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High-density Diopatra populations were recorded in the South Brazilian Bight in

the 1970s and 1980s. However, by the 1990s, intertidal populations had declined

sharply. The decline and partial recovery raise questions about the factors driving

long-term changes in abundance. To better understand these shifts, patches of

Diopatra species from Brazilian sandy beaches were followed for 50 years. Data

were accessed from papers, gray literature, images, and collections to verify time

changes in the South Brazilian Bight (SBB) from 1974 to 2023. We modeled

maximum density over time at 15 beaches, observing very high densities (>100

ind.m−2) in 1974 followed by a decrease (~10 ind.m−2) of three species ofDiopatra

until 1995 and a strong decline (1996–2002) when populations were almost

regionally extinct (0–2ind.m−2). A recovery (3–20 ind.m−2) occurred after 2006

for D. victoriae and D. marinae, the latter associated with warmer northern

waters, suggesting a range shift. This pattern was associated with heatwaves

linked to an El-Niño event (1988) and a gradual SST surface warming of ca. 1°C

since 1974. The usage of Diopatra spp. as fishing bait could also be associated

with such a reduction. After 2016, D. neapolitana, a likely alien species, was

established in the SBB in high densities. Projections based on species distribution

modeling (SDM) suggest a potential of invasion in the same range of the known

species of D. cuprea complex along the Brazilian coast despite that there are no

signs of competition between both species.
KEYWORDS

South Brazilian Bight, biogeography, heatwaves, global warming, range-shifts,
alien species
1 Introduction

Species of the polychaete genus Diopatra are easily noticeable, not only to trained

marine biologists but also to any person wandering onto sandy beaches during low tide. Of

course, this is not different in the South Atlantic coast, including the extensive 7,500-km

coastline of Brazil. Scientific records of Diopatra species in Brazil date back to the 19th
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century (D. brasiliensis Kinberg, 1865, D. longicornis Kinberg, 1865,

D. agave Grube, 1869, and D. variegata Hansen, 1882). By the

year 2000, the total number of reported Diopatra species in

Brazil increased to 11. However, taxonomic uncertainties have

persisted, with some species being only known from their

original descriptions.

For decades, D. cuprea (Bosc, 1802) was believed to be the

dominant intertidal Diopatra species in Brazil, particularly in the

South Brazilian Bight (SBB). However, its classification has been

debated, and D. viridis Kinberg, 1865, was proposed to occur in

southeastern Brazil and Argentina instead of D. cuprea (Lana, 1991;

Orensanz, 1974). Similarly, Paiva (1990) suggested the possible

presence of multiple species or subspecies within the region.

Molecular and morphological investigations revealed the presence of

at least nineDiopatra species in the region (Garcia, 2003; Steiner, 2005),

which resulted in the description of four previously unrecognized

intertidal species (Seixas et al., 2021 – D. marinae Steiner and

Amaral 2021, D. victoriae Steiner and Amaral 2021, D. hannelorae

Steiner and Amaral 2021, and D. pectiniconicum Steiner and Amaral

2021). Notably, despite being the historically dominant species, D.

cuprea was absent from both morphological and molecular analyses,

reinforcing the hypothesis that previous records were actually a cryptic

species complex (Sotka et al., 2023; Ziegler et al., 2024).

High-density Diopatra populations were recorded in the SBB in

the 1970s and 1980s, with patches reaching 20–130 ind.m2, mainly

on fine sand beaches (Amaral, 1979; Corbisier, 1991) and image

records from 1974. However, by the 1990s, intertidal populations

had declined sharply, leading to the inclusion of D. cuprea on

Brazil’s Red List of Threatened Species (Steiner and Amaral, 2008),

thus legally restricting collection of this worms. Nevertheless, some

intertidal populations in SBB have shown signs of recovery in recent

years, with densities ranging from 2 to 20 individuals per square

meter. The decline and partial recovery of these populations raise

important questions about the factors driving long-term changes in

abundance. To better understand these shifts, we examined

museum and collection specimens from 1970 to 1990 and

compared them with more recent records (both published

and unpublished).

