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Introduction: Rocky desertification poses a significant ecological challenge

globally, leading to ecosystem degradation and diminished land resources.

Consequently, it causes substantial changes in land-use patterns, hindering

regional sustainable development.

Methods: This research focuses on Bijie City, Guizhou Province, China, a region

severely affected by rocky desertification. Using land use/cover data and relevant

driving-factor data from 1990 to 2022, and employing methods such as spatial

pattern analysis, we comprehensively analyze land-use/cover change (LUCC)

characteristics over time and predict land-use patterns under three scenarios

for 2030.

Results: The key findings are: (1) Bijie City has diverse land types. Cropland and

forest together comprise nearly 90% of the total land area, exhibiting distinct

regional spatial distributions. (2) During the rocky desertification control period

(1990–2020), cropland, shrubland, and grassland areas decreased, while forest

area increased. Conversion of these three land types to forest was the primary

driver of LUCC. Landscape fragmentation decreased, and the ecological

environment significantly improved. (3) Projections indicate that focusing solely

on ecological governance (Scenario 1) or cultivated-land protection (Scenario 2)

is insufficient. Scenario 3, integrating ecological governance and cultivated-land

protection, is optimal. By 2030, cropland area is projected to increase rationally

by 307.51 km2, with some forest, shrubland, and grassland converting to

cropland. This land-use change will be the main feature of future LUCC,

safeguarding food security and enhancing ecological quality.

Discussion: In conclusion, rocky desertification control efforts from 1990 to

2020 have profoundly impacted Bijie City’s land-use patterns. Future efforts must

prioritize coordinated ecological and cultivated land protection. This study

provides crucial theoretical support for regional ecosystem management and

spatial planning, promoting harmonious ecological and economic development.
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1 Introduction

Rocky desertification, a significant global ecological challenge,

threatens ecosystem stability and sustainable human development,

becoming a focal point in global environmental governance (Feng

et al., 2022; Salunkhe et al., 2018). Numerous regions worldwide are

affected (Ren et al., 2023). Karst regions of southwest China

experience severe rocky desertification due to unique carbonate

geology and long-term unsustainable practices like over-

reclamation and deforestation (Zhang et al., 2010). In Africa’s

Sahel region, prolonged droughts and overgrazing-induced

vegetation damage are expanding desertified areas (Herrmann

and Hutchinson, 2005). Mediterranean coastal areas face

increasing rocky desertification due to climate change and

excessive human development.

The impacts are primarily ecological and economic.

Ecologically, rocky desertification drastically reduces vegetation

cover, intensifies soil erosion, weakens ecosystem water and soil

conservation functions, and triggers problems like biodiversity loss

(Jiang et al., 2014). Economically, it decreases land productivity,

reduces available land, and hinders agricultural production

and economic development, exacerbating regional poverty

and challenging sustainable development (Li et al., 2018).

These ecological and resource degradations cause significant

spatiotemporal land-use pattern variations, profoundly affecting

regional sustainability. Therefore, researching spatiotemporal

land-use change in key rocky desertification control regions and

accurately predicting future trends is crucial for developing sound

control strategies and achieving sustainable development.

Land Use/Cover Change (LUCC), a key driver and outcome of

global environmental change, is pivotal in terrestrial ecosystems (Tian

et al., 2016), directly or indirectly altering original terrestrial

ecosystem surface characteristics (Song et al., 2018; Sterling et al.,

2013). Land-use change drives many environmental processes,

including climate change (Verburg et al., 2011), carbon dioxide

emissions (Ahmad and Nizami, 2015), and the carbon cycle

(Castillo-Figueroa, 2021), and significantly impacts food security,

ecological security, and social stability (Foley et al., 2005; Sani et al.,

2016). Since the International Human Dimensions Programme on

Global Environmental Change and the International Geosphere–

Biosphere Programme established LUCC as core global change

research (Turner et al., 1995), extensive research has been

conducted. For example, Song et al. (2018) used high-resolution

satellite data to quantify and analyze global land-use change from

1982 to 2016, revealing long-term trends and regional differences,

informing our understanding of human-environment interaction.

Robert et al. (2013) explored land-use change impacts on ecosystem

services in diverse mountainous regions, which are important for

global ecosystem services but face intense land-use pressure. Du et al.

(2023) found net decreases in forest and cultivated land and a net

increase in grassland in the Eurasian steppe, offering insights into

land-use change in Asian steppe regions. Mao (2022) studied

dynamic land-use changes in Bijie City, Guizhou, China,

using multi-temporal remote sensing data, and explored their
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spatiotemporal evolution and correlations with ecosystem service

functions, providing practical evidence for local ecological security

pattern planning. Notably, long-term rocky desertification control

significantly impacts land-use change (Guo et al., 2023; Yang et al.,

2011). However, systematic research on regional land-use evolution

under rocky desertification control remains limited and requires

further development.

