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Spatial distribution patterns and
driving factors of ecosystem
services and ecological
vulnerability in ecologically
fragile areas: a case study
of the Zhang-Cheng area
Ye Wang1,2, Zhong-cai Xue1,2, An-qi Ju1, Yue Yang1,2, Wei Ren2

and Cai-wu Wu1,2*

1College of Resources and Environmental Sciences, Hebei Minzu Normal University, Chengde,
Hebei, China, 2Hebei Key Laboratory of Mountain Geological Environment, Chengde, Hebei, China
Integrating ecosystem services (ES) and the ecological vulnerability index (EVI) to

analyze the spatial distribution of ecological spaces provides valuable insights

into promoting the sustainable development of ecologically fragile regions. To

explore the spatial distribution patterns of ES and EVI in such areas, the

Zhangjiakou-Chengde (ZC) area was selected as the study region. Four key ES

—water yield (WY), soil conservation (SC), carbon sequestration (CS), and food

supply (FS)—were assessed, and EVI was evaluated using the Sensitivity-

Resilience-Pressure (SRP) model, with Z-score normalization revealing their

spatial distribution patterns. The results showed that: (1) ES exhibited an

increasing trend, while EVI decreased, with the most significant changes

occurring between 2000 and 2010. Spatial patterns revealed that WY, SC, and

CS increased from west to east, while FS and EVI decreased, with higher

ecological vulnerability in the west; (2) Following Z-score normalization, ES

and EVI were categorized into four quadrants: Quadrant I (High ES, High EVI)

indicates areas with strong functions but high vulnerability due to human

activities and climate change; Quadrant II (Low ES, High EVI) includes arid/

semi-arid areas with high restoration potential; Quadrant III (Low ES, Low EVI)

covers regions in need of ecological restoration; Quadrant IV (High ES, Low EVI)

comprises areas with effective protection and low vulnerability; (3) Climate

factors and land use changes significantly impacted the spatial distribution of

ES and EVI. Interactions among multiple drivers, particularly in areas with intense

human activities, amplified their effects. The findings offer important theoretical

support for developing more precise ecological restoration and protection

strategies and promoting sustainable development.
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Highlights
Fron
• Integrated assessment of ecosystem services and

ecological vulnerability.

• Z-score normalization method used for combining

ecosystem services and ecological vulnerabil i ty

index evaluations.

• GeoDetector applied to analyze drivers of ecosystem

services and ecological vulnerability index spatial patterns.
1 Introduction

In the face of escalating global ecological challenges,

the evaluation of ecosystem services (ES) and the ecological

vulnerability index (EVI) has emerged as a pivotal focus in

environmental science research. Ecosystem services—defined as the

direct and indirect contributions of ecosystems to human well-being

—are essential for sustaining life and promoting sustainable

development (Costanza et al., 1997). Simultaneously, assessing

ecological vulnerability is crucial for understanding ecosystems’

susceptibility to disturbances and their capacity for recovery,

thereby informing effective conservation and management

strategies (Adger, 2006). ES include functions such as water

conservation, which ensures the availability of clean water for

human and ecological needs (Costanza et al., 2014); soil retention,

which prevents erosion and maintains soil fertility; and climate

regulation, which helps stabilize local and global climate conditions.

These functions are essential for maintaining ecosystem health and

supporting the sustainable development of human society. However,

with the intensification of human activities, pressures such as

ecosystem degradation and climate change have made ecological

vulnerability issues more prominent (Tang et al., 2021). Ecological

vulnerability refers to the degree to which ecosystems are likely to be

affected by natural or anthropogenic disturbances, encompassing

both their sensitivity to such pressures and their capacity to resist

or buffer against them, rather than simply their ability to recover from

impacts (Weisshuhn et al., 2018). Therefore, both ES and EVI have

become fundamental components of environmental research, as they

jointly reflect the functional performance and the stability or fragility

of ecosystems under changing environmental conditions (Xie et al.,

2021). ES provides the healthy state and functions of the ecological

environment, while EVI measures the ecosystem’s capacity to

withstand and recover from stress. To gain a more comprehensive

understanding of regional ecosystem status, combining ES and EVI

for integrated assessment can better reveal the distribution patterns

and dynamic changes of ecological spaces (Raheem et al., 2019).

Currently, significant progress has been made in the methods

for assessing ES and EVI, and they have been widely applied in

various ecological and environmental evaluations. ES assessment

typically relies on quantitative models, remote sensing technology,

and expert evaluations. Quantitative models, such as the InVEST

(Integrated Valuation of Ecosystem Services and Trade-offs) model,

have become important tools for assessing ecosystem services,
tiers in Ecology and Evolution 02
particularly in functions related to water yield, carbon

sequestration, and soil conservation (Jiang et al., 2016; Wang

et al., 2022). The InVEST model can integrate factors such as

land use, climate, and soil type to quantify the ecosystem services

provided, offering scientific evidence for ecological protection and

resource management (Ma et al., 2021). Additionally, remote

sensing technology can acquire high-resolution surface imagery to

monitor the spatial distribution and dynamic changes of ecosystems

in real time, making it especially suitable for large-scale regional

assessments of ES (Vargas et al., 2019). EVI evaluation typically

relies on the Sensitivity–Resilience–Pressure (SRP) model, which

comprehensively assesses ecological vulnerability by analyzing three

key dimensions: Sensitivity, Resilience, and Pressure (Yang et al.,

2021). Pressure refers to external stresses imposed on the

ecosystem, such as climate change, land-use change, and pollutant

emissions, with human activities being a major driving force (He

et al., 2018). By incorporating climate and land-use scenario

simulations, it is possible to predict how ecosystems may respond

under varying pressure conditions (Shoyama and Yamagata, 2014).