One possible factor contributing to these population

fluctuations is the harvesting of Diopatra specimens for use as

fishing bait. While this practice has been documented in several

regions worldwide (Cunha et al., 2005; Arias and Paxton, 2015;

Berke, 2022), few publications refer to South America, and as

pointed out by Cole et al. (2018), researchers from South

American countries report no evidence that polychaetes are

abundantly used as bait. Only two references were found in small

regions of the southern coast of Brazil, one in Rio Grande do Sul

State and another in Santa Catarina State (Lewis and Fontoura,

2005; Alves et al., 2009). Nevertheless, there is no quantitative data

on the number of specimens collected or the potential impact on

local populations. In addition to harvesting, climate change,

particularly seawater warming in recent decades, may also affect

these intertidal organisms (Pinsky et al., 2020). This pattern has

been well documented for other intertidal species along the

southeastern Atlantic coast (Gianelli et al., 2023) and has already
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been observed in Diopatra species along the French/Spanish

Atlantic coasts (Berke et al., 2010).

Out of the native species of Diopatra complex, a newcomer has

emerged in recent decades: D. neapolitana Delle Chiaje, 1841, an

introduced species originally described from the Mediterranean Sea.

This species was first collected in 1992 in intertidal zones of beaches

from São Sebastião Island in São Paulo State. The specimens were

deposited in Museu de Diversidade Biológica – MDBio –

UNICAMP (ZUEC-POL Scientific Collection), but records were

not formally published. Diopatra neapolitana only became

widespread in SBB after 2016, when large and dense tube banks

were reported along the southeastern Brazilian coast (Bergamo

et al., 2019). Its identification was confirmed through both

morphological and molecular analyses, with genetic comparisons

to specimens from its type locality (Bergamo et al., 2019; Seixas

et al., 2021). The potential forD. neapolitana to expand its range has

been suggested based on its reproductive pattern, distribution, and

low molecular divergence (Bergamo et al., 2019; Hektoen et al.,

2022). Recent reports further north, such as along Rio de Janeiro

coast, suggest it may continue spreading along the Brazilian coast,

raising concerns about its impact on native species and ecosystems.

Considering the complex pattern of distribution of the Diopatra

cuprea complex and the newcomer, D. neapolitana, herein, we

evaluate: (1) temporal density shifts of Diopatra sp. (cuprea group)

in SBB sandy beaches over the past 50 years; (2) which species of

Diopatra were responsible for such shifts, i.e., is the same species

recovering or has this species been replaced over time?; (3) the

invasion potential of D. neapolitana through species

distribution modeling.

By integrating historical records, field sampling, and ecological

modeling, we seek to better understand the factors shaping

Diopatra beach populations along the Brazilian coast and the

potential consequences of species introductions.
2 Methods

2.1 Density estimation in Diopatra spp.
(cuprea complex)

Population densities were obtained from publications (Morgado

et al., 1990; Rizzo and Amaral, 2001), grey literature (Gonçalves,

2019; Shimizu, 1991), photographic records (Figure 1), and personal/

expert observations. Even though Diopatra spp. from D. cuprea

complex were distributed throughout the Brazilian coast from the

extreme south (32°S) to the northern Amazonian coast (1°S) (Santos

and Aviz, 2019; Seixas et al., 2021), populational information was

restricted to the South Brazilian Bight (SBB, Figure 2). SBB is an area

of great biogeographical concern because it is a transitional zone

where several closely related intertidal polychaete species have

distribution overlap, including Diopatra (Silva et al., 2017; Seixas

et al., 2021).