Guizhou Province has some of the most severe rocky

desertification in China and globally, possessing the country’s

largest area of such land. According to China’s first rocky

desertification monitoring data, Bijie City’s desertified area

reached 6540.65 km², representing both the largest area and the

most severe degree of desertification in Guizhou Province, making

it a key area for ecological and environmental governance (Mao,

2022; Zuo et al., 2014). In the last century, economic development

pressures, under implementation of ecological projects, and the

impacts of rocky desertification severely damaged Bijie City’s forests

and cultivated land, hindering local economic development. The

poverty rate was approximately 65.4%, and the regional GDP was

only 663 million yuan (Tang, 2011; Zuo et al., 2014). With national

poverty alleviation policies and ecological projects, Bijie City has

achieved remarkable results in both poverty alleviation and

ecological governance. By November 23, 2020, Bijie City achieved

full poverty alleviation, with a GDP exceeding 190 billion yuan—a

287.22-fold increase. Rocky desertification control efforts have

yielded significant phased results, with 1878.64 km² of desertified

land under control and a greatly improved ecological environment.

This has led to substantial land-use/cover changes, including a

significant increase in forest land and conversion of cultivated land

to forest. However, combined factors like human activities have

created a complex land-use change situation. Therefore, this study

focuses on Bijie City, a key national rocky desertification control

region, using 30-meter resolution Chinese land-use data from 1990

to 2022. It aims to analyze spatiotemporal land-use pattern

evolution and explore the causes of spatiotemporal differentiation

in land-use change. By integrating the Markov model with the FLUS

model, the study predicts land-use change trends under different

development scenarios in 2030, providing strong theoretical

support for rocky desertification monitoring and control,

sustainable ecological management, and regional spatial planning.
2 Materials and methods

2.1 Study area

The study area is in Bijie City, Guizhou Province, China (105°

36′~106°43′ E, 26°21′55~27°46′ N), encompassing a total area of

26,848.5 km2, and accounting for 15.25% of Guizhou’s total land

area. The study area is located within the Wumeng Mountain

region, on the eastern slope of the Yungui Plateau, specifically

inside the ridge zone of the Yungui Plateau. Figure 1 illustrates its

precise geographic location. This area is mountainous and exhibits

typical karst landforms, with higher elevations to the west and lower
frontiersin.org
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elevations to the east (ranging from 470m to 2217m, with an

average of 1511m). The region has a subtropical warm and

humid monsoon climate, with average temperatures ranging from

10–15°C and average annual rainfall between 849mm and 1399mm.

Social, economic, and population data for Bijie City are shown

in Table 1.
2.2 Data source and processing

This study uses land-use, driving-factor, and socioeconomic

data. The land-use dataset, “30m annual land-use data of China

from 1990 to 2022” (Yang and Huang, 2021), with an 80% overall

classification accuracy, includes data points for 1990, 1995, 2000,

2005, 2010, 2015, 2020, and 2022. For this research, Bijie City’s

land-use data was reclassified into seven categories (cropland,

forest, shrubland, grassland, water, other, and built-up land)
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according to the national standard “Classification of Land Use

Status: GB/T21010-2007.” This dataset is from the National

Cryosphere Desert Data Center (http://www.ncdc.ac.cn).

Socioeconomic data comes from the Economic Accounting

System of the Guizhou Provincial Bureau of Statistics (http://

stjj.guy.gov.cn/), the Bijie Yearbook, and the Bijie Municipal

Bureau of Statistics (http://www.bijie.gov.cn/bm/bjstjj/). Following

existing research (Zhang, 2022; Belayneh et al., 2020), selected

model driving factors include biophysical and anthropogenic

factors. The preprocessed driving-factor data for 2020 is shown in

Figure 2, and the dataset is detailed in Table 2.

Data availability for the same year is essential. Some datasets are

unavailable for download in certain years. Dataset selection

considered temporal and spatial resolution and accessibility.

Given the availability of comprehensive human and biophysical

factor datasets from various sources, 2015 and 2020 were selected as

model years, with 2022 data used for comparison with predictions.
TABLE 1 The socio-economic and demographic situation of Bijie City from 1990 to 2020.