Sensitivity reflects the degree to which an ecosystem responds to

external pressures—such as increased temperatures or altered

precipitation patterns—and is influenced by topographic and

climatic conditions (Gao et al., 2018). Resilience, on the other

hand, represents the ecosystem’s capacity to absorb disturbances

and maintain or quickly recover its structure and functions after

stress, and is crucial for understanding long-term ecological stability

(Mumby et al., 2014). Moreover, spatial statistical analysis methods,

such as Geographically Weighted Regression (GWR) and

GeoDetector, have also been widely applied in ES and EVI

research to explore the spatial heterogeneity of ecological factors

and socio-economic elements and their interactions (Gu et al., 2023;

Wang et al., 2021).

However, despite the broad application of ES and EVI evaluation

methods, existing research still tends to focus on single-dimensional

analyses. Most studies assess ES or EVI separately, with fewer

attempts to integrate both for comprehensive evaluation. Even

when some studies attempt to combine the two, they typically use

ES as an important indicator for EVI assessment, without fully

considering the interrelationship between them. For example, some

studies indirectly infer EVI by assessing changes in ES (Qiu et al.,

2015). This approach overlooks the complex interactions between ES

and EVI, and fails to fully reveal the ecological space distribution

patterns jointly determined by the two. Ecosystems may exhibit both

high levels of service and high ecological vulnerability, or conversely,

low levels of service and low vulnerability. This phenomenon occurs

when areas with significant ecosystem services, such as water yield or

carbon sequestration, face heightened pressures from factors like

climate change or human activities, increasing their vulnerability.

Conversely, regions with lower ecosystem service potential may have

lower vulnerability due to more stable or less exploited conditions

(Malekmohammadi and Jahanishakib, 2017). Therefore, analyzing

ES or EVI independently may lead to misjudgments regarding the

ecological state. To address this gap, this study uses the Z-score

normalization method to integrate ES and EVI, allowing for their
frontiersin.org
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combined evaluation. Z-score normalization effectively handles

indicator data of different dimensions and units, and after

standardizing them to a common scale (Deng et al., 2021). Z-score

normalization helps reveal the combined spatial interaction patterns

of ES and EVI.

In this context, the ZC area—a critical ecological barrier zone in

northern China and a representative ecologically fragile area—was

selected as the study region. This study aims to: (1) evaluate the

spatiotemporal changes and interactions between key ES and EVI

from 2000 to 2020; (2) integrate ES and EVI using Z-score

normalization to classify the spatial distribution of ecological

conditions into four distinct quadrants (High ES–High EVI, Low

ES–High EVI, Low ES–Low EVI, and High ES–Low EVI); and (3)

employ GeoDetector to identify and quantify the primary driving

factors and their interactions influencing the spatial distribution of

ES and EVI within each quadrant. These objectives are designed to

provide a comprehensive understanding of how ES and EVI interact

and evolve in ecologically fragile areas, thereby offering practical

insights for regional ecological management and sustainable

development planning.
Frontiers in Ecology and Evolution 03
2 Materials and methods

2.1 Study area

The ZC area is located in the northern part of Hebei Province,

China (39°18′-42°37′N, 113°50′-119°15′E), serving as a key water

source region and windward zone for both Beijing and Tianjin. The

region covers an area of 7.63×104 km² (Figure 1). It is characterized

by diverse geomorphological types, including the northern Hebei

mountain area, the northwest Hebei loess hilly region, and the

Bashang Plateau, with terrain gradually descending from northwest

to southeast. The climate is classified as temperate continental

monsoon, with precipitation and temperature increasing from

north to south. The mean annual precipitation ranges from 300

to 700 mm, and the mean annual temperature varies between -1°C

and 9°C. According to the China Ecosystem Assessment and

Ecological Security Database (http://www.ecosystem.csdb.cn/

index.jsp), the ZC area is recognized as a plateau grassland and

agricultural ecological zone, playing a crucial role in water

conservation and soil erosion control in the Beijing-Tianjin-Hebei
FIGURE 1

Location of the study site.
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region. However, due to its location in the agro-pastoral transition

zone, the region faces challenges such as water scarcity, overgrazing,

grassland degradation, and soil erosion, rendering it a typical

ecologically fragile area.
2.2 Data sources and preprocessing

The data for this study includes land use, meteorological, soil,

vegetation index (NDVI), digital elevation model (DEM), and

socio-economic statistics for the ZC area. Land use data is

obtained from the Resource and Environment Science Data

Center of the Chinese Academy of Sciences (https://

www.resdc.cn/), which provides raster datasets for the years 2000,

2010, and 2020. The dataset classifies land use into six categories:

cropland, forest, grassland, water bodies, built-up land, and unused

land, with a spatial resolution of 30 m. Meteorological data is

sourced from the China Meteorological Science Data Sharing

Service Network (https://data.cma.cn/), including monthly

precipitation and potential evapotranspiration data from 30

meteorological stations surrounding the study area, covering the

period from 2000 to 2020. Soil data is derived from the World Soil

Database (HWSD), specifically the “China Soil Dataset.”NDVI data

is obtained from the National Ecological Science Data Center

(http://www.nesdc.org.cn/), with a spatial resolution of 30 m.

DEM data is acquired from the Geospatial Data Cloud (http://

www.gscloud.cn/), with a resolution of 90 m. Socio-economic data

primarily comes from the relevant years of the “China Urban

Statistical Yearbook,” “China County Statistical Yearbook,”

“Hebei Statistical Yearbook,” and statistical yearbooks from

various prefecture-level cities.