Density data from beaches of SBB, especially in São Paulo State,

were estimated or measured whenever past and present density

records were available. Seven beaches in this region were sampled
frontiersin.org
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more than once over 20–40 years, since they are common in some

specific beaches they were visited along time and their no-

occurrences were considered in the analysis. Nevertheless, data

were grouped by localities (Figure 2; Supplementary Table S1),
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sometimes with estimates from different beaches since information

of maximum density shifts can vary among beaches of the same

locality. Thus, beaches could be considered as random samples of

Diopatra densities for each locality.
FIGURE 2

Brazilian Coast and Southern Brazilian Bight with localities from where density estimations were obtained.
FIGURE 1

Patches of Diopatra spp. in the region of Ubatuba (São Paulo State) over time: (A) high density (1974, Praia Grande, Anchieta Island, Ubatuba); (B) low
density (2021, Ubatumirim Beach, Ubatuba); (C) high density (2023, Embaré Beach, Santos).
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As the size of Diopatra patches depends on the sediment type

and beach conditions (tidal range, slope, etc.), population

densities were estimated only for the main area of occurrence

on the intertidal region. Two measurements were obtained,

mean density in the occurrence area and maximum density,

both per square meter. Maximum densities were measured on a

square meter scale and not extrapolated from lower measured

scales, since many patches were smaller than 1 m−2. Since there is

a dependence in time-series data, we fitted a local polynomial

regression with the best span parameter selected by a

Generalized Cross-Validation using the “fANCOVA” package

(Wang, 2020).
2.2 Surface sea-water temperature

Historical data of surface sea-water temperature (SST) were

obtained from NOAA (NOAA NCDC ERSST version5) (Huang

et al., 2017) through R package “rerddap” (Chamberlain, 2021).

From these data, we extracted mean annual temperatures, mean of

the warmest and coldest months, and thermal anomalies from 1970

to 2021 along the Brazilian coast. The intensities of El Niño events

were accessed through the Multivariate and El Niño/Southern

Oscillation (ENSO) Index (MEI v.2), obtained from the NOAA

Physical Sciences Laboratory (Multivariate ENSO Index Version 2 -

MEI.v2, 2024).
2.3 Species distribution modeling

D. neapolitana is closely related to D. aciculata Knox and

Cameron, 1972 (Zanol et al., 2021), a species found in the Indo-

Pacific. Despite their high morphological similarity, Paxton (1993)

maintained both species as valid. However, an integrative taxonomic

study (Elgetany et al., 2020) suggested that these species exist in a

“gray zone” of speciation, where clear molecular and morphological

distinctions are difficult to define. Given these uncertainties, we

consider both species as a single ecological unit for species

distribution modeling in this study. Thus, we combine worldwide

distributions of both species in order to obtain their occurrences for

modeling. Data from a total of 593 occurrences obtained from GBIF

and two more references from our collected material from Rio de

Janeiro State were used. Data were filtered, leaving only those with

lat/long and thinned to a 5-km distance to avoid oversampling in

close areas. Thus, the remaining 290 occurrences were used for

modeling. Environmental data were obtained through the

“sdmpredictors” package (Bosch and Fernandez, 2022) from Bio-

Oracle (Assis et al., 2018), for marine data, andWorldClim (Fick and

Hijmans, 2017) for terrestrial data of 5 arcmin.

Modeling was performed using the “biomod2” package

(Thuiller et. al., 2021) using 70% of the data for calibration and

30% for evaluation, in four runs. Since we have only presence data,

pseudo-absences (=background) data were generated 10 times. The
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number of pseudo-absences (PAs) was similar to the number of

presence data, as suggested by Barbet-Massin et al. (2012) and

Čengić et al. (2020). Performance of the combination of models,

runs, and PAs was assessed by True Skill Statistics (TSS) with values

higher than 0.7 selected for building an ensemble model. The

following is the combination of several algorithms: General Linear

Model (GLM), General Additive Model (GAM), Boosted

Regression Trees (GBM), Random Forest (RF), Multiple

Adaptative Regression Splines (MARS), Flexible Discriminant

Analysis (FDA), and Maximum Entropy (MaxEnt). Despite the

worldwide modeling, forecast of habitat suitability was projected

only for the area of interest, the Brazilian coast.
3 Results

3.1 Diopatra spp. fall and rise over time

A total of 28 density estimates were obtained from 15 beaches

over 50 years (1974–2023) in the SBB Coast (22.7–23.9°S), seven of

which were sampled more than once in this period. Since maximum

density was strongly correlated with mean density (r=0.88), analysis

was performed only for the former. Densities were very high (>100

ind.m−2) in 1974 followed by a decrease (~10 ind.m−2) until 1995

(Supplementary Table S1). After that, there was a sharp decline

(1996–2002) when populations were almost regionally extinct (0–2

ind.m−2) and the species (named as D. cuprea) was included in the

Red List of Threatened Species of Brazil (Steiner and Amaral, 2008).