Administrative region Area (km2) Year GDP (¥) Population

Guizhou Province
Bijie City

26900

1990 663000000 5984200

1995 1838000000 6261500

2000 12090000000 6857900

2005 23100000000 7251200

2010 60090000000 8338900

2015 146130000000 9042000

2020 202039000000 9502900
FIGURE 1

Location map of the study area, Value stands for altitude.
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2.3 Methods

2.3.1 Research methods for dynamic changes in
land use

We conducted an in-depth analysis of land-use pattern

variations from two dimensions: space and time. Specifically, we

employed methods such as spatial pattern analysis of land use and

transfer matrix analysis of land use as outlined by Yan et al. (2017)

and Zhou (2024). The land-use transfer matrix is an effective

research method for studying the dynamic changes in land use. It

can reflect the structural characteristics of land-use types in a region

over a specific period and express in detail the direction and

quantity of land-use type transitions. Its mathematical expression

is represented by Wang et al. (2008):

  Sij =

S11 S12 …

S21 S22 …

⋮ ⋮ ⋮

S1n

S2n

⋮

  Sn1 Sn2 … Snn

2
66664

3
77775

(1)

Where Sij represents the area of land-use type “i” that has been

converted into land-use type “j”, while the variable “n” indicates the

specific category of land use.

2.3.2 Analysis of land-use patterns
Land-use patterns in different years were analyzed using

Fragstats 4.2. The selected landscape pattern indices effectively
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capture and synthesize landscape pattern information, reflecting

the structural characteristics of land-use types and facilitating a

comprehensive understanding of spatiotemporal landscape changes

(Gong et al., 2017; Wang and Yin, 2011; Tang et al., 2019; Yang

et al., 2019). Based on the study area’s specific conditions and

research objectives, six ecologically significant landscape-level

indices were chosen (Shu et al., 2022) to analyze spatiotemporal

land-use landscape pattern changes and reveal information about

various land-use/cover change patterns. Table 3 explains

these indices.

2.3.3 Predictive model for land-use change
The FLUS (Future Land Use Simulation) and Markov models

were chosen for this study due to their advantages over models like

CLUE-S (Conversion of Land Use and its Effects at Small regional

extent) and CA (Cellular Automata). FLUS and Markov offer a

balance between quantity and spatial accuracy, support multi-

scenario analysis, provide high precision and flexibility, and are

broadly applicable and adaptable to complex requirements. These

features meet the study’s needs for predicting land-use changes

under various future development scenarios (Qian et al., 2022; Li

and Yeh, 2004; Zhang et al., 2021; Feng et al., 2021).

The FLUS model uses the Markov module to calculate target

year land-use demand and an artificial neural network (ANN) to

compute each pixel’s occurrence probability. Based on multiple

driving factors, the model simulates complex spatial land-use

changes, generating suitability maps. A cellular automata module
FIGURE 2

The driving factor data for Bijie City in 2020. (a) DEM (Digital Elevation Model), (b) Slope, (c) Exposure, (d) Temperature, (e) Precipitation, (f) Density
of Population, (g) GDP (Gross Domestic Product), (h) Distance to Railway and (i) Distance to Road.
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with an adaptive inertia mechanism then predicts future land use.

The modeling process has two phases: (1) a validation phase using

2015 as the base year to predict 2020 land-use for accuracy

assessment, and (2) an application phase using 2020 as the base

year to predict 2030 land use. Predicted results are then compared

with actual 2022 land-use data.

2.3.3.1 Module for calculating suitability probability based
on neural network

The FLUS model is implemented in the GeoSOS-FLUS

software, as described by Lin et al. (2021) and Tian et al. (2020).

The software’s neural network module for calculating the

probability of land-use suitability uses 2020 land-use data as the

baseline and incorporates biophysical and human factors from 2020

to generate a land-use suitability atlas for that year. The main

principle formula is:

sp(p, k, t) =ojwj,k � sigmoid(netj(p, t))

=ojwj,k �
1

1 + e−netj(p,t)
(2)
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Where wj,k represents the weight connecting the hidden layer

and the output layer, analogous to wi,j. The suitability probability,

denoted as sp(p, k, t), represents the likelihood of land-use type “k”

being suitable at pixel “p” and time “t”. For the output suitability

probability obtained from the neural network, denoted at sp(p, k, t),

the sum of probabilities for different land-use types at iteration time

“t” and pixel “p” always equals 1.

1 =oksp(p, k, j) (3)
2.3.3.2 Cellular automata module incorporating an
adaptive inertia mechanism

In the FLUS model, the final probability of conversion is

determined not only by the adaptive distribution probability of

land-use types but also by factors such as neighborhood density,

resistance coefficient, conversion cost, and competition among

lands. The self-adaptive inertia coefficient plays a crucial role in

the FLUS model by governing the discrepancy between the land

demand as predicted by the Markov model and the actual land-use

area for each land-use type. This coefficient automatically adjusts
TABLE 3 Definitions of the indicators.

