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and East Asians via high-
efficiency markers and machine
learning approaches
Qingxin Yang1,2,3, Jing Chen2,3, Shengjie Nie1, Chao Liu4,
Hong Deng1* and Guanglin He2,3*

1College of Forensic Medicine, Kunming Medical University, Kunming, China, 2Department of
Oto-Rhino-Laryngology and Institute of Rare Diseases, West China Hospital of Sichuan University,
Sichuan University, Chengdu, China, 3Center for Archaeological Science, Sichuan University,
Chengdu, China, 4Anti-Drug Technology Center of Guangdong Province, Guangzhou, China
Biogeographical ancestry inference offers valuable clues for forensic cold cases,

but limited information is typically obtained from substructured populations

within continental East Asian and Southeast groups. This study presents an

integrative genomic dataset of 3,461 individuals from East Asia and Southeast

Asia to elucidate the fine-scale population substructure and its role in precision

forensic medicine. Six nested panels were developed with increasing ancestry-

informative marker (AIM) density (ranging from 50 to 2,000 SNPs) to distinguish

fine genetic differences between the six language groups and populations within

the Sino-Tibetan language family. We found that the 2000 AIM panel exhibited

differentiation efficiency in PCA comparable to that of all loci. Additionally, we

constructed a classification machine learning model with an average prediction

accuracy of 84%, highlighting the critical role of geographical information in

improving model accuracy. Furthermore, we validated the accuracy of the deep

learning method Locator in predicting geographical coordinates solely based on

genetic information. This work highlights the power of integrating genetic and

geographic data with artificial intelligence to refine fine-scale biogeographical

ancestry inference, offering more profound insights into population structure in

East As ia and Southeast As ia , wi th s ignificant impl icat ions for

forensic applications.
KEYWORDS
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Introduction

Large-scale population-specific genomic cohorts have

significantly advanced our understanding of genetic diversity,

human history, and the genetic and evolutionary factors

influencing complex health and disease phenotypes. Notable

initiatives, such as the All of Us Research Program, the NHLBI

TOPMed Program, and the UK Biobank, have been pivotal in this

progress (Taliun et al., 2021; Rubinacci et al., 2023; Bick et al., 2024).

Recent high-coverage genomes from geographically diverse

populations in projects such as the expanded 1000 Genomes

Project, Human Genomic Diversity Project (HGDP), and

GenomeAsia 100K have highlighted distinct demographic

histories, patterns of genetic variation, and medically relevant

features among different populations (GenomeAsia, 2019;

Bergström et al., 2020; Byrska-Bishop et al., 2022). However, the

majority of participants in these large-scale cohorts are of European

ancestry, underscoring the need for better representation of non-

European populations in human genomic research (He et al., 2024a;

Luo et al., 2024; Wang et al., 2024a). Genomic resources from

Southeast Asian and East Asian populations have historically been

underrepresented. Recently, projects such as the NyuWa Genome

Resource, the 10K Chinese People Genomic Diversity Project, and

the YanHuang cohort have aimed to address this gap and improve

the equity of genomic studies in Eastern Eurasians (Zhang et al.,

2021; He et al., 2025; Wang et al., 2024b). These population

genomic datasets, combined with anthropological information,

have allowed for a more nuanced reconstruction of fine-scale

population genetics and the evolutionary factors at play, such as

migration, admixture, adaptation, and introgression (Luo et al.,

2024; Sun et al., 2024; He et al., 2025; Wang et al., 2024b). These

advances in human genome science, population genetics, and

molecular anthropology provide, alongside advancements in

sequencing technologies, enhanced applications in forensic

genetics, molecular anthropology, and genome medicine,

particularly in precision forensic medicine (Luo et al., 2024;

Wang et al., 2024a; Wang et al., 2024b).

Compared with distant populations, most populations present a

closer genetic relationship with geographically proximate groups,

resulting in spatial autocorrelation within genetic data (Prugnolle

et al., 2005; Battey et al., 2020). This correlation allows researchers

to predict the geographic and genetic origin of a sample by

comparing it to a reference set with known locations (Guillot

et al., 2016). The overlap of genealogy and geography leaves

genetic signals across the genome that can be leveraged for

practical ancestry inference (Nielsen et al., 2024). The portion of

genetic material inherited from each ancestral group is referred to as

ancestry. Ancestry informative markers (AIMs) are DNA markers

with different allele frequency spectra that can indicate the likely

biogeographic origin of an individual when ancestry is unknown or

undisclosed (Rosenberg et al., 2003; Phillips et al., 2007). In forensic

science, AIMs are widely used to trace the origin of unknown

biological samples found at crime scenes and to identify missing

persons or historical remains (Cai et al., 2024; Mandape et al., 2024).