However, this reduction was followed by a slight recovery (2008–

2021) with maximum patches of 3–5 ind.m−2 and a recovery from

2022 to 2023 with densities around 25–30 ind.m−2 in some

localities. The local polynomial regression (LOESS) model fitted

to the data showed that there were strong long-term population

changes (Figure 3).

Data from older surveys (1974–1990) are mainly based on

images or density estimates in the field, referring mainly to D.

cuprea or only to the generic level and with rare vouchers. Thus, we

are not sure to be working with the same species, considering the

taxonomic knowledge update for the region that does not consider

D. cuprea as an inhabitant of the Brazilian coast. Nevertheless, we

were able to retrieve some vouchers from the same beaches and

surveys in museum collections and identified them at a specific

level. According to this analysis, the oldest samples (1988) from

Lázaro Beach (Ubatuba)—higher densities=10 ind.m−2—were

identified as D. hannelorae. In the period of lowest densities

(1996–2002), the rare specimens found were D. hannelorae and

D. victoriae. Those found on the recent slight recovery (2010–2021)

from the beaches of Santos, Guarujá, and Ubatuba were identified as

D. marinae and D. victoriae, the latter forming the more recent

(2023) higher densities patches in Santos and Armação de Búzios. A

collection voucher from Santos in 1958, not included in the plot

since there is no quantitative density information, was also an

individual of D. hannelorae. Nevertheless, anecdotal information
frontiersin.org
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obtained from older observations indicated that high-density

patches were common in the region.

Thus, it seems what was considered the sign of populational

recovery of a threatened species was due to shift in species

dominance, at least in this region. The surveyed region (SE

Brazil) is the one where more species of Diopatra were found

(Seixas et al., 2021). The distribution range of the species, showing

an overlap of at least four species in the SBB, does not mean that
Frontiers in Ecology and Evolution 05
they are still sympatric in their distribution since they were sampled

at different periods, except for those recently collected in Armação

de Búzios (all reported as D. marinae or D. victoriae).

The observed temporal dynamics, characterized by a

pronounced decline (~1996–2002) followed by a subsequent

recovery (post-2010) in Diopatra, appear to be linked to

fluctuations in surface sea-water temperature (SST) within the

region, as indicated by temperature anomalies (Figure 4;
FIGURE 4

Sea-surface temperature (SST) variation over time (1970–2020) on the Brazilian Coast. South Brazilian Bight is shown below shaded line.
FIGURE 3

Density variation of Diopatra cuprea complex species over time (1974–2023) from beaches of the South Brazilian Bight (22–25°S). Species not
identified or reported as Diopatra cuprea are plotted as nonidentified (open circles).
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Supplementary Figures S1, S2). The speciation of D. victoriae,

closely related to D. marinae, is suggestive of parapatric processes,

considering the paraphyletic state of D. marinae (Seixas et al., 2021)

and its distribution range extending to the southern limit of D.

marinae (Supplementary Figure S3). Consequently, the expansion

of the D. victoriae/D. marinae clade and the disappearance of the

colder/southern D. hannelorae in the same geographic area may be

attributed to an approximate 1°C mean monthly increase over the

past 50 years, implying a thermal threshold exceeding 27°C.

Notably, within the SBB region (approximately 12–22°S), where

D. hannelorae is infrequently encountered, the mean temperature of

warmer months (MTWM) exceeding 28°C was only observed post-

2000 (Figure 4; Supplementary Figure S1).