Types Indicators Definitions

Landscape

PD
Number of patches in the landscape, divided by the total landscape area, multiplied by 10,000

and 100.

NP Number of patches in the total landscape.

LPI Area of the largest patch of the corresponding patch type divided by the total landscape area.

LSI
A quarter of the sum of the entire landscape boundary and all edge

segments within the landscape boundary involving the
corresponding patch type.

SHDI
Negative value of the sum, across all patch types, of the proportional abundance of each patch type

multiplied by the proportion.

PAFRAC It reflects the complexity of traits at different spatial scales
Referred from the User’s manual of Fragstats Version 4. http://www.umass.edu/landeco/research/fragstats/fragstats.html (2 February 2021).
TABLE 2 Source and accuracy of driving force factors.

Data name Year Resolution Data type Data source

Land use 1990–2022 30m Grid http://www.ncdc.ac.cn

Administrative boundary 2022 1km Vector

https://www.resdc.cn

Mean annual temperature 2015–2020 1km Grid

Mean annual precipitation 2015–2020 1km Grid

Population density 2015–2020 1km Grid

Gross domestic product (GDP) 2015–2020 1km Grid

Digital elevation model(DEM) 2022 30m Grid http://www.gscloud.cn

Slope 2022 30m Grid Extracted from DEM

Exposure 2022 30m Grid Extracted from DEM

Traffic data 2015–2020 1km Vector http://wiki.Openstreet.map.org
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during subsequent iterations, as described by Zhou (2024).

Inertiatk =

Inertiat−1k ( Dt−1
k

�� �� ≤ Dt−2
k

�� ��)
Inertiat−1k � Dt−2

k
Dt−1
k
(Dt−1

k < Dt−2
k < 0)

InertiaDt−1
k � Dt−1

k
Dt−1
k
(0 < Dt−2

k < Dt−1
k )

8>>>><
>>>>:

(4)

Where Inertiatk represents the inertia coefficient of the type “k” of

land at the iteration time “t”,Dt−1
k ,Dt−2

k represent the difference between

the number of pixels of the type “k” of land use and the number of land-

use demands at the t − 1 and t − 2 iterations, respectively.

2.3.3.3 Markov model principle

As a quantitative model, the Markov model is frequently

employed to predict changes in land-use types over time series. This

model is prized for its stability and lack of after-effects. The stochastic

nature of its development process ensures that the state of any future

moment depends solely on the current state, with no influence from

previous iterations. Consequently, the Markov model tends toward

stability. Therefore, this paper utilizes the Markov model to forecast

future land-use demand in Bijie City. Its mathematical expression is

depicted below, following Yang et al. (2012):

St+1 = PijS(t) (5)

Where St+1 represents the state of the land-use type at a future

time, S(t) represents the status of land-use/cover type at the current

time “t”, and Pij represents the probability matrix of state transfer of

the land-use type.

2.3.3.4 Land-use simulation setting and
simulation accuracy

The FLUS model allows adjustment of land-use transition

directions and neighborhood weights to simulate future land-use

scenarios. A neighborhood weight near 1 indicates high expansion

potential for a land-use type, while a weight near 0 indicates limited

potential. Different land-use types are assigned varying

neighborhood weights. Based on national cultivated land

protection policies and the study area’s conditions, three

scenarios were developed to predict 2030 land use; Scenario 1

(Ecological Management): Forest conversion to other land uses is

prohibited, and conversion to built-up land is strictly controlled.

Neighborhood weights: cropland (0.055), forest (0.84), shrubland

(0.036), grassland (0.055), water (0.006), other (0.001), built-up

land (0.005). Scenario 2 (Cultivated Land Protection): Cropland

conversion to other land uses is strictly controlled, while other land-

use types can transition freely. Neighborhood weights: cropland

(0.5), forest (0.2), shrubland (0.03), grassland (0.003), water (0.01),

other (0.005), built-up land (0.4). Scenario 3 (Coordinated

Development): Cropland conversion is prohibited. Forest,

shrubland, and grassland can partially convert to cropland. Built-

up land conversion is strictly controlled. Neighborhood weights:

cropland (0.3), forest (0.26), shrubland (0.056), grassland (0.006),

water (0.01), other (0.005), built-up land (0.3).
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The Kappa coefficient serves as an indicator of the model’s

consistency between simulated land-use outcomes and actual land-

use distribution, as discussed by Vliet et al. (2013) and Vliet et al.