Considering the environmental characteristics and data

calculation requirements, the study area was divided into a 1 km

× 1 km grid using the Fishnet tool in ArcGIS 10.8. The mean values

for each grid cell were then extracted, resulting in a total of 7.62×104

grid cells. These grid cells were used for the calculation and analysis

of ecosystem services and ecological vulnerability.
2.3 Method

The workflow begins with data acquisition and processing,

including land use, climate, soil, and socioeconomic data. This is

followed by the assessment of four key ecosystem services: water

yield, food supply, soil conservation, and carbon sequestration.

Specifically, WY is calculated using the water yield module of the

InVEST model based on the water balance principle; FS is estimated

based on the significant linear relationship between crop yield and

NDVI; SC is assessed using the Revised Universal Soil Loss

Equation (RUSLE); and CS is evaluated through the InVEST

carbon storage module. Afterward, Z-score normalization is

applied to analyze the spatial distribution patterns of ES and EVI,

categorizing them into four quadrants: Quadrant I (High ES, High

EVI), Quadrant II (Low ES, High EVI), Quadrant III (Low ES, Low

EVI), and Quadrant IV (High ES, Low EVI). Finally, GeoDetector is
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used to identify and assess the driving forces behind the spatial

patterns of ES and EVI, including both single-factor and interaction

effects (Figure 2).

2.3.1 Ecosystem services assessment
Based on the ecological functional zoning of the ZC area, this

study primarily evaluates ecosystem services from the perspectives

of provisioning and regulating services. As a major component of

the water conservation zone within the Beijing-Tianjin-Hebei

region, the ZC area plays a crucial role in freshwater retention

and hydropower resource production (Zhou et al., 2023a).

Additionally, as one of the main grain-producing regions in

Hebei Province, it is of great significance for regional food

security (Zeng et al., 2019). Therefore, water yield (WY) and food

supply (FS) are selected as representatives of provisioning services.

The ZC area is also a critical region for soil erosion control and an

important carbon sink in the Beijing-Tianjin-Hebei region (Zhou

et al., 2023a). Consequently, soil conservation (SC) and carbon

sequestration (CS) are chosen as representatives of regulating

services. The methods used for the ecosystem services evaluation

are summarized in Table 1.

2.3.2 Ecological vulnerability assessment
The ecological vulnerability assessment consists of four main

steps: constructing the indicator system, normalizing the indicators,

determining indicator weights, and calculating the EVI.

First, based on the Sensitivity–Resilience–Pressure (SRP) model

for ecological vulnerability (Zou et al., 2021), and considering key

ecological issues in the ZC area such as climate aridity and severe

soil erosion, 13 indicators were selected (Table 2), with an emphasis

on data timeliness and accessibility. The directionality of each

indicator in the EVI system reflects its theoretical influence on

ecosystem stability. A positive sign (“+”) indicates that higher values

of the indicator are associated with increased ecological

vulnerability, while a negative sign (“–”) implies a decrease in

vulnerability. Specifically, terrain-related indicators such as ELV,

SLP, and terrain TRI increase the difficulty of vegetation restoration

and raise susceptibility to erosion and landslides, thereby increasing

vulnerability. Similarly, climatic indicators including TMP, PET,

and the SPEI indicate environmental stress due to heat and aridity.

Human-related indicators, such as POP, LUDI, GDPP, and NTL,

represent anthropogenic pressures that typically intensify ecological

disturbance. In contrast, indicators with negative signs, including

PRE, FVC, and RND, contribute to ecological resilience by

improving water availability, stabilizing soil, and supporting

vegetation growth. These directional assignments are based on

prior ecological vulnerability frameworks and are tailored to the

environmental characteristics of the ZC area (Weisshuhn et al.,

2018). Sensitivity refers to the instability of an ecosystem when

subjected to external disturbances, such as natural and human

activities. Terrain and meteorological indicators are used to

represent ecological change. Resilience refers to the ecosystem’s

ability to recover from internal disturbances, with vegetation

coverage and water system density chosen to reflect this. Pressure

refers to the physiological effects resulting from external
frontiersin.org
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disturbances, often linked to human activities and economic factors.

Indicators such as population density, land use intensity index

(Zhang and Li, 2016), and gross domestic product are used to

measure pressure.

Next, to eliminate differences in units and attributes across the

indicators, the range normalization method was applied to

standardize each indicator, transforming them into values

between 0 and 1. The formulas used are as follows (Equations 1, 2).
Frontiers in Ecology and Evolution 05
X+
i =

Xi − Xi,min

Xi,max − Xi,min
(1)

X−
i =

Xi,max − Xi

Xi,max − Xi,min
(2)

Where X+
i and X−

i are the normalized values for positive and

negative indicators; Xi is the raw value for indicator i; and Xi,max and

Xi,min are the maximum and minimum values of indicator i.
FIGURE 2

Methodology workflow.
TABLE 1 Ecosystem services assessment methods.

Type Calculation method Variables

Water Yield (WY)

Calculated using the water yield module of the InVEST
model based on the water balance principle (Yang et al.,
2020):

WYi = ½1 − AETi

Pi
� � Pi (T1)

where WYi is the annual water yield (mm) for grid cell i, AETi is the actual
evapotranspiration (mm), and Pi   is the annual precipitation (mm).

Soil Conservation (SC)
Calculated using the Revised Universal Soil Loss
Equation (RUSLE) model (Eniyew et al., 2021):
SCi = Ri � Ki � LSi � (1 − Ci � Pi) (T2)

where SCi is the soil conservation supply (ton·hm-2) for grid cell i, Ri is the
rainfall erosivity factor (MJ·mm·hm-2·hour-1·year-1), Ki is the soil erodibility
factor (ton·hm2· hour ·MJ-1·mm-1), LSi is the slope-length factor, Ci is the
vegetation cover factor, and Pi is the soil conservation practice factor.