Forensic biological materials often experience harsh environmental
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conditions, limiting their quantity and quality. Therefore, forensic

experts aim to extract as much information as possible from a single

test, with a key focus on determining the biogeographical origin of

suspects. Recently, several forensic AIMs and commercial panels

have shown strong population differentiation capabilities at the

intercontinental level (Li et al., 2016; Pakstis et al., 2019; He et al.,

2021). However, Southeast Asia and East Asia, with their

exceptional ethnic and linguistic diversity—spanning the Sino-

Tibetan, Altaic, Hmong-Mien, Tai-Kadai, Austronesian, and

Austroasiatic language families—pose significant challenges for

biogeographical ancestry inference (Wang et al., 2023; Duan et al.,

2024; He et al., 2024b; Li et al., 2024; Luo et al., 2024; Sun et al.,

2024; Sun et al., 2024; Wang et al., 2024a; He et al., 2025; Wang

et al., 2024b). Populations from these linguistic families have

distinct demographic histories, exhibit genetic differences, and

have undergone substantial gene flow. Current studies face

obstacles such as small sample sizes, limited population diversity,

and insufficient accuracy in ancestry inference within Southeast and

East Asian populations.

Newmarkers with improved resolution provide an opportunity for

the development of more efficient forensic biogeographical ancestry

panels. Recent algorithmic advances offer strategies to increase the

accuracy and applicability of traditional markers. Machine learning

(ML) and deep learning (DL), both subfields of artificial intelligence,

have shown great promise in recognizing patterns within data and are

being applied across biomedical sciences, including genomics, clinical

medicine, and forensic science (Al-Zaiti et al., 2023; Bianco et al., 2023;

Mantes et al., 2023; Cai et al., 2024; Yang et al., 2024). In forensic

anthropology, ML and DL have demonstrated significant potential in

biogeographical ancestry inference, enabling ancestry classification and

the prediction of geographic origin coordinates (Battey et al., 2020;

Deelder et al., 2022). In this study, we used anthropologically informed,

population-specific genomic resources from Southeast Asian and East

Asian populations—including the Sino-Tibetan, Altaic, Hmong-Mien,

Tai-Kadai, Austronesian, and Austroasiatic language families—from

the Human Origins (HO) dataset, along with our in-house genomic

cohort (He et al., 2025; Wang et al., 2024b). These resources served as

reference data for marker selection andmodel training. The AIMs were

selected via the AIM generator. Traditional PCA and model-based

ADMIXTURE analyses were applied to determine ancestry

composition and genetic relationships, whereas the deep learning

algorithm Locator was used to infer the geographic coordinates of

samples. Additionally, machine learning classification algorithms were

used to predict ancestry.
Results

Datasets and general patterns of
population genetic structure

We present an integrative genomic dataset comprising 3,461

individuals from ethnolinguistically diverse East Asian and Southeast

Asian populations on the basis of our recent Hui cohort and publicly

available genomic resources (Wang et al., 2021; Mallick et al., 2024).
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After applying stringent quality control and excluding individuals with

up to third-degree genetic kinship, we collected a comprehensive

sample of 2,191 Hui individuals from 57 prefecture-level cities across

29 provincial administrative regions in China. The Hui samples were

categorized into Northern Hui (1,366) and Southern Hui (825)

based on geographical location. Reference populations from the
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Human Origins dataset, including the Tai-Kadai (345), Hmong-

Mien (119), Austronesian (120), Austroasiatic (226), Sino-Tibetan

(197), and Altaic (263) populations, were incorporated (Figure 1A;