(2011). The formula is as follows:

Kappa = (P0 − Pe)=(1 − Pe) (6)

Where P0 and Pe are observed actual values and predicted

values of land use, respectively.
3 Results

3.1 Land-use structure and spatial pattern
in Bijie City from 1990 to 2020

Figure 3 shows the spatial distribution of land use in Bijie City

from 1990 to 2020, revealing clear disparities in land-use structure

and spatial patterns. Cropland is concentrated in the east and west,

forest in the north and south, shrubland, grassland, and water in the

west, built-up land in the center, and other land uses are scattered.

Table 4 shows the area of each land-use type from 1990 to 2020,

demonstrating significant changes during the rocky desertification

control period (1990–2020). Forest, built-up land, water, and other

land uses generally increased, while cropland, shrubland, and

grassland decreased. Forest, cropland, shrubland, and grassland

experienced the largest changes. Forest area increased

substantially (5.57%), primarily in the east. Conversely, cropland,

shrubland, and grassland areas decreased by 1.1%, 2.04%, and 2.9%,

respectively, decreasing from 12365.97 km² to 12070.59 km²,

1132.82 km² to 584.88 km², and 1805.56 km² to 1029.19 km²,

primarily in the east. Built-up land increased by 0.26%, expanding

outward from county-level urban centers.

From 2000 to 2010, cropland area increased by 775.34 km²,

likely due to increased human activity and farming intensity. The

overall forest area increase is directly related to government rocky

desertification control measures, such as the “Grain for Green”

program and reforestation efforts.
3.2 Characteristics of the land-use
landscape pattern in Bijie City from
1990 to 2020

Figure 4 depicts landscape-level pattern changes in Bijie City.

During the rocky desertification control period (1990–2020), the

number of patches (NP), patch density (PD), and perimeter-area

fractal dimension (PAFRAC) all decreased (by 214,129, 7.98, and

0.044, respectively), indicating intensifying patch interference and

increasing aggregation. The landscape shape index (LSI) first

decreased (from 441.80 to 348.90) and then increased (to 361.02),

suggesting irregular landscape patches. Shannon’s diversity index

(SHDI) and the largest-patch index (LPI) fluctuated, first

decreasing, then increasing, and then decreasing again. SHDI
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decreased from 0.91 to 0.89, increased to 0.91, and then decreased to

0.87. LPI decreased from 21.30 to 18.71, increased to 22.04, and

then decreased to 20.50. These changes indicate that recent rocky

desertification control efforts have been successful, reducing

landscape fragmentation and enhancing landscape pattern stability.
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3.3 Transfer characteristics of land use in
Bijie City from 1990 to 2020

Figure 5 shows the land-use transfer matrix for Bijie City from

1990 to 2020, revealing varying transfer directions and scales across
TABLE 4 Area by land-use type in Bijie from 1990 to 2020.

Year Area (km2)
Land-use type

Cropland Forest Shrubland Grassland Water Other Built-up land

1990
Area 12365.97 11476.85 1132.82 1805.86 47.33 0.11 17.84

Scale 46.06% 42.75% 4.22% 6.73% 0.18% 0.00% 0.07%

1995
Area 12107.73 12180.84 913.89 1561.93 61.32 0.05 21.51

Scale 45.10% 45.37% 3.40% 5.82% 0.23% 0.00% 0.08%

2000
Area 11572.34 12421.41 982.69 1776.65 66.21 0.03 27.43

Scale 43.11% 46.27% 3.66% 6.62% 0.25% 0.00% 0.10%

2005
Area 11974.92 12175.06 1039.53 1536.6 83.87 0.02 35.7

Scale 44.61% 45.35% 3.87% 5.72% 0.31% 0.00% 0.13%

2010
Area 12347.68 12232.77 894.05 1233.59 86.2 0.02 52.46

Scale 45.99% 45.57% 3.33% 4.59% 0.32% 0.00% 0.20%

2015
Area 12191.46 12655.89 735.62 1101.17 92.14 0.02 70.46

Scale 45.41% 47.14% 2.74% 4.10% 0.34% 0.00% 0.26%

2020
Area 12070.59 12971.92 584.88 1029.19 102.91 0.26 87.03

Scale 44.96% 48.32% 2.18% 3.83% 0.38% 0.00% 0.32%
FIGURE 3

Land-use structure and spatial pattern in Bijie City from 1990 to 2020. (a) 1990, (b) 1995, (c) 2000, (d) 2005, (e) 2010, (f) 2015 and (g) 2020.
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periods (Equation 1). Conversion of cropland, shrubland, and

grassland to forest was the primary land-use change. Due to policies

like comprehensive rocky desertification control and the “Grain for

Green” program, the study area showed distinct transfer characteristics

in three stages: 1990–2000, 2000–2010, and 2010–2020.