Carbon Sequestration (CS)
Calculated using the carbon sequestration module of the
InVEST model (Zhao et al., 2019):
CSi = Ci−a + Ci−b + Ci−s + Ci−d (T3)

where CSi is the carbon sequestration supply (ton·hm-2) for grid cell i, and
Ci−a , Ci−b , Ci−s , and Ci−d represent the carbon density (ton·hm-2) in
aboveground biomass, belowground biomass, dead organic matter, and soil
carbon pool, respectively. The carbon density data is primarily derived from
previous studies in the Beijing-Tianjin-Hebei region (Wang et al., 2019).

Food Supply (FS)
Estimated based on the significant linear relationship
between crop yield and NDVI (Zhang and Liu, 2014):
FSi = FSsum � (NDVIi=NDVIsum   ) (T4)

where FSi is the food production (ton·hm-2) for grid cell i, FSsum is the total
food production (t), NDVIi is the NDVI for grid cell i, and NDVIsum is the
total NDVI for the study area.
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Next, the Analytic Hierarchy Process (AHP) was employed to

determine the weights of the indicators. First, indicators were

categorized into three dimensions—sensitivity, resilience, and

pressure—based on their ecological relevance and references from

previous studies. A pairwise judgment matrix was constructed for

each dimension through expert consultation and literature-based

comparisons of relative importance. The consistency ratio (CR) was

calculated to ensure the logical consistency of each matrix (CR< 0.1

was considered acceptable). Based on the normalized eigenvectors,

the weights for sensitivity, resilience, and pressure were determined

as 0.27, 0.42, and 0.31, respectively. All indicators were normalized

to a scale of 0–1, and weighted aggregation was then applied to

compute the composite EVI.

Finally, Principal Component Analysis (PCA) was applied to

the normalized indicator matrix to reduce dimensionality and

remove redundancy among the 13 indicators. Principal

components with a cumulative contribution rate greater than 85%

were retained. These components were then used to calculate the

EVI by constructing a linear combination of the selected principal

components, weighted by their corresponding eigenvalues. This

approach ensures that the EVI reflects the most significant and

uncorrelated sources of variation within the indicator set (Abson

et al., 2012). Using a mathematical model, the weight of each

indicator was determined, and the formula for calculating the

EVI is as shown in Equation 3:

EVI = r1y1 + r2y2 + r3y3 +⋯+   rnyn (3)

Where yi represents the normalized value of the i-th indicator

factor, and ri represents the weight of the i-th factor. After

calculating the EVI, the result was normalized to ensure that the
Frontiers in Ecology and Evolution 06
final value falls between 0 and 1. A higher value indicates greater

ecological vulnerability.

In the SRP model, sensitivity was derived from terrain and

climatic indicators (e.g., elevation, slope, precipitation), reflecting

the ecosystem’s responsiveness to external stress. Resilience was

measured by vegetation cover and water network density,

representing the ecosystem’s capacity to recover. Pressure was

estimated using socioeconomic and land use indicators (e.g.,

population density, GDP, land use intensity), which capture

anthropogenic stress. To enable integrated spatial classification,

ES and EVI—measured with different units and scales—were

standardized using Z-score normalization. This transformation

unified their values onto a common, dimensionless scale, making

them directly comparable in quadrant-based spatial analysis.
2.3.3 Spatial distribution pattern analysis of
ecosystem services and ecological vulnerability

Based on the two dimensions of ecosystem services and ecological

vulnerability, the Z-score method was used to standardize the

7.62×104 grid cells in the ZC area. The X-axis represents the

standardized ecosystem service supply, while the Y-axis represents

the standardized ecological vulnerability index. Based on this, the ZC

area is divided into four ecological quadrants: Quadrant I (High-

Supply, High-Vulnerability), Quadrant II (Low-Supply, High-

Vulnerability), Quadrant III (Low-Supply, Low-Vulnerability), and

Quadrant IV (High-Supply, Low-Vulnerability). The Z-score

standardization formula is as shown in Equation 4:

Yi =
Xi − �X    

S
(4)
TABLE 2 Comprehensive ecological vulnerability evaluation indicator system for the ZC area.

Objective
Standard
layer

Characteristic
layer

Indicator Direction Abbreviations

Ecological
Vulnerability

Sensitivity Terrain Indicators Elevation + ELV

Slope + SLP

Terrain Ruggedness + TRI

Meteorological Indicators Average Annual Precipitation – PRE

Average Annual Temperature + TMP

Potential Evapotranspiration + PET

Standardized Precipitation
Evapotranspiration Index

+ SPEI

Resilience Ecological Vitality Fractional Vegetation Cover – FVC

River Network Density – RND

Pressure Human Activity Pressure Population Density + POP

Land Use Intensity Index + LUDI

Economic Pressure GDP per Capita (in 100 million yuan) + GDPP

Nighttime Light Index + NTL
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where Yi is the standardized ecosystem service supply or

ecological vulnerability index for grid cell i; Xi is the raw value for

ecosystem service supply or ecological vulnerability index of grid

cell i; Xi is the mean of the ecosystem service supply or ecological

vulnerability index; and S is the standard deviation.

This method effectively reveals the relationship between ES and

EVI, simplifying their complex spatial distribution patterns into

four intuitive categories. This helps in gaining a deeper

understanding of their spatiotemporal changes and interactions.