The mean annual temperature increased in the SBB from 22°C

to 23°C before 2000 (23°C in 1970) to 23°C to 24°C after 2000 (24°C

in 2021) (Figure 4; Supplementary Figure S1). The SBB warming,

especially after 2000, gave rise to peaks of temperature anomalies

(monthly mean) of ca. 1.8°C in contrast to ca. 1°C before

(Supplementary Figure S2) with a significant (p < 0.005) increase

in mean anomaly of 0.53°C between 1970–2000 and 2000–2021

intervals. Thus, southward seawater warming in recent years would

allow D. victoriae, to expand its population to be the dominant

intertidal species in SBB in more recent years.
3.2 The newcomer D. neapolitana

Despite the restricted area of occurrence of D. neapolitana (=D.

aciculata) on the Southeastern Brazilian coast, its higher densities in

some beaches (Araça Bay, São Sebastião, São Paulo State),

Engenhoca Beach (Governador Island, Rio de Janeiro State), and

Japonês Island (Cabo Frio, Rio de Janeiro State) with around 20

ind.m−2 (Figure 5) in the same region where the D. cuprea complex

once dominated triggered the alarm for its potential invasion on the

Brazilian coast.

Since intertidal animal distribution and tolerance depend on both

water and air conditions, we modeled the suitability ofD. neapolitana

(=D. aciculata) habitat for both marine and terrestrial environmental

drivers. After removing collinear and correlated factors, we modeled

with just four drivers: sea-surface temperature range, mean salinity,

and maximum air-temperature and precipitation of the wettest

month. TSS values (threshold of 0.7) and all algorithms (GLM,

GAM, GBM, MARS, RF, FDA, and Maxent) were included for at

least one run and PA. The final ensemble model with the four

environmental variables, salinity, maximum air temperature (MAT),

precipitation of the wettest month (PWM), and range of surface sea-

water temperature (rSST), were very informative, with high

evaluations (TTS = 0.941, Supplementary Figure S4). Importance of

each variable was rather different among them with salinity being the

most important (median >0.75), all others having lower medians

(<0.20) but with some higher values for specific models and runs

(Supplementary Figure S5).

Ensemble results projecting the habitat suitability of the species

are shown in Figure 6. For the current distribution, which is in the

short latitudinal range of 22.8 to 27.7°S, the habitat suitability for the
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establishment of the species is much longer, ranging from 9 to almost

30°S. This suggests that, in relation to current conditions mainly of

salinity and temperature (air and water), the species could increase its

distribution, especially northward, wherever sandy beaches and tidal

flats occur. The range is the same of intertidal species of theD. cuprea

complex, except for the Amazon River mouth (around 0–1°S) where

patches of D. cuprea were reported (Santos and Aviz, 2021), but it

seems to be not a suitable habitat for D. neapolitana, mainly due to

lower salinity (Supplementary Figure S4). Likewise, the medium

suitability areas within high suitability areas between 10°S and 21°S,

for instance, are located close to two river mouths (Doce and São

Francisco rivers). Despite its worldwide distribution, D. neapolitana

presented low tolerance to lower salinities (<21 PSU) in lab

experiments (Pires et al., 2015). Our modeling based on actual

occurrences indicated a higher probability in salinities greater than

34 PSU, which in association with lower levels of precipitation (<250

mm in the wettest month) suggests a strong limitation to areas of

brackish waters. Despite being a tube dweller, and thus not likely to be

strongly affected by temperature variation (Newell, 1976), mainly air

temperature, a short range between 22°C and 33°C was predicted for

its distribution.
4 Discussion

4.1 Diopatra spp. density variation over
time in SBB and the role of climatic change

Data on thermal requirements of Diopatra species are difficult

to obtain since many of them were based on D. cuprea and other

species of the genus that seem to belong to species complexes and

not a unique evolutionary unit. Thus, observed patterns are

generally not species-specific requirements. Experiments

performed with D. cuprea from the type locality, in North

Carolina (the “real” D. cuprea), showed a wide range of thermal

tolerance surviving in warm waters up to 42.5°C and, for specimens
FIGURE 5

Tubes of Diopatra neapolitana in Engenhoca Beach (Governador
Island, Rio de Janeiro State, 2017).
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from the Gulf of Mexico, 40.1°C during summer (Kenny, 1969;