From 1990 to 2000, cropland, shrubland, and grassland

converted to forest, with transfer areas of 351.66 km², 220.08 km²,

and 372.21 km², respectively. From 2000 to 2010, forest, shrubland,
Frontiers in Ecology and Evolution 08
and grassland converted to cropland, with transfer areas of 380.28

km², 44.26 km², and 394.06 km², respectively, indicating increased

human activity and agricultural land demand. After 2010, the effects

of rocky desertification control and “Grain for Green” became

apparent. Cropland, shrubland, and grassland converted to forest,

increasing forest area, with transfer areas of 392.79 km², 173.29 km²,

and 172.93 km², respectively. In general, ecological governance has a

profound impact on the dynamics of land-use change.
FIGURE 5

The ratio of land-use transfer in different periods in Bijie City from 1990 to 2020. Light green represents forest, yellow represents cropland, dark
green represents shrubland, cyan represents grassland, blue represents water, red represents built-up land, brown represents other, and the cross
of different colors between the inner and outer circles represents the transfer of the former to the latter, (a) 1990–1995, (b) 1995–2000,
(c) 2000–2005, (d) 2005–2010, (e) 2010–2015 and (f) 2015–2020.
FIGURE 4

Change of landscape level land-use pattern in Bijie City from 1990 to 2020. (a) NP, (b) PD, (c) SHDI, (d) PAFRAC, (e) LPI and (f) LSI, Patch refers to a
relatively homogeneous nonlinear region different from the surrounding background. NP index represents the number of patches, PD index
represents the density of patches, LSI index represents the intensity of patch changes, LPI represents the change degree of maximum patches,
PAFRAC index represents the complexity of patches, and SHDI index represents the diversity of patches.
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3.4 Simulation and prediction of land-use/
cover change in Bijie City in 2030

Table 5 presents the FLUS model accuracies. The Kappa

coefficient is 0.852603, and both producers’ and users’ accuracies

for all land uses exceed 0.7 (Equations 2–6). These indicators

confirm that the study’s parameters and driving factors meet the

accuracy standards for simulating land-use changes.

Using 2020 data as a baseline, the study predicted 2030 land-use

patterns under three scenarios and validated them against 2022

actual land-use data (Figure 6; Table 6). Future spatial distribution

of land-use types will change slightly, with cropland and forest

remaining dominant.

Scenario 1 (Ecological Governance) predicts increased ecological

land (forest, grassland, shrubland) by 2030, demonstrating progress

in ecological governance. However, cropland area decreases by 132.84

km², potentially impacting regional food security.

Scenario 2 (Cultivated Land Protection) predicts a significant

cropland increase (1019.51 km²) by 2030. While effectively

protecting cropland, increased human activity expands built-up

land, reducing ecological quality. Forest, shrubland, and grassland
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areas decrease substantially, with some areas even showing

aggravated rocky desertification, potentially threatening regional

ecological security.

Scenario 3 (Coordinated Development) predicts effective

cropland protection and a reasonable increase of 307.51 km² by

2030. This scenario promotes coordinated ecological governance

and cultivated land protection, primarily through converting

suitable forest, shrubland, and grassland areas to cropland. This

land-use pattern evolution will be the main characteristic of future

changes. Built-up land expansion is controlled, and land-use type

proportions tend toward balance, reflecting sustainable land use.

Analysis of the three scenarios reveals that Scenario 3

(Coordinated Development) best aligns with the study area’s

future sustainable development needs. It effectively protects

cultivated land while improving the ecological environment,

achieving a favorable balance in optimizing land-use structure

and enhancing ecosystem service functions.
4 Discussion

In-depth analysis of land-use changes in the study area from

1990 to 2020 clearly demonstrates that rocky desertification control

measures have significantly influenced land-use alterations. During

this period, landscape indices such as patch number and patch

density exhibited a declining trend, indicating that the continuous

expansion of forested areas has significantly reduced the degree of

landscape fragmentation. Consequently, the stability of the

landscape pattern has been enhanced, reflecting a marked

improvement in the ecological environment. These results

underscore the success of rocky desertification control efforts, a

conclusion that aligns with findings from most studies in rocky

desertification regions, such as those in Southwest China (Wu et al.,

2022), Yunnan Province (Tian et al., 2022), and Guizhou Province

(Liu and Shi, 2021; Ran et al., 2018). Temporally, forest area steadily
TABLE 5 Simulation accuracy of land-use change.