2.3.4 Driver factor analysis
This study uses the Factor Detector and Interaction Detector

from the GeoDetector method to quantitatively analyze the impact

of various driving factors on the spatial distribution patterns of ES

and EVI. First, ES or EVI was used as the dependent variable, and

13 evaluation indicators from the established index system were

selected as independent variables. All variables were processed into

1 km × 1 km grid format to ensure spatial alignment. Then, each

continuous independent variable was discretized into five levels

using the natural breaks classification method, transforming

numerical data into categorical variables suitable for GeoDetector

analysis. These classified variables were then input into the

GeoDetector model to evaluate their explanatory power for ES

and EVI patterns. The Factor Detector was used to assess the

individual explanatory power of each driving factor on the spatial

differentiation of ES and EVI. The output is represented by a q-

statistic, which ranges from 0 to 1. A higher q-value indicates that

the factor has stronger explanatory power in accounting for spatial

variation in the dependent variable. To identify the most critical

drivers of ecological vulnerability, we compared the q-values across

all 13 candidate variables. Those with the highest q-values in each

quadrant were considered to have the greatest influence on EVI

under specific spatial ecological conditions.

In addition, the Interaction Detector was used to evaluate

whether the combined effect of two variables enhances or

weakens explanatory power. Interaction types were classified into

five categories: independent, univariate weakening, univariate

enhancement , b i- factor enhancement , and nonl inear

enhancement (Zhang et al., 2022), as shown in Table 3. This

allowed us to determine not only which individual factors were

influential, but also how combinations of climatic, topographic, and

anthropogenic variables interact to shape ecological vulnerability.
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3 Results

3.1 Spatiotemporal changes in ES and EVI

Figure 3 shows the spatial patterns of key ES in the ZC area.

WY, SC, and CS decreased from east to west, whereas FS showed the

opposite trend, decreasing from west to east. From 2000 to 2020,

WY and SCmainly increased in the eastern part of the ZC area, with

the largest increases of 21% and 15%, respectively, while decreases

were observed in the western part of the region, with the largest

reductions of -40% and -23% (Figures 3d, h). During this period, CS

and FS mainly increased in the western part of the ZC area, with the

largest increases of 45% and 22%, respectively, while the areas of

decrease were smaller (Figures 3l, p).

Figure 4 shows the spatial variation of the EVI in the ZC area,

which exhibited a high-to-low spatial distribution from west to east.

From 2000 to 2020, EVI decreased in the eastern part of the region,

with the maximum decrease of -30%, while it increased in the

western part, with the largest increase of 45% (Figure 4d).

The values of ES and EVI over time (Figure 5) show that the

mean values of key ES increased by 46.3%, while EVI decreased by

12.5%. The rates of change in ES and EVI indicate that WY, SC, and

FS had the largest average increases from 2000 to 2010, while their

average increases weakened in the 2010-2020 period. The increase

in CS was nearly the same during both 2000-2010 and 2010-2020.

The decline in EVI mainly occurred during 2000-2010, while there

was almost no change in EVI during 2010-2020. Although the

average EVI in the ZC area decreased from 2000 to 2020, the

western part still maintained relatively high ecological vulnerability.
3.2 Correlation analysis between ES and
EVI

Figure 6 presents Pearson correlation results between ES types

and EVI. All ES pairs were significantly correlated (p< 0.01). WY-

SC, WY-CS, and SC-CS showed positive correlations, while WY-FS,

SC-FS, and CS-FS showed negative correlations. Over time, the

positive correlations between WY-SC, WY-CS, and SC-CS

strengthened, while the negative correlations between WY-FS,

SC-FS, and CS-FS became more pronounced. ES and EVI also

showed significant correlations (p< 0.01).

A positive correlation was observed between FS and EVI, while

negative correlations were found between WY-EVI, SC-EVI, and

CS-EVI. Over time, the positive correlation between FS and EVI

weakened, while the negative correlations between WY-EVI, SC-

EVI, and CS-EVI strengthened. Among the ES types, FS was

negatively correlated with other services, indicating trade-offs, and

this trade-off relationship weakened over time. The relationships

between WY, SC, and CS were positively correlated, indicating

synergies, and this synergistic effect strengthened over time. The

negative effects of WY, SC, and CS on EVI increased over time,

while positive impact of FS on EVI decreased.
TABLE 3 Classification of interaction detector interaction types.

Criterion Interaction type

q(X1∩X2)<Min(q(X1),q(X2)) Weaken, Nonlinear

Min(q(X1),q(X2)) <q(X1∩X2) <Max(q(X1),q(X2)) Weaken, Unidirectional

q(X1∩X2)>Max(q(X1),q(X2)) Enhance, Bidirectional

q(X1∩X2)= q(X1)+q(X2) Independence

q(X1∩X2) >q(X1)+q(X2) Enhance, Nonlinear
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3.3 Spatial distribution patterns of ES and
EVI

Figure 7 shows the quadrant-based spatial distribution of ES

and EVI, derived from Z-score normalization. The spatial patterns

of WY-EVI, SC-EVI, and CS-EVI were consistent. In 2000, more

than 65% of the region was categorized as Quadrant II (Low ES,

High EVI), suggesting low service supply coupled with high

vulnerability. By 2010, a considerable portion of the region

shifted to Quadrant IV (High ES, Low EVI), particularly in the

central and eastern parts, indicating both ecological improvement

and vulnerability reduction. This pattern remained largely stable

through 2020, with Quadrant IV slightly expanding.

