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Preface: the paradox
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philosophical perspective
Hugh D. Loxdale1* and Adalbert Balog2

1School of Biosciences, Cardiff University, Cardiff, United Kingdom, 2Department of Horticulture,
Sapientia Hungarian University of Transylvania, Tirgu-Mureș, Romania
Evolution ultimately proceeds via ecological specialisation. This is regardless of

the exact mechanism/s involved (e.g. selection, genetic drift, allopatric,

sympatric, parapatric, etc.), leading to unique, functionally adapted entities

(genetically-physiologically-biochemically-chemically-morphologically-

behaviorally) filling new or vacant niches, whereupon the novel population

becomes reproductively isolated from the original parent population. True,

some such species can occasionally hybridise/introgress with other closely

related species, and occasionally may be reproductively viable, but species

populations tend to show restricted genetic variation (genetic identity) over

their geographical range. If specialism is the main driving force of evolution, as

clear from the fossil record as well as extant life forms, this must be reflected in

the habitat and dietary specialisations. All living things are constrained by the

aforementioned life-style factors, e.g. morphology, etc., which maintains them

within their adopted niche and thereby reduces intra- and interspecific

competition. Can a species, in a biological sense, be a ‘Jack-of-all-trades and

master of none’? This is the paradox to be faced if the reality of generalism is to be

accepted. In addition, the recent widespread discovery, using molecular

techniques, of morphologically-cryptic entities within hitherto accepted ‘good

species’ suggests that the diet breadth of such species complexes may in turn be

more complex than imagined.
KEYWORDS

cryptic entities, ecological niche, evolution, generalism, genetic identity, habitat,
molecular techniques, specialism
“Species are constantly evolving and changing, making speciation more of a continuum

than an abrupt boundary. It can sometimes be difficult to know where to set the species

threshold.” Arlo Hinckley, cited in Tamisiea (2024)
Overview

The term generalism, more especially as it refers to diet breadth in animals, which this

article primarily concerns, is still widely used in the scientific literature (Fox and Morrow,
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1981; Loxdale et al., 2011; 2019; Bonsall and Wright, 2012; Leonard

and Lancaster, 2022; Morley et al., 2024). It is often coupled with the

extreme opposite condition, specialism, although others suggest that

a spectrum of states exist between the two extremes (Loxdale and

Harvey, 2016; Dehling et al., 2021; Morley et al., 2024), especially in

terms of functional roles, such ‘that both specialists and generalists

fulfil important roles in ecological processes’ (cf.Dehling et al., 2021 for

further details). Certainly, some animals appear to be highly

polyphagous, even omnivorous (e.g. American black bear, Ursus

americanus Pallas), but nevertheless these animals are highly

specialised in relation to their physiology and behaviour,

morphology/anatomy. Black bears have existed as a separate

species in North America for around 5 million years (Krause et al.,

2008) and despite the fact that other animals such as Grey wolves,

Canis lupus L. compete with them for certain food items (e.g. deer

fawns and fish), they have not been outcompeted or displaced from

their unique ecological niche and habitat, and continue to thrive. And

that to us is the main point: an animal evolves to fill a given ecological

niche, probably involving the development of specialised character

traits, i.e. anatomical/morphological, chemical/physiological,

chemical ecological and importantly, behavioural, and that may be

taken to be the fundamental functional specialism/s of a particular

species or sub-specific species population in maintaining itself within

its niche, i.e. its narrow ecological or physiological niche compared to

the available functional space. It is also important to state early on

that an animal may be a generalist for one trait but specialised in

another, e.g. the aardvark, Orycteropus afer (Pallas) (Mammalia:

Tubulidentata: Orycteropodidae) is a dietary specialist feeding

almost exclusively on ants and termites (myrmecophagy), while

being a climatic-habitat generalist (Nowak, 1991). As far as diet is

concerned, such a niche may be a unique, hitherto largely unexploited

(e.g. bats with their aerial nocturnal foraging), or the animal in

question may inhabit a previously occupied but now vacant niche

(e.g. albatrosses vs. sea-going pterodactyls). Either way, once the basic

animal species has managed to exploit a new habitat with associated

resources, it may then adaptively radiate to perhaps produce a wide

range of further, even more specialised entities, exploiting new niches,

as seen in the case of both bats (e.g. Sampaio et al., 2003) and

pterosaurs (e.g. Chang-Fu et al., 2017; Martill and Smith, 2024).