Land-
use type

Producer’s
accuracy

User’s
aAccuracy

Kappa
coefficient

Cropland 0.91935 0.920961

0.852603

Forest 0.94213 0.940347

Shrubland 0.70805 0.705651

Grassland 0.73176 0.727852

Water 0.85688 0.955285

Other 1 1

Built-up land 0.81526 0.96577
FIGURE 6

Prediction of land-use spatial distribution in Bijie City in 2030 under three development scenarios. (a) Actual land-use distribution in 2022, (b) Ecological
governance development scenario, (c) Cultivated land protection and development scenarios, (d) Scenario of coordinated development of ecological
management and cultivated land protection.
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increased due to large-scale afforestation and expansion of

ecological public welfare forests. Spatially, forest cover gradually

increased in previously severely desertified regions, such as certain

mountainous areas. The “Grain for Green” program facilitated

substantial cropland conversion to forest in severely desertified

areas (Mao, 2022; Zhang, 2022). This changed land-use type

structure, decreasing cropland and expanding forest. Cropland-to-

forest conversion primarily occurred in ecologically fragile regions,

effectively curbing further desertification and significantly

improving the regional ecological environment. This land-use

change increased vegetation cover and biodiversity, and, through

developing characteristic ecological tourism and agriculture,

boosted local residents’ incomes. Consequently, regional

ecological, social, and economic benefits significantly increased

(Zuo, 2014).

Land-use patterns exhibit notable spatial differentiation between

rocky desertification control areas and environmentally friendly

areas. Regarding forest land, rocky desertification control areas

have relatively low forest cover, and newly planted vegetation is

still developing, limiting ecosystem service functions (Jiang et al.,

2014). Conversely, environmentally friendly areas have stable forest

ecosystems with a high proportion of ecological land, efficiently

performing services like soil and water conservation and climate

regulation. Concerning cultivated land, rocky desertification control

areas implemented “Grain for Green” to curb soil erosion, but

converted cropland faces issues like low soil fertility, affecting

agricultural production stability (Zuo et al., 2014). Environmentally

friendly areas have rational, concentrated, contiguous, and high-

quality cultivated land, achieving high-yield agriculture through

modern technology and management. Regarding grassland, rocky

desertification control areas have improved, but vegetation cover and

grass quality still lag behind environmentally friendly areas, limiting

livestock carrying capacity. The latter have established complete

grassland ecosystems with superior quality. For construction land,

rocky desertification control areas face project constraints due to

ecological restoration, slow infrastructure development, and a non-

compact, irrational layout (Mao, 2022). Environmentally friendly

areas have integrated construction land with ecological and
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agricultural land, featuring a compact, orderly layout and complete

infrastructure, supporting regional economic development. These

disparities highlight the critical need for scientific and rational

land-use strategies for regional sustainable development.

In key rocky desertification control regions, coordinated

ecological governance and cultivated land protection are crucial for

sustainable development. Ecological governance, through measures

like afforestation, effectively curbs desertification and improves the

environment. However, cropland-to-forest conversion poses

challenges to food security and farmers’ livelihoods. Cropland,

fundamental for food security and a crucial income source, requires

careful protection (Chen et al., 2016; Zou et al., 2025). Land-use

planning must balance ecological governance and cultivated land

protection, finding an optimal equilibrium to avoid problems caused

by excessive intervention (Godfray et al., 2010; Cao et al., 2011). In

accordance with the “No. 1 Central Document” issued by the Central

Committee of the Communist Party of China, which emphasizes the

necessity of firmly maintaining the “red line” of 1.8 billion mu of

cropland (Central Committee of the Communist Party of China and

the State Council, 2022), and the “Overall Territorial Spatial Plan of

Bijie City from 2021 to 2035” issued by the Bijie Municipal

Government in Guizhou Province, which explicitly prioritizes the

protection of cultivated land area (Bijie Municipal Government,

2024), the future land-use change trends will exhibit significant

dynamic adjustments under this policy backdrop. Reasonably

predicting future land-use scenarios is vital for coordinated

development of cultivated land protection and ecological governance.

This study analyzed land use under three scenarios for 2030.

While Scenarios 1 (Ecological Governance) and 2 (Cultivated Land

Protection) emphasize their respective focuses, both have

limitations. Scenario 1’s cropland reduction may force agricultural

production onto limited land, leading to overutilization and soil

degradation, negatively impacting the environment. Scenario 2’s

overemphasis on cultivated land protection, while neglecting

ecological governance, may ensure short-term food production,

but long-term ecological deterioration will undermine agricultural

capacity, creating a vicious cycle and hindering sustainable

development. Scenario 3 (Coordinated Development) effectively
TABLE 6 Simulation and prediction of land cover in Bijie City in 2030 under three scenarios.

