emissions and ESV

Within the study period, the total land-use carbon emissions in

China showed a stable growth trend, with a growth rate

characterized as “slow and then fast”, and the carbon emissions

from construction land use grew rapidly, with the growth amount

characterized as “slow and then fast”. This conclusion is consistent

with the results of Chen et al. (2019), who used the Chengdu-

Chongqing urban agglomeration as the study area. Li et al. (2018)

used Shaanxi Province as the study area, indicating that land use

change is the key reason affecting carbon emissions and carbon
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source/sink patterns. Inappropriate land development will affect the

carbon balance. China’s ESV experienced an inverted “N”-shaped

change with a sudden decrease, followed by a slow increase and then

a decrease, consistent with the findings of Liu et al. (2023), who used

Southwest China as a study case. In addition, the fluctuation of the

total value in the study area was related to the launch of theWestern

Development Strategy at the beginning of the study period, which

resulted in the destruction of ecological vegetation and the decline

of value due to the increase of land for construction and the

occupation of cropland, woodland, and grassland (Niu et al., 2022).
4.2 Coupling coordination degree

The CCD of land-use carbon emissions and ESV typically

exhibited a mirrored “L” shaped growth pattern. Most of the

CCDs are in the intermediate and elementary coordination stage,

which is consistent with the results of Shi et al.’s (2024) study on the

integration and development of the “dual-carbon” goal and

ecological and environmental governance in China’s provincial

areas. In addition, the level of coupling coordination among the

three regions is East > Central > West. The reason for this is that the

cities located in the western regions of Shaanxi, Gansu, and

Guizhou have higher elevations, wider distribution of grasslands,

and are close to water sources such as the Yellow River and the

Yangtze River, which can provide higher value of ecosystem

regulation services for the local community. These regions have a

stronger capacity for carbon sinks. Still, the economic contribution

of carbon emissions is relatively low, i.e., the consumption and

utilization rate of energy and other resources are low, and carbon

emissions are relatively low. Therefore, the degree of coupling

coordination of ESV and land-use carbon emissions is low (Liu et

al., 2022; Fu et al., 2024; Wang et al., 2022). In contrast, the central

regions of Inner Mongolia and Shanxi have a high proportion of

industry, which increases energy consumption and carbon

emissions. Still, due to the climatic and geographic conditions of

the regions, the forested land area is widely distributed. It generates

high ecological service value, so coupling land-use carbon emissions

and ESV is highly coordinated (Pan et al., 2024). In addition, the

eastern region, in which Beijing and Shandong are located, and the

middle and lower reaches of the Yangtze River are mainly

dominated by arable land. The ecological service value of this

zone is generally low. Hence, the carbon absorption capacity is

low. Still, the economic development is better, and there is a better

industrial base to promote the transformation and upgrading of the

industrial structure to a low-carbon transformation (Hu et al.,

2022). At the same time, through its better scientific and

technological foundation, it increases the utilization of clean

energy such as natural gas, reduces the proportion of high-carbon

and traditional energy, and strictly protects the ecological resources

and plans to increase the ecological land to improve its carbon sink

capacity, so the coupling and coordination of land-use carbon

emissions and ESV is high.
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4.3 Driving mechanism

There is a negative spatial correlation between land-use carbon

emissions and ESV, which is consistent with the spatial relationship

derived by Wang (2021) in different case study sites. In this study,

we selected indicators from two dimensions, namely the

socioeconomic and natural environment factors, and analyzed the

influencing factors affecting the coupling and coordinating effect of

land-use carbon emissions and ESV in China. The results show that

the natural environment factor is the most important factor

influencing the coupling and coordination degree of the two

systems. Still, there are both positive and negative influences,

which confirms the conclusion obtained by Wang et al. (2023)

using the Yellow River Basin as a study case. The socioeconomic

factor positively affects the degree of coordination of the coupling of

the two systems, which is consistent with the conclusions of Wang

et al. (2024) and Yuan et al. (2024), who used Ningxia and Huaihai

Economic Zone as study cases, respectively.
4.4 Limitations and future
research directions

This study investigates the spatial and temporal evolution of

land-use carbon emissions and ESV in Chinese municipalities and

their spatial correlation and agglomeration characteristics on a

macro scale. However, there are still the following shortcomings.

First, due to limited data availability, only the data of 286 cities in

China were used, which fails to comprehensively reflect the levels of

land-use carbon emissions and ESV in all regions of China. In

addition, industrial production, living, and waste emissions were

not added to the carbon emission accounting of construction land,

so there are errors in the calculation results, but they do not affect

the spatial and temporal analyses of the regional carbon emissions.