Of course, no animal exists within its niche in isolation. Rather,

it invariably survives in an integrated association with other

organisms. In effect, as part of a food web, be these organisms

intra- or interspecific competitors for resources (e.g. food, shelter,

mates, etc.), with predators (be they feeding on animal or plant

prey), parasites, pathogens, whilst in the case of plants, not only are

these predated by animals, i.e. herbivores, but are parasitized by

them, both externally and internally. Sometimes, the associations

between living organisms are co-evolved and mutualistic, perhaps

over millions of years (Thompson, 1994). Lastly, and very

importantly, some animals such as bees and flies, birds and bat

species also provide functional ecological services, notably the

pollination of flowers, an arrangement that is also mutually

beneficial (Darwin, 1862; Coyne and Orr, 2004). Plants cannot

resist attacks by animals by fleeing, as animals themselves often do,

so instead have evolved an array of defence mechanisms, principally
Frontiers in Ecology and Evolution 02
chemical defences, and anatomical-morphological ones, including

thickened epidermal layers, spines and sticky hairs, as

mentioned below.

Plants can also recruit predatory and parasitic insects to aid

them in their defence against herbivorous insects using volatile

semiochemicals (Aljbory and Chen, 2018). In turn, some animals,

e.g. insects and birds, have used the toxins they imbibe, especially

from plants, in their own defence, and involving aposematic

warning colours to advertise themselves as noxious (or apparently

so in the case of dishonest signalling), either in terms of Müllerian

or Batesian mimicry (Cott, 1940; Benedek et al., 2019; Loxdale,

2023). Hence, an array of specialist and generalist functional

activities are seen in animals within ecological niches and their

role within such niches is by no means necessarily a simple one, e.g.

as in the case of Large blue butterflies,Maculinea spp. (Lepidoptera:

Rhopalocera: Lycaenidae) and their predatory-parasitic association

with red ants, Myrmica spp. (Thomas and Lewington, 1991; Als

et al., 2004).

It is now widely accepted that living organisms evolve

principally by a process of ecological specialisation, and involving

selection, genetic drift and chromosomal/karyotypic changes

(White, 1978; Monti et al., 2012), including inversion

polymorphisms (Kapun and Flatt, 2019), epigenetic inheritance

(Stajic and Jansen, 2021) and introgression and hybridisation (see

below, p. 5). Sometimes such evolution is relatively rapid occurring

over historical time scales (Loxdale, 2010), as in the case of the

adaptive radiation of aphids belonging to the pea aphid species

complex (Insecta: Hemiptera: Aphididae), feeding on leguminous

hosts (Peccoud and Simon, 2010) and is ‘favoured under divergent

selection imposed by increased environmental heterogeneity’ as

suggested by Nery et al. (2023) in relation to plants and Leonard

and Lancaster (2022) in animals.

It is thus difficult to perceive how any species, for example an

animal species, can ever be a generalist sensu stricto. In fact, since

the process of evolution is governed by natural selection and

adaptation, then if generalism were actually to exist, evolution as

we understand it would surely cease. Such a generalist animal

species could in theory compete with other animals within its

habitat, perhaps driving these to extinction. In other words, the

theoretical contour lines on the adaptive landscape around the

‘adaptive peaks’ of competing specialist organisms would be blurred

in relation to optimal foraging (Stuart Reynolds, pers. comm.; cf.

also Futuyma and Moreno, 1988 and Mallet, 2007, his Figure 1). In

this light, there are clearly cost-benefit considerations: a specialist

must, one assumes, be at an advantage in terms of exploiting a given

resource so long as this resource is available, whereas a generalist

has an advantage when a given resource, hitherto abundant,

becomes scarce … assuming it is able to catch/forage on that

resource, and has the wherewithal in terms of behaviour,

morphology, and physiology/biochemistry to tackle a small

number of novel resources or less likely, a wider range of

resources (i.e. optimal foraging theory; Futuyma and Moreno,

1988; Mikkelsen et al., 2024).