Supplementary Table S1). After data merging and quality control,

86,028 SNPs were retained for analysis. Principal component analysis

(PCA) revealed that the Hmong-Mien, Tai-Kadai, Austronesian, and
FIGURE 1

Sampling distribution, basic genetic characteristics of the samples, and six AIM panels. (A) The sample distribution map in this study shows circle
sizes representing the sample size, with colors indicating different subpopulations. (B) Principal component analysis of all samples. Icons in different
colors represent the subpopulation to which each sample belongs. (C) The ADMIXTURE results at K=8 indicate the ancestral components of the
populations using all the SNPs. (D-I) Locus density distribution map of the six AIM panels. The green vertical lines indicate the presence of one AIM
at that position, whereas the red lines indicate the presence of two AIMs.
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Austroasiatic populations clustered together, forming a southern

cluster, which was further confirmed via the model-based

ADMIXTURE results (Figures 1B, C). The Southern Hui population

was positioned close to this cluster in genetic coordinates. In contrast,

Altaic-speaking populations, northern Hui populations, and some

Sino-Tibetan populations clustered together, forming a northern

cluster. Ancestry-informative markers (AIMs) were selected via the

AIM generator, which included 3,461 individuals from five subgroups

defined by geographical regions or linguistic affiliations. To achieve

optimal inference and differentiation efficiency with the minimal

number of loci, the needs of forensic practice must be met. Six

nested panels of ancestry-informative SNPs (50, 100, 250, 500, 1,000,

and 2,000 AISNPs) were developed to differentiate the eight

subpopulations described (Supplementary Table S2). These AIMs

were distributed across chromosomes (Figures 1D–I).
Frontiers in Ecology and Evolution 04
Population genetic features and ancestral
origin predictions via different nested
panels of ancestry-informative SNPs

To assess the discriminative power of the selected AIM panels

across eight subpopulations and infer ancestral origins, we applied

traditional population genetic analysis methods, including PCA and

model-based ADMIXTURE analysis, to six nested AIM panels.

The PCA results revealed that as the number of AIMs increased, the

population structure became more distinct, with the eight

major subpopulations forming a north–south cline along PC1

(Figure 2A). This continuous genetic gradient suggests extensive gene

flow among East Asian and Southeast Asian populations. Such

admixture among populations is widely observed in geographically

proximate samples, posing challenges for our analysis. Populations

speaking Austronesian, Austroasiatic, Hmong-Mien, and Tai-Kadai
FIGURE 2

Results of PCA and ADMIXTURE. (A) PCA of six AIM panels. Icons in different colors represent the subpopulation to which each sample belongs.
(B) The ADMIXTURE results at K=8 indicate the ancestral components of the populations using 2000 AIMs.
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languages clustered in southern East Asia, whereas northern Altaic-

speaking populations formed a distinct group. The southern and

northern Hui populations formed two distinct clusters, with partial

overlap in genetic coordinates between the Sino-Tibetan and Hui

populations, indicating close genetic relationships. We evaluated the

ability of PCA to distinguish among 8 subpopulations via the principal

component distance (PCD) between populations. A larger PCD

indicates a greater degree of separation between different populations

in the PCA coordinates, reflecting stronger discriminative power. In the

PCA using all loci, the average PCD between the genetic centroids of

the eight subpopulations was 0.067. The average PCDs between

populations for the six tiers of AISNP panels were as follows: 0.039

(50 AISNPs), 0.043 (100 AISNPs), 0.052 (250 AISNPs), 0.058 (500

AISNPs), 0.063 (1000 AISNPs), and 0.066 (2000 AISNPs). Notably, the

panel with 2000 AISNPs achieved a differentiation efficiency

comparable to that of 86,028 SNPs, which is sufficient to meet the

requirements of practical forensic casework. Furthermore,

ADMIXTURE analysis, which uses the 2,000 AIM panel, revealed

that the lowest cross-validation error rate occurred when K=8

(Figure 2B), suggesting that the possibility of eight population

substructures can be inferred among known genetic backgrounds of

Southeast and East Asians. This model identified unique ancestral

components for the Sino-Tibetan, Hui, Austronesian, Austroasiatic,

Hmong-Mien, and Tai-Kadai populations, whereas the Altaic-speaking

populations presented two distinct ancestral components: one linked to

Northeast Asian ancestry, represented by the Ulchi, and the other to

West Eurasian ancestry, represented by the Uyghur. Differences in

ancestral components were observed between the southern and

northern Hui populations, as well as between the Hui and Sino-

Tibetan populations. However, widespread admixture across samples

leads to shared genetic characteristics, making it challenging to achieve

clear differentiation between populations. These shared genetic features

blur the boundaries between groups, particularly in regions with high

levels of historical and recent gene flow. Consequently, these findings

highlight the limitations of traditional unsupervised models and

dimensionality reduction algorithms, such as PCA and

ADMIXTURE, in capturing fine-scale population structures within

East Asia. The reduced discriminative power of these methods

underscores the need for more advanced analytical approaches or the

incorporation of additional genomic markers to improve resolution

and accuracy in distinguishing closely related populations.
Machine learning classifiers achieve precise
biogeographical ancestry inference

To enhance ancestry inference, we applied two machine learning

classification algorithms, random forest (RF) and eXtreme Gradient

Boosting (XGBoost), both of which have shown strong performance in

multiclass classification tasks. The samples were divided into training

and validation sets at an 8:2 ratio, with random sampling conducted

within each subpopulation on the basis of this proportion.