The spatial distribution pattern of FS-EVI was different. In

2000, FS-EVI was mainly distributed in Quadrants I (High FS, High

EVI) and II (Low FS, High EVI), covering 76% of the area. This

indicated that the region had strong food production capacity, but

also high ecological vulnerability. In 2010, large areas in the eastern

and central parts of the ZC area shifted from Quadrants I and II to
Frontiers in Ecology and Evolution 08
Quadrants III (Low FS, Low EVI) and IV (High FS, Low EVI),

indicating that although FS had improved, EVI had decreased. By

2020, the area in Quadrant III continued to increase, while the area

in Quadrant IV declined compared to 2010.

Figure 8 presents the integrated ES-EVI spatial distribution

based on average Z-scores. In 2000, over 70% of the area (54 817

km²) fell into Quadrant II. By 2010, large regions shifted from

Quadrants II and III into Quadrant IV, especially in the eastern and

central parts. In 2020, both Quadrants I and IV expanded, with the

expansion of Quadrant I primarily resulting from increased ES

supply without a proportional decrease in EVI (Figure 9).
3.4 Driving forces of the spatial distribution
patterns of ES and EVI

Figure 10 presents the results of GeoDetector’s single-factor

analysis of 13 potential driving factors affecting ES and EVI in

different quadrants.
FIGURE 3

Spatial changes of various ES in the ZC area from 2000 to 2020. (a) WY in 2000, (b) WY in 2010, (c) WY in 2020, (d) Variation of WY from 2000 to
2020, (e) SC in 2000, (f) SC in 2010, (g) SC in 2020, (h) Variation of SC from 2000 to 2020, (i) CS in 2000, (j) CS in 2010, (k) CS in 2020, (l) Variation
of CS from 2000 to 2020, (m) FS in 2000, (n) FS in 2010, (o) FS in 2020, (p) Variation of FS from 2000 to 2020.
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In Quadrant I, the main influencing factors for ES were PRE (q

= 0.29), SPI (q = 0.23), and FVC (q = 0.11), while the top drivers for

EVI were PRE (q = 0.43), SPI (q = 0.39), and LUDI (q = 0.34). In

Quadrant II, PRE, LUDI, and FVC had the highest explanatory

power for ES, while LUDI (q = 0.49), FVC (q = 0.36), and SLP (q =

0.35) were most influential for EVI. In Quadrant III, PRE, LUDI,

and SPI were the top drivers of ES, while SPI, PET, and PRE

explained most of the variation in EVI. In Quadrant IV, PRE (q =

0.60), ELV, and TMP were dominant for ES, while FVC, LUDI, and

PRE had the strongest influence on EVI.

Figure 11 illustrates the interaction effects among drivers. The

combined explanatory power of any two variables was greater than

that of individual ones, indicating bi-factor or nonlinear

enhancement. For example, in Quadrant I, key interactions

included PRE∩LUDI (q = 0.40), PRE∩SLP, and PRE∩FVC. For
EVI in the same quadrant, the most significant interactions were

LUDI∩SPI and LUDI∩PRE (q = 0.65 each). Similar patterns were

observed across other quadrants, underscoring the synergistic

influence of climate and land use on ES and EVI patterns.
Frontiers in Ecology and Evolution 09
Figure 11 displays the interaction explanatory power of 13

driving factors on ES and EVI spatial distribution patterns. In the

ZC area, the types of factor interactions were limited to bi-factor

enhancement (Enhance, bi-) and nonlinear enhancement (Enhance,

nonlinear), indicating that the combined effects of two factors were

stronger than their individual effects. In Quadrant I, the strongest

interactions for ES were PRE∩LUDI (0.40), PRE∩SLP (0.35), and

PRE∩FVC (0.34), while the strongest interactions for EVI were

LUDI∩SPI (0.65), LUDI∩PRE (0.65), and SPI∩FVC (0.64)

(Figures 11a, b). In Quadrant II, the strongest interactions for ES

were PRE∩LUDI (0.46), FVC∩LUDI (0.43), and PRE∩FVC (0.37),

while the strongest interactions for EVI were LUDI∩FVC (0.68),

LUDI∩SPI (0.65), and LUDI∩PRE (0.63) (Figures 11c, d). In

Quadrant III, the strongest interactions for ES were PRE∩LUDI
(0.46), PRE∩FVC (0.46), and PRE∩SLP (0.39), while the strongest

interactions for EVI were SPI∩FVC (0.47), LUDI∩SPI (0.45), and
SPI∩SLP (0.39) (Figures 11e, f). In Quadrant IV, the strongest

interactions for ES were PRE∩LUDI (0.64), PRE∩ELV (0.64), and

PRE∩FVC (0.63), while the strongest interactions for EVI were
FIGURE 4

Spatial changes of EVI in the ZC area from 2000 to 2020. (a) EVI in 2000, (b) EVI in 2010, (c) EVI in 2020, (d) Variation of EVI from 2000 to 2020.
FIGURE 5

Temporal changes of various ES and EVI in ZC area from 2000 to 2020. (a) Temporal changes of standardized ES and EVI, (b) Change rates of ES
and EVI.
frontiersin.org

https://doi.org/10.3389/fevo.2025.1570779
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wang et al. 10.3389/fevo.2025.1570779
LUDI∩PRE (0.70), SPI∩FVC (0.67), and LUDI∩FVC (0.64)

(Figures 11g, h).
4 Discussion

4.1 Spatiotemporal changes of ES and EVI
in the ZC area

The ZC area plays a crucial role as an ecological barrier in the

Beijing–Tianjin–Hebei (BTH) region, and the assessment of its

ecosystem services (ES) and ecological vulnerability (EVI) is

essential for understanding regional ecological security. Our

findings reveal that from 2000 to 2020, ES increased while EVI

declined, with the most pronounced changes occurring between 2000

and 2010. These trends are consistent with broader regional studies

covering the BTH area, which includes the ZC region (Fu and Liu,

2024; Gong et al., 2024). Previous studies have similarly attributed

ecological improvements to large-scale ecological restoration

programs such as afforestation, water source conservation forests,

and integrated ecological engineering (Yang et al., 2019). Our analysis

confirms these findings and further quantifies the spatiotemporal

interactions between ES and EVI using a combined Z-score

classification and GeoDetector analysis. Compared to earlier studies

that often assessed ES or EVI independently, our integrative approach

offers a more comprehensive understanding of ecological dynamics.