Examples of how dietary specialists and so-called generalists

fare when faced with novel food resources include a recent study on
frontiersin.org
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the polyphagous black-bean aphid, Aphis fabae Scopoli reared in

laboratory culture on five vascular host plants invasive to Europe

(Ameline et al., 2025). The results revealed a gradient of suitability

in terms of aphid probing behaviour, short-term survival and

fecundity in clip cages, and their ability to settle and form

colonies over a five week period. So as this study shows, there is

not a clear ‘all or nothing’ response to the host plants on offer (cf.

Ameline et al., 2025, for further details). Another paper on this

broad topic area, concerning study of the dietary specialisation of

frugivorous birds in south-east Peru (Bender et al., 2017), found

that ‘Functional specialisation of bird species varied more among

species than across seasons, and phylogenetically similar bird species
Frontiers in Ecology and Evolution 03
showed similar degrees of functional niche breadth and functional

originality.’ Furthermore ‘that birds with high functional flexibility

across seasons had narrow functional niche breadth and high

functional originality per season, suggesting that birds that are

seasonally specialised on particular resources are most flexible in

switching to other fruit resources across seasons.’ The authors

conclude that ‘The high flexibility of functionally specialised bird

species to switch seasonally to other resources challenges the view that

consumer species rely on functionally similar resources throughout

the year.’

All well and good, but as these two studies both clearly

demonstrate: (1) generalism, if it exists at all, is a ‘moving feast’,
FIGURE 1

Range of animals hitherto considered to be ‘good’ species in terms of their population spatial genetic variability, but now shown, using molecular
techniques, to be cryptic species complexes, or as in the case of the killer whale and great white shark, ecotypes/subspecies with different
geographic ranges and diet preference/breadth. In this light, it is possible that all the various cryptic entities discovered in recent years, including
those displayed above, have different feeding preferences and hence diet breadth. According to Oliver et al. (2009), “Available evidence suggests that
hundreds of amphibian, reptile, mammal and fish species remain unrecognized.” (cf. references cited therein). With invertebrates, especially
including insects, representing around 75% of all animal species recorded (Grimaldi and Engel, 2005), this value may be much higher, possibly
thousands or tens of thousands of species as yet undetected. (A) Earthworm, Lumbricus rubellus Hoffmeister; (B) English Grain aphid (apterous
forms), Sitobion avenae (F.); (C) Rose-grain aphid, S. fragariae (Walker); (D) Adult wasp parasitoid, Aphdius ervi Haliday attacking and laying an egg
inside an apterous S. avenae; (E) Black-winged Hatchetfish, Carnegiella marthae G.S. Myers,; (F) Great white shark, Carcharodon carcharias (L.);
(G) Amazonian Foam frog, Engystomops sp. Jiménez de la Espada; (H) Eastern stone gecko, Diplodactylus vittatus Gray; (I) Yellow-vented bulbul,
Pycnonotus goiavier (Scopoli); (J) Grey-bellied squirrel, Callosciuris caniceps (J.E. Gray), subsp. nov. caniceps (Hinkley); (K) Nine-banded armadillo,
Dasypus novemcinctus L.; (L) Pipistrelle bat, Pipistrellus pipistrellus (Schreber); (M) Bornean short-tailed gymnure, Hylomys dorsalis Thomas, sp. nov.
(Hinckley); (N) Killer whale, Orcinus orca (L.). Source: © Photo credits: (A) Malcolm Storey, www.bioimages.org.uk; (B) Oklahoma State University,
USA; (C) jessica-joachim.com/; (D) Author, ex-Rothamsted Research, Harpenden, Herts., UK; (E) tropical-fish-keeping.com; (F) Herbert Futterknecht,
sharkproject.org; (G) Santiago Ron, amphibiaweb.org; (H) Matt Clancy, Melbourne, Australia, CC BY 2.0 ; (I) cokesmithwildlife.com; (J) Natthaphat
Chotjuckdikul, Bangkok, Thailand, www.inaturalist.org/observations/50531679; (K) nwf.org; (L) David Pye (Pye, 2021), Royal Meteorological Society;
(M) Quentin Martinez, www.quentinmartinez.fr; (N) victoriawhalewatching.com.
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and is not an exact behavioural trait in terms of what is eaten,

excluding preferred resources, and 2) if animals feed on seasonally-

available resources, they show a temporally-based specialism. In this

light, the term generalism is clearly an unsatisfactory one and levels

of phagy – mono- oligo- and polyphagy − are more accurate to

describe what we see in nature and as such, are surely to

be preferred.