Subpopulations served as classification outputs, whereas the first 20

principal components from PCA and the results from ADMIXTURE

at K=8 were used as feature vectors for modeling. The optimal
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parameters were identified through a grid search and tenfold cross-

validation. The validation set was then used to evaluate the optimal

model via metrics such as the confusion matrix and accuracy

(Figure 3). In Model_1, we used only genetic information as input.

Overall, the RF model outperformed the XGBoost model, with an

accuracy of 84%. Specifically, in the RF model, the prediction

accuracies for different linguistic and regional groups were as follows:

93.0% for the Northern Hui population, 71.5% for the Southern Hui

population, 83.3% for the Hmong-Mien-speaking population, 87.5%

for the Austronesian-speaking population, 82.2% for the Austroasiatic-

speaking population, 91.3% for the Tai-Kadai-speaking population,

87.3% for the Altaic-speaking population, and 53.8% for the Sino-

Tibetan-speaking population (Figures 3A, B; Supplementary Figures

S3, S4). For the six linguistic subgroups, the prediction accuracy

exceeded 80%, with higher misclassification rates observed between

the Austroasiatic and Tai-Kadai language groups. However, the Sino-

Tibetan-speaking populations and Hui group, characterized by a high

level of admixture, exhibited the lowest classification accuracy among

the 8 subpopulations. The majority of classification errors occurred

between the Sino-Tibetan-speaking populations and the Southern Hui

populations. This may be attributed to the fact that the Hui populations

are historically classified within the Sinitic language group and have

experienced frequent genetic exchange with neighboring populations.

The shared linguistic and cultural background, combined with

extensive gene flow, has likely resulted in overlapping genetic

characteristics between these groups, complicating their

differentiation in genetic analyses. This result aligns with the PCA

findings, where some Hui samples were positioned between the

southern and northern Hui populations, and certain Sino-Tibetan

groups clustered with the Hui, making clear delineation difficult. A

significant improvement in model accuracy was observed as the

number of AIMs increased; however, this improvement plateaued

once the number of AIMs reached 1,000 (Table 1). Our Model_1

has demonstrated sufficient discriminative power among the six major

linguistic families; however, its performance within individual linguistic

families still requires improvement.

Compared with models that use only genetic information, those

that incorporate geographic latitude and longitude as additional

features in Model_2 significantly improved accuracy. In this case, the

XGBoost algorithm outperformed the RF algorithm. After integrating

latitude and longitude, the confusion matrix revealed a clearer

distinction between the southern and northern Hui populations

(Figures 3C, D, Supplementary Figures S5, S6). However, a small

number of southern Hui individuals were misclassified as belonging to

the Sino-Tibetan language family. Model_2 achieved a classification

accuracy of 96%, which is sufficient for practical applications. Although

the prediction accuracy of Model 2 improved significantly after

incorporating sample geographical information, it is possible that

overfitting occurred because multiple samples shared the same

geographical location. Here, we do not focus on evaluating the

overall quality of the model but rather aim to demonstrate that

geographical information, as a feature, can enhance the prediction

accuracy of forensic biogeographical ancestry inference models. These

results underscore the critical role of both genetic and geographic data

in forensic biogeographical ancestry inference, highlighting the
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https://doi.org/10.3389/fevo.2025.1572596
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yang et al. 10.3389/fevo.2025.1572596
significant contributions of artificial intelligence algorithms in

identifying the biogeographical origins and ancestry of newly

inferred samples.
Predicting geographic location from high-
density genetic variation with deep neural
networks