However, after 2010, we observed a slowdown in ES improvement

and a plateau in EVI reduction, likely due to increasing

anthropogenic pressures associated with urbanization and energy

consumption (Chu et al., 2017). This pattern highlights the

limitations of passive restoration when not accompanied by

sustainable development strategies.

The spatial distribution of ES and EVI indicate that WY, SC,

and CS showed an increasing trend from west to east, while FS and

EVI showed a decreasing trend from west to east. These patterns are

consistent with prior studies (Gong et al., 2024). The western

regions, which belong to a semi-arid climate zone, are

characterized by poor vegetation conditions, severe soil erosion,

and high sensitivity to external disturbances such as climate change
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(e.g., droughts) and human activities (e.g., overexploitation and

grazing) (Jiang et al., 2021). Consequently, the overall ecosystem is

more fragile. In contrast, the central and eastern regions, which

experience higher precipitation, better vegetation cover, and weaker

soil erosion, show lower levels of ecological vulnerability.

The synergistic relationships between WY, SC, and CS can be

explained by the favorable water and heat conditions in the central

and eastern regions, which promote vegetation development,

enhance soil erosion resistance, and increase the region’s carbon

sequestration ability, thus reducing EVI (Zhou et al., 2021).

However, FS exhibited trade-offs with other ES, mainly due to

intense human agricultural activities in the western regions, which

alter soil structure, destroy natural vegetation, and inhibit positive

ecological succession. As a result, FS is high, leading to a higher EVI

in these regions. This indicates that the common or dominant

factors of different ES play a significant role in shaping the complex

spatial relationship with EVI. Exploring how different ecosystem

service trade-offs and synergies impact EVI will be an important

research direction.
4.2 Spatial distribution patterns of ES and
EVI based on Z-score normalization

Traditional analyses of the spatial distribution of ES or EVI

often rely on raw values for quantitative interpretation. However,

this approach can be affected by variations in data scales, regional

climate conditions, and land-use patterns, potentially leading to

biased or misleading conclusions. To address these limitations, this

study employs Z-score normalization to analyze the spatial patterns

of ES and EVI. Z-score normalization converts raw data into

dimensionless standardized values, thereby eliminating differences

in scale and enabling direct comparison of ES and EVI across

diverse regions. This method enhances the clarity of spatial

distribution patterns and reduces analytical bias caused by

heterogeneous data characteristics (Tarasewicz and Jönsson,

2021). Moreover, normalized data more effectively highlight

variations in ecosystem service functions and ecological

vulnerability, making it a powerful and intuitive tool for spatial
FIGURE 6

Correlation between various ES and EVI in the ZC area from 2000 to 2020.
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analysis, especially in ecologically complex areas with diverse

geographical and climatic conditions.

By standardizing the data with Z-scores, we integrated the ES

and EVI values into a comprehensive framework and examined

their spatial distribution patterns across different quadrants.

Quadrant I (High ES, High EVI): Typical regions include the
Frontiers in Ecology and Evolution 11
central mountainous areas and regions with good forest cover,

where significant ecological services in terms of WY, SC, and CS are

provided. However, due to climate change and human activity, the

EVI in these areas is relatively high. Therefore, effective ecological

protection measures are required to prevent further ecological

degradation. Quadrant II (Low ES, High EVI): These regions are
FIGURE 7

Spatial distribution patterns of various ES and EVI in the ZC area from 2000 to 2020 based on Z-score normalization and changes in the area of
each quadrant. (a) WY and EVI, (b) SC and EVI, (c) CS and EVI, (d) FS and EVI.
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mainly found in arid or semi-arid areas, where the terrain and

climate conditions limit the level of ES. These areas have high

ecological restoration potential and require restoration and

conservation efforts to reduce ecological vulnerability. Quadrant

III (Low ES, Low EVI): These regions, mainly in the western areas

with excessive agricultural development and serious land

degradation, exhibit high FS but weakened WY, SC, and CS due

to over-cultivation and grassland reclamation. As a result, ecological

vulnerability increases, and the region requires stronger land

restoration and the promotion of sustainable agricultural practices

to reduce land degradation and restore ES. Quadrant IV (High ES,

Low EVI): These areas, due to effective ecological protection

measures and sustainable resource management, avoid over-

exploitation and excessive resource use. With proper water
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resource management and protection, the ecosystems maintain

high stability, reducing the risk of ecological vulnerability. These

areas need to continue maintaining strong ecological protection

measures to ensure long-term stability of their ecological functions.