Certainly, assumed generalism is typically uncommon

compared with specialism and specialist species (Leonard and

Lancaster, 2022), and in the case of hymenopterous parasitoids

(Insecta) “The generalist vs. specialist strategy for a parasite consists

of increasing or reducing host range, where host range is defined as

the number of host species infected by a population of a single

parasite species (Lymbery, 1989). Host range reflects a reciprocal

relationship between host and parasite (Ward, 1992).” (cited in Sasal

et al., 2001). Specialists have a much more restricted diet and often

geographical range compared with so-called generalists, which in

contrast, show a wider range of dietary items and often a larger

geographical range, probably involving a much wide range of

topography too, e.g. American Black bear (Jacoby et al., 1999;

Baldwin and Bender, 2009), Racoon, Procyon lotor (L.) (Harman

and Stains, 1979) and Brown rat, Rattus norvegicus Berkenhout

(Munshi-South et al., 2024), and hence climatic conditions. But, as

aforementioned, there are doubtless constraining costs of being a

generalist, and our belief is that ‘generalism’ is most often confused

with opportunism, as seen for example in brown bears and black

bears and red foxes and other carnivores with omnivorous

dietary intake.

The specialist has, so long as the resource lasts, little overt

interspecific competition for that resource, e.g. Koala, Phascolarctos

cinereus (Goldfuss) feeding on eucalyptus (cf. Moore and Foley,

2000, including in relation to Koala host plant feeding preferences).

In contrast, the ‘generalist’ is always likely to have to endure

competition from rivals for one or more resources, either intra-

or interspecific; such resources are in turn likely to be limiting in

amount and variety. If the resource of the specialist becomes

limiting for whatever reason, e.g. severe drought or bush fires in

the case of eucalypts and Koalas, this then could prove catastrophic,

leading to local or complete population extinction. In contrast,

assuming the competition is not extreme, the oligo- or

polyphagous/omnivorous animal can withstand short-term

reduction in resource availability … that is, if one or a few

particular resource items were to become scare and thereby

limiting. Clearly, there are pros and cons of either extreme dietary

scenario, and hence, trade-offs (Futuyma and Moreno, 1988). In the

case of insect herbivores especially, and probably many other

herbivorous animals too, their diet breadth is constrained by toxic

plant secondary compounds (Schoonhoven, 1982; Barik, 2021),

thus limiting the number and variety of plants attacked (cf. also

Fox and Morrow, 1981 and Jaenike, 1990)….unless that is, they

have co-evolved (Thompson, 1994), perhaps over huge swathes of

time, to combat these in various ways, e.g. by detoxification,

degradation, excretion, or sequestration (War et al., 2020). There

may also be other, anatomical co-evolved antifeedant mechanisms

at work, e.g. sticky hairs, spikes and spines (War et al., 2020).
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If generalism was such a successful approach to maintaining

species individuals and by extension, populations, why is it not

more common in the natural world? From a casual perspective, it

seems a highly reasonable and sustainable practice. But there are

clearly problems associated with this lifestyle.

From examination of extinct fauna, it is often evident from

skeletal and/or fossil remains what the lifestyle of the said animal

probably was, especially upon examination of the skull, i.e. jaws and

teeth, placing of the eye sockets (e.g. forward or side facing), and

nature of the limbs and feet (e.g. hooves or claws). Certainly the fossil

evidence, following examination of a large number of extinct taxa,

suggests that these animals were predominantly specialist in terms of

their lifestyle and hence diet, e.g. birds (Fuller, 1987), dinosaurs

(Barrett, 2024) and pterosaurs (Witton, 2018; Chang-Fu et al., 2017;

Bestwick et al., 2018; Cooper et al., 2024).

Having said that, there is of course always likely to be some

degree of guess work attached to the assignment of dietary habits

and preferences of extinct animals, more especially long extinct

ones with no living descendants or close relatives whatsoever

(‘Utterly extinct’ taxa to use the term Darwin, 1859 used, p. 126),

the behaviour of which is conjectural. Even so, it is surely clear from

the fossilised remains of Mesozoic animals such as allosaurs and

raptors that these were rapacious predators (Barrett, 2024), and

filter-feeding pterosaurs were undoubtedly harvesting small water-

borne creatures such as small fish and crustaceans (Chang-Fu et al.,

2017) (but cf. also Seilacher, 2007).