Berke, 2022). However, for field data of another species, D.

biscayensis from Biscay Bay (western European coast) in similar

latitudes and thermal conditions, the tolerance limits ranged from

16°C to 24°C (Berke et al., 2010). In SBB, where there seems to be an

expansion of the D. marinae/D. victoriae clade, lower monthly

mean SST temperatures varied from 19.5°C to 27.8°C (08/2000 and

02/2019, respectively) with a range shift from 19.5°C to 26.9°C in

the period of 1970–2000 to 20.1°C to 27.8°C in 2001–2021,

suggesting a thermal lower tolerance of both species around 20°C.

The mean SST of the coldest month was always greater than 20°C

after 2000 in the northern part of the SBB (Figure 4), a clear sign of

warming in the last 20 years. Conversely, the warming of coastal

waters after 2000 was likely to be responsible for the retraction of D.

hannelorae to southern areas, disappearing from the SBB as well as

the expansion of the northern clade (D. marinae/D. victoriae).

Shifts in the range of distribution of the Diopatra species were

already recorded for the northeastern Atlantic coast (European
Frontiers in Ecology and Evolution 07
beaches) with range shifts of D. biscayensis and D. neapolitana

related to an increase in SST (surface sea-water temperatures and

anomalies) over time (Wethey and Woodin, 2008; Berke et al.,

2010). However, this process was related to expansion in the time

scale of decades in a gradual process of tropicalization, while, in the

SBB, the unusual and acute reduction was before the main gradual

global warming, more intense in the last decades (2000–2020).

While increase in SST seems to be the main factor related to shifts

in species distribution and sensitivity of coastal species (Gianelli et al.,

2023), one cannot disregard the possible role of marine heatwaves,

i.e., a wave of extreme and prolonged continuous warming for several

days or even months (Holbrook et al., 2020). They are likely to have

sudden devastating impact in coastal environments such as coral

bleaching and high mortality/local extinction of marine species

(Holbrook, et al., 2020). Heatwaves were associated with a retreat

in the distribution of the lugworm Arenicola marina, a species with

habitats similar to those of Diopatra, forecasting its complete

disappearance in Mediterranean in the future (Wethey and
FIGURE 6

Ensemble model (TSS weighted mean) of current habitat suitability for D. neapolitana/D. aciculata along the Brazilian coast. Current occurrences are
shown as blackspots.
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Woodin, 2022). Intense and frequent heatwaves were associated with

an El Niño—Southern Oscillation (ENSO) event in 1997/1998

(Oliver et al., 2018), one of the three most intense ENSO events

since MEI started to be measured (Supplementary Figure S2). This

event affected all oceans but, particularly in Southwestern Atlantic,

the SBB (Tanaka and Houtan, 2022). It could be responsible for the

above cited sudden fall of Diopatra species densities in the SBB

followed by the maintenance of the warmer water-associated D.

marinae/D. victoriae typical from the eastern and northern coasts

of Brazil owing to the gradual SST increase after 2000

(Supplementary Figure S3). Their maintenance after 1998 events

(heatwaves) was followed by increased population densities in more

recent years. Furthermore, the fact that SST warming is a long-term

process that would be causing its spatial expansion, as suggested by

molecular analysis in the area (Seixas et al., 2021), made us

hypothesize that they are expanding their distribution, a historical

process in course that was enhanced more recently.

This SST-driven dominance shift could indicate a process of

tropicalization and deborealization (McLean et al., 2021) with a

warm-water species expansion and cold-water species retreat of the

intertidal species from the D. cuprea complex in SBB. Range shifts

of marine species, although less immediately apparent than the

impact of introduced species, are likely to affect biological systems at

the community level with similar magnitude as those from

introduced ones (Sorte et al., 2010). Range shifts of intertidal

species distribution seem to be a complex process, with a

combination of gradual long-term changes punctuated by shifts

caused by extreme events such as heatwaves (Wethey et al., 2011).