A point worth further discussion is that although ES and EVI

are theoretically expected to have a negative correlation, in some

regions, there may be reverse or complex interactions between the

two (Liu et al., 2020). In rapidly developing areas, despite abundant

ecological services (e.g., FS and WY), human activities may lead to

increased EVI. This phenomenon is common in agricultural zones

and areas surrounding urban centers, where large amounts of food

and water resources are provided, but the long-term stability and

sustainability of the ecosystem are at risk. Therefore, the

relationship between ES and EVI is not always a simple positive
FIGURE 9

Sankey diagram of area transfer among quadrants in the ZC area from 2000 to 2020.
FIGURE 8

Spatial distribution patterns of integrated ES and EVI in the ZC area from 2000 to 2020 based on Z-score normalization.
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or negative correlation, but may exhibit different complex

relationships depending on the region and environmental

conditions (Metzger et al., 2008). This presents an important

research direction: how to enhance ES while mitigating or

avoiding an increase in EVI, in order to balance ecological

protection with human needs.
4.3 Effects of driving factors on the spatial
distribution of ES and EVI

In the ZC area, climatic factors play a critical role in shaping the

spatial distribution of ES and EVI. In regions with abundant

precipitation—particularly mountainous areas with dense forest

cover—the combination of high PRE and TMP promotes WY

and SC, thereby enhancing overall ES. In contrast, arid regions

with limited precipitation experience reducedWY, which negatively

affects ES, especially WY and CS. These drier areas also tend to

exhibit higher EVI due to lower ecological resilience. In addition to

climatic influences, LUDI, including agricultural expansion and
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urbanization, significantly impact ES and EVI in the ZC area. The

conversion of natural land into cropland or urban areas has led to

decreased FVC and increased soil erosion, resulting in the

degradation of ES. Furthermore, intensified land-use activities

have contributed to rising EVI by exerting greater pressure on

already fragile ecosystems (Sun et al., 2020).

The interaction of factors has a more complex and significant

effect on ES and EVI. Interactions among multiple factors can

amplify their individual effects. For example, the interaction

between climate and land-use changes in the ZC area has

generally led to negative effects. In areas with low PRE, the

interaction of land-use changes and climate factors has

exacerbated WY reduction. In Quadrant I (High ES, High EVI),

favorable climatic conditions—particularly adequate precipitation

and temperature—combined with high fractional vegetation cover

(FVC), have jointly promoted improvements in water yield (WY),

soil conservation (SC), and carbon sequestration (CS). These areas

are typically mountainous regions with dense forest cover, where

the interaction between precipitation (PRE) and FVC contributes to

enhanced ES stability. Despite high ES, ecological vulnerability
FIGURE 10

Q-value of driving factors on ES and EVI in each quadrant: (a) I; (b) II; (c) III; (d) IV.
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remains elevated due to natural fragility. The influence of land use

intensity (LUDI) is relatively limited in these zones, which are often

located within nature reserves or well-preserved ecological areas. In

Quadrant II (Low ES, High EVI), the interaction between adverse

climatic factors and intensive land-use changes is more

pronounced. Low precipitation and high LUDI—resulting from

over-cultivation, overgrazing, and other anthropogenic
Frontiers in Ecology and Evolution 14
disturbances—have led to severe water shortages and accelerated

soil erosion. These processes significantly reduce ES, particularly

WY and SC, and exacerbate ecological vulnerability. The

compounded effects of these interacting factors make ecological

restoration particularly difficult in these areas. In Quadrant III (Low

ES, Low EVI), arid and semi-arid environmental conditions

dominate. Low PRE, degraded soils, and intensive land use
FIGURE 11

Interaction of driving factors on ES and EVI in each quadrant.
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contribute to reduced ES and, paradoxically, relatively low EVI.

However, the interaction of these factors still produces negative

outcomes: persistent drought stress coupled with inappropriate

land management leads to ongoing ecosystem degradation and

latent ecological risk. In Quadrant IV (High ES, Low EVI), the

interaction between favorable climatic conditions and relatively

sustainable land use plays a positive role. These regions are

characterized by high ES and low ecological vulnerability,

benefiting from increased FVC and optimized land-use structures.

However, in some localized areas, the effects of land-use changes—

such as insufficient control of soil erosion—still present challenges.

While the overall interaction of drivers enhances ES, it also reveals

certain residual vulnerabilities that warrant continued ecological

monitoring and management.

Interactions between driving factors in the ZC area generally

exhibit an enhancement effect. In areas with intense human activity,

such as agricultural land and rapidly urbanizing zones, the

interaction between land-use changes and climate change has

further decreased ES and increased EVI. Specifically, the

combined effect of drought and land-use changes has led to a

significant decline in WY, and the decrease in SC and CS has

intensified the rise in EVI. Conversely, in areas with more moderate

climates and higher FVC, the interaction of factors has positively

influenced ES, enhanced ecosystem stability, and mitigated the

trend of increasing EVI.
5 Conclusion

Based on the assessment of ES and EVI in the ZC area, this

study explores the spatiotemporal changes, correlations, and spatial

distribution patterns of ES and EVI, and further analyzes the effects

of various driving factors. The major findings are listed as follows:

(1) ES increased by 46.3%, while EVI decreased by 12.5%. The most

significant changes occurred between 2000 and 2010, with the most

significant changes occurring between 2000 and 2010. (2) The

spatial distribution of ES and EVI, based on Z-score

normalization, shows clear patterns. Quadrant I (High ES, High

EVI) features areas with strong ecosystem services but high

vulnerability. Quadrant II (Low ES, High EVI) includes regions

with both low ecosystem services and high ecological vulnerability.

Quadrant III (Low ES, Low EVI) represents degraded areas with low

ecosystem services and vulnerability. Quadrant IV (High ES, Low

EVI) includes areas with high ecosystem services and low

vulnerability, benefiting from effective management. (3)

Meteorological and land-use interactions significantly influence

ES and EVI. In areas with favorable meteorological conditions

and high vegetation cover, these interactions enhance ES and

reduce EVI. In contrast, in arid regions with intense human

activity, they exacerbate ecological degradation, decreasing ES and

increasing EVI. These findings offer critical insights for informing

policy decisions related to ecological conservation, land

management, and sustainable development in ecologically

vulnerable regions.
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