Predatory animals may be opportunist, for example European

Pine Marten, Martes martes (L.) and Red Fox, Vulpes vulpes (L.)

when they come across supplementary food items, including bird’s

eggs or berries. But it is obvious from their anatomy that they are

essentially highly adapted predatory creatures. In that case, their

diet breadth probably consists of a range of prey species they are

capable of tackling, i.e. not too big or ferocious, or too small, thereby

eliciting problems associated with cost-benefit. There are also cost

benefit considerations in relation to how much energy is required to

capture a particular species individual. In the case of the Pine

Marten in the UK, they have co-existed with the Red Squirrel,

Sciurus vulgaris L. for thousands of years, whereas the Grey Squirrel,

Sciurus carolinensis Gmelin, originally introduced from North

America into various sites in Britain, notably Woburn Abbey in

Bedfordshire at the turn of the 20th century (Okubo et al., 1989), is

apparently easier to capture and thus populations of Reds and Greys

are attacked disproportionately, the net effect being that reds are

thriving at the expense of the less adapted (to Pine Marten

predation) greys (Sheehy et al., 2018).

An animal species, be it predator or herbivore, may have a

broad diet breadth, but they usually evolve to feed on one or a few

preferred species or food items that they have become especially

adapted to finding, catching/collecting, devouring and digesting,

and these prey or items may constitute a very high percentage of the

diet, as found with wild cats, Felis silvestris Schreber in south-east

Spain, where mice and voles account for around 80% of the diet (cf.

Moleón and Gil-Sanchez, 2003 for further details). In this way, as

the authors describe it, this predator is a facultative specialist,

despite its broad diet breadth.
frontiersin.org
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If it is essentially true that generalist animals have costs in terms

of their lifestyle, yet so, there are good examples of animals such as

omnivorous Racoons or bears which seemingly ‘buck the trend’ of

evolution….apparently. But we suggest that bears like Black bears

and Brown bears, Ursus arctos L., are highly adapted in terms of

their physiology (they are the only large animals to hibernate during

the winter time and are the only large predators capable of standing

in freezing torrents of water to catch salmon in their mouths). They

tend to be seasonal specialists, depending on what main food is

abundant at any point in the year (e.g. Mikkelsen et al., 2024). Their

forward facing eyes and carnassial dentition (flattened and less

developed than in other carnivores) support their predominantly

predatory-omnivorous life style (Sacco and Van Valkenburg, 2004).

Besides a seasonal-temporal aspect to so-called generalism, or in

reality, seasonal specialism, as aforementioned, some generalist

animals seems to show a regional/geographic aspect to their diet

breadth (Loxdale and Harvey, 2023). But as well as this, as mentioned

by Nery et al. (2023), ecological specialisation can lead to a restriction

in the distribution of some less vagile species, leading to endemism.

Thus the concept of generalism again is a somewhat flexible one,

depending on the regional and seasonal availability of food items.

Of course, as is well known, biodiversity increases at the equator

and declines towards the poles. In this sense, animals living in more

polar regions are likely to have less choice in what they eat, e.g. arctic

fox, Vulpes lagopus (L.) and caribou, Rangifer tarandus (L.), which in

turn is likely to drive dietary specialisms (Latitudinal diversity

gradient hypothesis) (cf. Dyer and Forister, 2019 and references

therein). The same can be said for animals with a wide

geographical range and perhaps living at the extremes of this, e.g.,

Montagu’s harrier, Circus pygargus (L.) (Terraube and Arroyo, 2011).

If the driving mechanism of evolution is via ecological

specialism, yet some animals appear to be generalist in terms of

their diet breadth, this is indeed a paradox. Can the ‘circle ever be

squared’ and a rational and reasonable explanation be proffered as

to why such animals have taken to this ultimately risky lifestyle?

Indeed, can a generalist animal evolve and speciate into new, more

specialist forms (which is what is assumed, cf. Futuyma and

Moreno, 1988), or is it ultimately a victim of its own

opportunistic gamble in the great scheme of life and as such

inevitably doomed to extinction?

Another very important aspect of the whole specialism vs.

generalism debate is the topic of cryptic species (Bickford et al.,

2007, cf. their Figure 1; Hending, 2024) or morphologically similar-

identical lower levels of evolutionary divergence, including

genetically divergent species populations, e.g. De Barro et al.