Importantly, in practical cases, researchers typically have access

only to genetic information. Although we recognize the critical role of

geographical information in biogeographical ancestry inference, such

data are often unavailable. To address this limitation, we employed a

deep learning approach to predict geographical coordinates solely on

the basis of genetic information. To explore the potential of
Frontiers in Ecology and Evolution 06
predicting geographic origins from genetic variation, we used high-

density SNP data and machine learning methods to estimate the

geographic origins of randomly sampled individuals. We applied the

deep learning method of Locator, a tool that uses all variant sites as

input data to evaluate the accuracy of predicting unknown sample

locations. A subset of samples had their true geographic locations

masked for validation, whereas the remaining samples with known

coordinates were used as the training set. Locator employs deep

neural networks to predict genotypes without relying on explicit

models of genotype variation across landscapes. To visualize the

results, we randomly selected one individual from the predicted

samples of each subpopulation. The findings revealed that Locator,

which uses 86,028 loci, achieved high accuracy in geolocating

Southeast Asian and East Asian populations, including speakers of

the Altaic (Ulchi), Hmong-Mien (Hmong), Austronesian (Ami),
FIGURE 3

Confusion matrix of the RF and XGBoost models with 2000 AIMs. (A, B) Confusion matrixes of RF and XGBoost for Model_1, which uses only
genetic information as input. (C, D) Confusion matrixes of RF and XGBoost of Model_2, which add geographical coordinates as inputs. Each row of
the matrix represents the actual class, whereas each column represents the predicted class. The diagonal elements indicate the number of correctly
classified samples for each class, whereas the off-diagonal elements represent misclassifications. NH, Northern_Hui; SH, Southern_Hui; HM,
Hmong_Mien; AN, Austronesian; AA, Austroasiatic; TK, Tai_Kadai; ST, Sino-Tibetan. For the complete confusion matrix, see Supplementary Materials,
Supplementary Figures S1-S4.
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Austroasiatic (Kankanaey), Tai-Kadai (Black Tai), and Sino-Tibetan

(Tibetan Lhasa) languages and some Hui individuals (Figure 4). The

mean kernel peak error for these nine samples was 6.02 km on the

basis of the kernel density estimation, and the mean centroid error

was 5.94 km on the basis of the geodesic centroid (Figure 5). As the

number of AIMs increased, the median error between the predicted

geographic coordinates and the true coordinates gradually decreased;

however, outliers always existed. When all the SNPs were used as

inputs, the error for most of the predicted samples was distributed

between 0 and 10 km, demonstrating the high accuracy of our
Frontiers in Ecology and Evolution 07
prediction model (Figure 5). Notably, the prediction accuracy was

greater for island populations, likely because of limited gene flow and

lower genetic admixture. However, the accuracy for the Hui

population was slightly lower despite the large sample size and

precise geographic locations, possibly due to extensive

intermarriage and a high degree of genetic similarity with

surrounding Sino-Tibetan populations. We further evaluated the

effectiveness of AIMs in improving biogeographical inference via

the mean kernel peak error in the Locator. The 50-AIM panel

produced a mean kernel peak error of 10.22 km, with wider error
FIGURE 4

Using all the SNPs as inputs, the geographic coordinates of the nine samples were predicted. The blue circles represent the geographic coordinates of the
training samples, the black dots represent the predicted geographic coordinates from five repeated predictions, and the red circles indicate the true
geographic coordinates of the samples. The contours show the 95%, 50%, and 10% quantiles of a two-dimensional kernel density across windows.
TABLE 1 Accuracies of the six AIM panels in the RF and XGBoost models.

50AIMs 100AIMs 250AIMs 500AIMs 1000AIMs 2000AIMs

RF_1 0.60 0.63 0.74 0.81 0.83 0.84

XGBoost_1 0.59 0.62 0.72 0.80 0.81 0.84

RF_2 0.91 0.92 0.92 0.94 0.95 0.96

XGBoost_2 0.96 0.96 0.94 0.95 0.96 0.96
RF_1 and XGBoost_1 use only the results of PCA and ADMIXTURE as features, whereas RF_2 and XGBoost_2 add the latitude and longitude of the samples as features.
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ranges and some true coordinates falling outside the predicted

contours (Supplementary Figure S5). Increasing the number of

AIMs to 2,000 reduced the prediction error to 7.47 km, with more

concentrated contour lines (Supplementary Figure S6). A comparison

of 50 AIMs, 2,000 AIMs, and all SNPs demonstrated that increasing

the number of loci improved the prediction accuracy in Locator.
Discussion

Human populations display significant genetic differences,

particularly between African and non-African groups (Bergström

et al., 2020). These genetic diversity patterns are closely intertwined

with cultural and linguistic variations shaped by the migration,

expansion, and diversification of human populations (Henn et al.,

2012). Forensic scientists have identified ancestry-informative

markers in the human genome that contribute most to population

differences (Rosenberg et al., 2003). It is now possible to distinguish

populations from different continents via only a few dozen AIMs.