Besides range shifts, SST increase is also related to strong mass

mortality in sandy beach species, such as the yellow clam,

Mesoderma mactroides Reeve (1854) (Ortega et al., 2016; Gianelli

et al., 2021). Furthermore, other human impacts, like collecting

specimens for fishing bait, are likely to affect population density and

interact with climate change, especially in areas at the range limit of

the species. Nevertheless, quantitative data about the amount of

worms harvested and the impact of such activities on population

resilience are not yet available, so we cannot assess the actual impact

of these activities on the fall and rise of the D. cuprea complex in the

region. However, climate change is likely to be a key factor

responsible for social-ecological shifts and collapses of beach

species along southern Atlantic (Defeo et al., 2021), including

strong impacts on fisheries and harvesting of commercial species

(Franco et al., 2020).
4.2 What about the newcomer?

There is still some uncertainty about the worldwide distribution of

D. neapolitana (Elgetany et al., 2020; Berke, 2022) considering a more

restricted Mediterranean, Atlantic Iberian, and French coast

distribution with all other occurrences (e.g., Southeastern Atlantic,

Pacific, and Indian Oceans) as being from related similar species (Arias

et al., 2016). However, recent surveys validated some of these doubtful
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records that show a wider distribution for the species (Bergamo et al.,

2019; Paxton and Arias, 2017). Data on genetic distance indicate that

the species in the Brazilian Coast is the same evolutionary unit than

those from Mediterranean Sea (Seixas et al., 2021) and western

European coast (Bergamo et al., 2019). Likewise, reproductive

patterns, with a typical sequential protandric hermaphroditism, were

also similar in populations from both sides of the Atlantic, despite

some subtle morphological differences that could indicate populational

variation (Arias et al., 2016; Bergamo et al., 2019)

Thus, it seems that D. neapolitana is an alien species that

spreads out owing to a wide range of environmental conditions.

Furthermore, the species shows some plasticity regarding its

reproductive cycle, with a single annual spawning in temperate

regions and a continuous cycle in tropical ones (Escobar-Ortega

et al., 2022), with reproductive plasticity being a precondition for

the success of marine invasive species providing competitive

advantages over native species (Smith, 2009).

Diopatra neapolitana and D. marinae are sympatric in southern

Brazil and are seldom syntopic (coexisting in only one or two

beaches), probably because D. neapolitana appears to occupy

lower-energy, muddier habitats than D. cuprea (Berke, 2022). Thus,

negative interactions between them seem not to be an issue, and

competition for resources in soft sediments, mainly intertidal tube

dwellers, is not common (Wilson, 1990). Nevertheless, projections of

habitat suitability for D. neapolitana are rather similar, except for the

estuarine and brackish waters in the eastern and northern Brazilian

coast. However, considering the struggle for survival in sandy beaches

with all human-mediated impacts in such an environment (e.g.,

nourishment, fishing bait, trampling, and cleaning; see Defeo et al.,

2009), we cannot disregard the new risk for the native species coming

from a more closely related congeneric species. Despite taxonomic

problems regarding correct identification of old records of Diopatra

in the South Brazilian Bight, global warming and heatwaves are likely

to be involved in the fall and rise of species of the Diopatra cuprea

complex over the last 50 years through retraction, extinction, and

expansion of ranges of different species of the group. Also, an exotic

species, D. neapolitana, just arrived and seems to have a potential for

dispersing to the same beaches that native species inhabit. Human

impact is also likely to act on populational changes, even though its

relative role is still to be evaluated.
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etnobiológicos da baıá da Ilha de Santa Catarina,” in Ecologia de Campo na Lagoa
do Peri. Eds. M. Cantor, L. C. P. de Macedo-Soares and N. Hanazaki (UFSC,
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