(1995) and Sunnucks et al. (1997) in the case of cereal aphids.

Thus in these particular insects, the predominantly asexual English

grain aphid, Sitobion avenae (F.), which feeds preferentially – but

not exclusively – on cultivated wheat, Triticum aestivum L (Loxdale

and Brookes, 1990; Blackman, 2010), shows introgression with its

sister species, the rose-grain aphid, S. fragariae (Walker), which has

an autumnal sexual phase, host alternating between a range of

summer (or secondary) gramineous hosts and a woody

overwintering host, especially bramble, Rubus fruticosus L. agg.,

on which mated sexual females (oviparae) lay cold hardy eggs
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(Blackman and Eastop, 2000; Blackman, 2010). In contrast, S.

avenue sensu stricto when it does produce sexual forms, as a

result of low light and temperature conditions, lays its eggs on the

secondary, gramineous host/s (Helden and Dixon, 2002).

It is now known that many species populations undergo

introgression/hybridisation. According to Mallet (2005, 2007),

“The fraction of species that hybridize is variable, but on average

around 10% of animal and 25% of plant species are known to

hybridize with at least one other species (Mallet, 2005).

Hybridization is especially prevalent in rapidly radiating groups:

75% of British ducks (Anatidae), for example.” (Mallet, 2005). Most

such hybrids have maladaptive traits and die out, but some hybrid

species are known to exist (Mallet, 2007). An example is Schwartz’s

fruit-eating bat, Artibeus schwartzi Jones, found in the Lesser

Antilles of the West Indies, and apparently originating from three

precursor species, two still extant (Larsen et al., 2010).

In addition to this, within the last few decades, numerous

examples of cryptic species have been discovered globally, often

suspected – but now proven – using allozymes markers and high

resolution molecular (DNA) markers, including microsatellites,

mitochondrial DNA markers, and DNA sequencing (Oliver et al.,

2009). These include animals (Figure 1) as diverse as earthworms

(King et al., 2008), insects, e.g. aphids (e.g. Foottit et al., 2008;

Rebijith et al., 2013; Lee et al., 2015; Li et al., 2023), hymenopterous

parasitic wasps (e.g. Atanassova et al., 1998; Heraty et al., 2007;

Derocles et al., 2016); arachnids (e.g. Loria et al., 2025); crustacea

(Patoka et al., 2025); molluscs (Wesselingh et al., 2019); fish (e.g.

Kon et al., 2007; Piggott et al., 2011), amphibians (e.g. Funk et al.,

2012; Marr et al., 2024), reptiles (e.g. Oliver et al., 2007, 2009;

Vasconcelos et al., 2016; Agarwal et al., 2017), birds (e.g. Lohman

et al., 2010; Sands et al., 2024), and mammals (e.g. Brown et al.,

2014; Fennessy et al., 2016; Barthe et al., 2024; Hinckley et al., 2024a,

2024b; Zeng et al., 2024; cf. also Videvall et al., 2025), including bats

(e.g. Mayer and von Helversen, 2001; Clare, 2011) and even killer

whales (Filatova et al., 2023). It is known that some of these cryptic

entities are formed by chromosomal inversion polymorphisms or

other small or large scale mutational changes e.g. translocations or

mitochondrial DNA, which differentiate the new population

genetically from the parental one and are perhaps integral in this

separation, e.g. voles of the genus Microtus (e.g. Mazurok et al.,

2001; Lavrenchenko et al., 2023) and mole voles, Ellobius

(Romanenko et al., 2019) (cf. also Patton and Sherwood, 1983).

Furthermore, there is evidence of reproductively-isolated sub-

specific forms, everything from butterflies, e.g. African Queen

butterfly, Danaus chrysippus (L.) (Smith, 2014) and Heliconius

species (Brower and Garzón-Orduña, 2024) to the African Lion,

Panthera leo (L.) (Bertola et al., 2015). The fact that these

populations are allopatrically and even sometimes sympatrically

reproductively isolated, for example in the case of host plant

adapted insect species (Craig et al., 1993), strongly implies that

they are fulfilling slightly different ecological roles, something

reflected in their diet breadth/preferences (cf. Leung and

Beukeboom, 2022, in relation to the various known or theorised

mechanisms of host plant adaptation in insects, including

phenotypic plasticity). In the case of morphologically-similar
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populations (so-called ecotypes but perhaps in reality true cryptic