However, this level of differentiation is insufficient for practical

applications in regions such as East Asia and Southeast Asia, where

population diversity is high (Li et al., 2016). To address this, we

utilized a recently reported dataset of 2,191 Hui samples, along with

1,268 samples from public databases, representing Sino-Tibetan,

Altaic, Hmong-Mien, Tai-Kadai, Austronesian, and Austroasiatic

populations—all with high-precision geographic location data.
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In total, 3,461 samples with 86,028 SNPs were analyzed via

artificial intelligence (AI) algorithms to develop a high-resolution

biogeographical ancestry inference system for East Asian populations.

We applied the AIM generator to select six different AISNP panels,

ranging from 50 to 2,000 SNPs, to assess the effectiveness of varying

numbers of AISNPs for biogeographical ancestry inference. The

results indicated that traditional methods such as PCA and

unsupervised algorithms such as ADMIXTURE achieved moderate

discriminative power when the number of AIMs reached 500.

However, even when all available SNPs were used, admixed

samples remained difficult to separate fully. AI techniques,

including machine learning classifiers and deep learning

algorithms, offer promising approaches for improving human

population genomics research. These algorithms enhance forensic

biogeographical ancestry inference accuracy through experience and

data-driven learning (Cai et al., 2024; Huang et al., 2024). We used

genetic information from the PCA and ADMIXTURE results as

input features and then trained the models via the RF and XGBoost

algorithms. As the number of AIMs increased, the prediction

accuracy improved, reaching 84%. The classification accuracy

between language families approached nearly 1 (Supplementary

Figures S3, S4). However, challenges persisted. The Hui population,

which is part of the Sino-Tibetan language family, showed low

differentiation from other groups within the same family.

Additionally, the prediction accuracy for different subpopulations

within the same ethnic group was lower. The incorporation of
FIGURE 5

Box plots and histogram of the kernel peak error and centroid error. The red box represents the kernel peak error, which is a nonparametric
statistical method used to estimate the probability density function of a random variable. The green box represents the centroid error, which refers
to the error between the estimated centroid and the true centroid. The primary purpose of calculating the centroid error was to measure the
accuracy of a model, algorithm, or estimation method in locating the center of the data. We used the Euclidean distance for calculation.
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geographic coordinates as input features significantly improved the

prediction accuracy, surpassing 90%, even with the smallest panel of

50 AIMs. This underscores the critical role of geographic information

in forensic biogeographical ancestry inference.

Previous studies have demonstrated a correlation between genetic

structure and linguistic–cultural classifications in East Asian and

Southeast Asian populations (Sun et al., 2024; Yang et al., 2024). In

this study, we first categorized our samples into six major linguistic

groups and utilized AIMs_generator to identify AISNPs on the basis

of allele frequency differences among these groups. The selected

AISNPs were then applied to biogeographical ancestry inference

both across the six linguistic groups and within the Sino-Tibetan

language family, with a particular focus on the genetic differentiation

between Southern and Northern Hui populations and other Sino-

Tibetan groups. By employing this approach, we aimed to assess

whether a set of AISNPs optimized for distinguishing language

families could also effectively capture finer-scale substructures

within a language family. The results provide insights into the

feasibility of forensic ancestry inference at both inter-language and

intra-language family levels, highlighting the genetic complexity

underlying linguistic classifications in the region. While our

findings demonstrate that AISNPs can differentiate major linguistic

groups, we also acknowledge the presence of genetic overlap within

the Sino-Tibetan family. This suggests that while linguistic

classification can serve as a useful framework for structuring

forensic reference populations, additional genetic factors and

historical admixture should be considered to refine ancestry

inference models. Admixtures are common among modern

populations that are geographically proximate or belong to the

same language family. Similar to the challenges reported in

Brazilian admixed populations (Koksal et al., 2023), standard AIM

panels struggled with accurate population assignment. Additionally,

in the ancestry inference practice conducted by Sammed N.Mandape

et al. on unidentified human remains, admixed populations exhibited

greater errors (Mandape et al., 2024). Our findings indicate that

standard AIM selection strategies may need to be optimized to better

capture intralanguage family genetic substructures. Although the

selected AISNPs achieve good prediction accuracy between

language families, their resolution for distinguishing within a

language family remains insufficient. A more refined selection

strategy is needed to improve differentiation accuracy.