Therefore, it is necessary to collect more comprehensive data to

improve future carbon emission accounting accuracy.
5 Conclusions and
policy recommendations

5.1 Conclusions

First, China’s net land-use carbon emissions show steady

growth in carbon emissions from 2012 to 2022. An increasing

number of cities are located in energy-rich areas such as Shanxi and

Inner Mongolia. In addition, the number of land-use carbon

sources is much larger than that of carbon sinks. Among them,

carbon emissions from construction land will grow from

250,982.136×104t in 2012 to 333,243.693×104t in 2022, an

increase of 32.78% in 10 years, and the growth is characterized as

“slow and then fast”, which is closely related to economic and social

development. Forest land has an important carbon sink capacity,
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accounting for 96.82%–97.06% of the total carbon sink. During the

study period, China’s ESV as a whole shows an inverted “N”-shaped

fluctuating downward trend, with the total ESV decreasing from 16

538.28 billion dollars in 2012 to 16 072.91 billion dollars in 2022,

with an average annual decrease of 46.54 billion dollars, and the

stability of the ESV structure needs to be improved. Among them,

the value of regulating services and supporting services are the main

components of ESV, which together determine the overall trend of

ESV. In terms of spatial distribution, ESV in the study area shows a

spatial distribution pattern of high in the east and low in the west,

decreasing from southeast to northwest.

Second, the coupling and coordination effect between land-use

carbon emissions and ESV in China shows a mirror-image “L”

shaped growth, with the average value of the coupling and

coordination degree of the two systems increasing from 0.613 in

2012 to 0.621 in 2022 and most of the coupling and coordination

grades are at the stage of intermediate and primary coordination.

The coordinated development of the two systems still needs to be

further strengthened. The coupling coordination level of the three

regions is mostly in the intermediate and primary coordination

stages, and the development of coordination among systems still

needs to be further enhanced. The ranking of the coupling

coordination level of the three regions is East>Central>West.

From the perspective of spatial distribution, the coupling and

coordination degree of land-use carbon emission and ESV shows

a distribution characteristic of “high in the north and low in the

south”, especially in Hulunbeier and Chifeng in North China, with

obvious polar nucleus characteristics. Overall, the coupling and

coordination degree of the two systems fluctuates and rises from

2012 to 2022, with the high-value areas mainly concentrated in

Inner Mongolia in North China and Chongqing in Southwest

China; the low-value areas are mainly distributed in the central

region; the high-value areas tends to expand, the low-value areas

tends to contract, and the change of spatial distribution pattern is

relatively small.

Third, a significant negative spatial correlation exists between

land-use carbon emissions and ESV, which passes the P-value test.

The “high-high” category is mainly distributed in North China;

the “high-low” category is mainly concentrated in Chongqing; the

“low-low” category is mainly concentrated in Zigong and Leshan

in Southwest China. The “high-low” category is mainly

concentrated in Zigong and Leshan in Southwest China. The

effects of each factor on the coupling coordination between

land-use carbon emissions and ESV showed significant spatial

heterogeneity. From the GWR model, the influence intensity of

each factor was derived, and the ranking of the absolute values of

the influence intensity of each factor on the coupled coordination

degree of the two systems are as follows: land resettlement rate >

NDVI > average annual precipitation > energy utilization

efficiency > total population > general budget expenditure of

local finance. Among them, the three socioeconomic factors,

namely, general budget expenditure of local finance, energy

utilization efficiency, and total population, positively influence
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the coupling and coordination of land-use carbon emission and

ESV. Land resettlement rate and average annual precipitation

are the main factors leading to a decrease of coupling

coordination, and both of them show negative effects in the

study area, while NDVI has both positive and negative effects on

coupling coordination.
5.2 Policy recommendations

Based on the conclusions above, the following suggestions are

made for related development practices:
1. Reduce the intensity of energy carbon emissions and

enhance the capacity for ecosystem restoration. By

promoting the energy consumption revolution, the

proportion of green and low-carbon energy sources, such

as coalbed methane, in the energy consumption structure

should be greatly increased to achieve the purpose of

carbon and emission reduction. This will continue to

strengthen ecological protection and ecological

restoration, enhance ESV, and continuously improve the

carbon sink capacity of ecosystems by strengthening

ecological resilience.

2. Actively buttress major national regional strategies,

promote the organic integration of various policies and

measures, comprehensively consider regional development

differences, and formulate differentiated strategies to

construct ecological functional zones and low-carbon

development according to local conditions based on

resource endowments and regional economic conditions.

3. Strengthen restrictions on the expansion of construction

land area, enhance the intensive utilization of land

resources, reasonably increase the area of watersheds and

forests, increase carbon sinks, protect ecosystems, and

improve ESV to promote high-quality regional

development to achieve the goal of carbon neutrality.
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