sub-species) of Killer Whales, Orcinus orca (L.), these have different

diet specialisations, including at one extreme, salmon (Vester and

Hammerschmidt, 2013), at the other, the hunting and predation of

seals and baleen whales (Filatova et al., 2023; cf. also Foote et al.,

2011 and McInnes et al., 2024). Genetic differentiation of Great

White Sharks, Carcharodon carcharias (L.), has similarly also

recently been reported, representing three distinct main lineages

(North Atlantic, Indo-Pacific, and North Pacific) which diverged

some 100,000–200,000 years ago (Wagner et al., 2024); these

ecotypes may well be related to differences in their diet. Hence,

the labelling of a particular species as ‘generalist’ has to be made

with extreme care. Certainly, as an example of how incorrect

identification of species can lead to spurious interpretation of diet

breadth, two cryptic European bat species, Pipistrellus pipistrellus

(Schreber) and Pipistrellus pygmaeus (Leach), are known to have

different habitats and hence somewhat different diets (cf. Mayer and

von Helversen, 2001; Dick and Roche, 2017).

Basically, our lack of knowledge of many, perhaps most, species

in terms of morphologically similar-identical forms acts as a break

on our enthusiasm to label such and such a species as highly

polyphagous, or to put less scientifically, a generalist. For example,

some species of highly polyphagous aphid, often denoted as being

global pests, e.g. Peach-potato aphid, Myzus persicae (Sulzer), and

which reputedly attacks plants in 40 families (Blackman, 2010;

Blackman and Eastop, 2000), may be an array of cryptic, host

adapted species or sub-specific entities (Loxdale et al., 2011).

However, recent research by Nio et al. (2025) argues against this

notion, showing rather that four superclones (multilocus genotypes

found in many copies) of this species studied in northern France

using molecular approaches can infest plants of a wide variety of

unrelated taxa, but especially sugar beet (Beta vulgaris L.) (≥ 80% on

this crop). As the authors continue “Moreover, the array of

characterized genotypes of M. persicae formed distinct genetic

clusters, but with no clear association to specific host plants”,

suggesting that the generalist characteristic of this aphid do

indeed hold. Whatever, this aphid host alternates between a

secondary summer herbaceous host or hosts, e.g. brassicales, and

an overwintering winter host, i.e. Peach, Prunus persica (L.) Batsch

on which the sexual females, after mating, lay cold hardy eggs.

So even if it is true that the aphid is generalist (polyphagous) on

the secondary host, it is clearly predominantly specialist

(monophagous) on the winter host (Tatchell et al., 1983). A

conundrum for sure, not only in terms of semantics, but in terms

of biological labelling too. As a last thought on this particular case, it

could be further argued that the ability on the part ofM. persicae to

attack a large number of hosts, many with unique antifeedant

chemical signatures, is in itself an ecological specialism related to

the particular genetic-biochemical properties it has evolved (cf.

Mathers et al., 2017 for details), since most aphid species do not

show such adaptability, specialising on plants within the same

family of plants or on single plant species (Blackman, 2010).

What we the organisers of this special issue of the journal hope

is that the debate may be widened and more especially that the

application of the term generalist and generalism not be taken as a
Frontiers in Ecology and Evolution 06
given. That without firm corroboratory evidence, especially using

polymorphic DNA markers and sequencing, the genetic identity of

a given species population cannot be assumed to be uniform over its

geographical range. And thereby, that the reality of generalism as a

concept is either supported or ultimately, which we have come to

believe, be denied due to the factors as briefly outlined above. To us,

this is a critical issue in ecology and evolution, one that deserves to

be taken more seriously and re-explored in order to uncover the

truth as to what is pertaining, or thought to pertain, for the animal

species deemed to be generalists.

In the end, if we biologists use factually incorrect terminology,

this is likely to hold back the acquisition of new and important data

and a more realistic view of what is actually occurring within the

natural world. This paradox of course impinges on both

invertebrates and vertebrates and ultimately, impinges on our

understanding – or so we believe – of the evolutionary process

occurring by genetic population divergence brought about by

mutations of one form or another, natural selection/genetic drift,

adaptation and ecological specialisation.
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