Furthermore, developing new ancestry inference algorithms, such

as the parental individual ancestor (PIA) proposed by Pfaffelhuber

et al. and the Genetic Distance Algorithm (GDA) used by

Cheung et al., as well as integrating various machine learning or

deep learning algorithms, may contribute to the prediction of

admixed populations (Cheung et al., 2018; Pfaffelhuber et al., 2022;

Wang et al., 2025).

A key challenge in forensic genetics is improving the accuracy of

inference when only genetic information is available for suspects or

unidentified remains. To address this issue, we applied the deep

learning-based algorithm Locator, which was trained on both genetic

and geographic data from known samples, to predict the latitude and

longitude of unknown samples. The prediction accuracy was high for

isolated island samples but slightly lower for those genetically similar
Frontiers in Ecology and Evolution 09
to surrounding populations. Nevertheless, the Locator significantly

improved the identification of general geographic ranges. Currently,

Locator uses a simple fully connected architecture, but more

advanced architectures, such as recurrent neural networks, could

further enhance performance. Biogeographical ancestry inference,

particularly when tied to precise geographic locations, plays a crucial

role in practical forensic applications. Although the use of deep

learning in forensic science remains in its early stages, we anticipate

significant advancements in the near future. Another challenge is the

collection of samples from genetically underrepresented populations

in human genome research, which directly impacts marker selection

and model prediction efficiency (Wang et al., 2024a). Additionally,

overcoming microarray-based ascertainment bias and reference bias

in genetic research on non-European populations remains critical

(Wang et al., 2022). The GRCh38 human reference sequence, derived

primarily from European-related ancestry, introduces bias into

modern and ancient genome research (Wang et al., 2022). A single

reference genome cannot capture the full spectrum of human genetic

diversity, so a pangenome-based graph reference offers a more

accurate approach to genotyping across all human genetic

variations (Gao et al., 2023; Liao et al., 2023). Genome sequencing

projects focusing on Eastern Eurasians would benefit from the use

of population-specific pangenomes, particularly second- or

third-generation sequencing data (Gao et al., 2023). These

technological advancements in human genome research will

provide more candidate genomic variations for ancestry-

informative marker screening and translational forensic applications.
Conclusion

We developed and bioinformatically validated a series of nested

high-resolution biogeographical ancestry inference panels for

Southeast Asian and East Asian populations via advanced AI

algorithms and a dataset of over 3,400 samples. The application of

machine learning classifiers, particularly RF and XGBoost,

significantly improved the prediction accuracy as the number of

AIMs increased, with the classification accuracy between language

families approaching. The incorporation of geographic data as input

features further increased the prediction accuracy, highlighting the

critical role of geographic information in forensic biogeographical

ancestry inference. Despite these advancements, challenges persist,

particularly in distinguishing subpopulations within the same ethnic

group, such as the Hui, and in addressing biases introduced by

reference genomes primarily derived from European ancestry. The

implementation of deep learning techniques, such as the Locator

algorithm, showed promising results in predicting geographic

coordinates, although more sophisticated architectures could

further improve performance. Future research should prioritize the

development of population-specific pangenomes to reduce

ascertainment and reference biases, thereby increasing the accuracy

of ancestry inference in non-European populations. Integrating these

technological advancements will be crucial in refining forensic

applications and advancing the precision of human population

genomics research.
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Methods

Samples and quality control

DNA samples from 2,309 self-reported Hui individuals from 29

provincial administrative regions of China were analyzed in this

study. The individuals were sourced from 57 different municipal

districts, which served as the basis for the initial grouping. DNA was

collected from buccal swab samples. The study adhered to the

principles outlined in the Declaration of Helsinki and was

approved by the Medical Ethics Committees of West China

Hospital of Sichuan University (2023-306). Informed consent was

obtained from all participants for the use of their genetic variation

data to investigate the genetic structure and demographic history of

Hui populations and to examine patterns of genetic variation within

and among populations. All individuals were genotyped via the

Affymetrix Human Origins SNP array, which targets 648,971 SNPs.