Year Area (km2)
Land-use type

Cropland Forest Shrubland Grassland Water Other Built-up land

2022
Area 11931.1 13345.67 476.26 905.62 98.63 0.28 89.2

Scale 44.44% 49.71% 1.77% 3.37% 0.36% 0.00% 0.33%

Scenario 1
2030

Area 11798.26 13454.91 474.33 926.86 103.46 0.25 88.68

Scale 43.94% 50.11% 1.76% 3.45% 0.38% 0.00% 0.33%

Scenario 2
2030

Area 12950.61 12646.55 396.41 659.94 102.88 0.45 90.15

Scale 48.23% 47.10% 1.47% 2.45% 0.38% 0.00% 0.33%

Scenario 3
2030

Area 12238.6 13129.63 449.29 839.94 102.88 0.25 86.19

Scale 45.58% 48.90% 1.67% 3.12% 0.38% 0.00% 0.32%
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balances cultivated land protection and ecological governance,

ensuring both food and ecological security, making it the most

suitable direction for future land-use planning. This scenario

increases cropland primarily by (1) converting suitable forest,

shrubland, and grassland areas to cropland (while maintaining

rocky desertification control progress) and (2) reclaiming

construction land that illegally occupies cropland, replenishing

cultivated land sustainably while ensuring ecological security.

Because cropland is highly susceptible to rocky desertification,

strengthening its monitoring and control is essential for future

coordinated natural ecology and social economy development—

crucial for ecological, economic, and social well-being and the only

path to regional sustainable development.

This research, focusing specifically on the impact of rocky

desertification on land use and incorporating the study area’s

future spatial planning, offers more precise insights than previous

studies. It provides valuable theoretical support for effective

governance and rational planning in rocky desertification areas.

By exploring the connection between rocky desertification and land

use, and integrating future spatial development, this study offers

crucial guidance for related practical work and promotes

sustainable development in these areas. However, some

limitations should be acknowledged. Regarding model selection,

to clearly reflect future cultivated land protection policies, the study

primarily used the traditional FLUS model. While this model can

simulate and predict land-use changes, more advanced models like

Patch-based Cellular Automata (LP-CA) and Land-Use Scenario

Dynamics (LUSD) have emerged (Zhao and Peng, 2012; Lin et al.,

2023). These newer models have been extensively validated and

recognized for spatiotemporal dynamic simulation, nonlinear

relationship processing, and prediction accuracy. Future research

could integrate these advanced models to analyze the coupling

relationships between land-use evolution and key driving factors

like urban expansion, population migration, and industrial

upgrading (Song et al., 2020). Combining the strengths of

different models and leveraging their specialized problem-solving

capabilities will allow future research to more systematically and

accurately represent the dynamic land-use change process, uncover

underlying mechanisms, provide more reliable and scientific

decision-making for land-use planning and ecological governance

in rocky desertification areas, and contribute to regional

sustainable development.
5 Conclusions

Rocky desertification, a significant global ecological problem,

degrades ecosystems and reduces land resources, causing

substantial spatiotemporal land-use changes that impact regional

sustainable development. This study focuses on Bijie City, Guizhou,

China, a region severely affected by rocky desertification. Using

land-use/cover data from 1990 to 2022 and relevant analytical
Frontiers in Ecology and Evolution 11
methods, we analyzed historical LUCC and predicted 2030 land

use under three scenarios. Key findings include:
1. The study area has diverse land types, dominated by

cropland and forest , which together constitute

approximately 90% of the total area. Their spatial

distribution varies across regions.

2. During the rocky desertification control period (1990–2020),

cropland, shrubland, and grassland areas decreased, while

forest area increased. Conversion to forest land was the

primary change. Landscape fragmentation decreased, and

ecological stability improved, laying a foundation for long-

term ecological restoration.

3. Future predictions show that Scenario 1 (Ecological

Governance) risks food security by overemphasizing

ecological restoration, while Scenario 2 (Cultivated Land

Protection) may neglect long-term ecological health.

Scenario 3 (Coordinated Development) balances cultivated

land protection and ecological governance. By 2030, the

cropland area will increase by 307.51 km² through

conversion, ensuring sustainable land use and harmonious

coexistence of ecological protection and agriculture.
In conclusion, rocky desertification control from 1990 to 2020

significantly influenced land-use patterns. Future efforts should

prioritize coordinated ecological governance and cultivated land

protection, considering multiple factors. This study provides a

theoretical basis for local ecosystem management and spatial

planning and can serve as a reference for other regions facing

similar challenges, contributing to global anti-rocky-desertification

and sustainable development efforts.
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