Genetic relatedness among Hui individuals was inferred via KING

version 2.3.0 (Manichaikul et al., 2010). Samples with third-degree

relatedness, including 118 individuals, were excluded from further

analysis. The remaining data for 2,191 Hui individuals were merged

with the Human Origins dataset via EIGENSOFT version 3.0 (Price

et al., 2006). Quality control filtering was performed via PLINK 1.9

with parameters set to –mind 0.1, –geno 0.1, –hwe 0.001, and –maf

0.01. After merging and quality control, 86,028 SNPs were retained.

Populations speaking the Tai-Kadai (345), Hmong-Mien (119),

Austronesian (120), Austroasiatic (226), Sino-Tibetan (197), and

Altaic (263) languages from the Allen Ancient DNA Resource

datasets (https://reich.hms.harvard.edu/datasets) were included in

the analysis (Mallick et al., 2024). The Hui samples were

categorized into Northern Hui (1,366) and Southern Hui (825)

based on geographical location.
Screening ancestral informative genetic
markers

The AIMs_generator (https://github.com/boxiangliu/ANTseq/

tree/master/AIMs_generator) was used to screen the top 50, 100,

250, 500, 1000, and 2000 AIMs, and Rosenberg’s In Statistic was

used to identify ancestry-informative genetic markers (Rosenberg

et al., 2003). AIMs were selected on the basis of the following

criteria: (1) exclusion of duplicate SNPs and SNPs located on sex

chromosomes; (2) linkage disequilibrium (LD) threshold set at

“ldthresh=0.1”, ensuring the independence of selected SNPs; (3)

ensuring a minimum distance of 0.9 Mb between SNPs on the same

chromosome to reduce linkage disequilibrium effects; (3)

population stratification control AIMs were selected on the basis

of allele frequency files (pop.frq) of different ancestral populations

(Tai-Kadai, Hmong-Mien, Austronesian, Austroasiatic,

Sino-Tibetan, Altaic); (4) in combination with Rosenberg’s In

statistic (“strategy=In”) to maximize genetic differentiation among

ancestral groups; and (5) for ancestral populations comprising

multiple subpopulations, a homogeneity test (“hetthresh=0.01”)

was conducted to exclude SNPs that exhibited significant
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heterogeneity among subpopulations, thereby enhancing their

applicability in forensic ancestry inference. Allele frequencies and

linkage disequilibrium between SNPs were computed via

PLINK v1.9.
Principal component analysis and
ADMIXTURE

The effectiveness of these AIMs for population stratification

analyses across different regional populations was assessed via

principal component analysis (PCA) and ADMIXTURE analysis

(Alexander et al., 2009). The ADMIXTURE analysis was run with a

default 10-fold cross-validation (CV = 10), setting the number of K

from 29 and conducting 100 bootstraps with various random seeds.

The results were visualized by creating a scatter plot via R 4.3.2. We

evaluated the ability of PCA to distinguish among 8 subpopulations

via a metric: the principal component distance between populations.

For the principal component distance between populations, we first

calculate the centroid of each population in the PCA space on the

basis of 20 principal components and then compute the Euclidean

distances between population centroids to generate an 8×8 distance

matrix. To facilitate comparison, we calculated the average value of

this matrix. If the principal component distance calculated via the

AISNP panel exceeded that calculated via all loci, the panel was

deemed to have satisfactory differentiation ability.
Modeling via random forest and eXtreme
gradient boosting classifiers

The random forest and XGBoost models were constructed via

scikit-learn and XGBoost in Python, respectively. (1) Model_1 was

trained using only genetic information, specifically the results from

PCA and ADMIXTURE, as features. (2) Model_2 incorporates

sample latitude and longitude information as additional features.

Both methods use population categories as classifier outputs. Six

nested panels of ancestry-informative SNPs (50, 100, 250, 500, 1000,

and 2000 AISNPs) were applied for modeling. All the samples were

split into a training set and a validation set at an 8:2 ratio. The

model was built via the training set, and the optimal parameters

were determined via a grid search and tenfold cross-validation. The

RF parameters of grid search are as follows: ‘n_estimators’ [200,

500, 700, 1000]:; ‘max_features’: [2, 5, 10, 20]; ‘max_depth’: [10, 20,

50]; and ‘min_samples_split’: [2, 5]. The XGBoost parameters of

grid search are as follows: ‘learning_rate’: [0.01,0,1], ‘max_depth’:

[10,20,50], ‘n_estimators’: [200, 500, 700, 1000]. The validation set

was then used to evaluate the optimal model, with metrics including

the confusion matrix and accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN

Here, true positive (TP): A positive example of being correctly

predicted. That is, the true value of the data was a positive example, and

the predicted value was also a positive example. True Negative (TN):
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Counterexamples in which the true data value is a counter-example,

and the predicted value is also a counter-example. False positive (FP):

Positive example of misprediction. That is, the true value of the data

was a negative example, but it was incorrectly predicted to be a positive

example. False Negative (FN): A counter-example of being incorrectly

predicted, in which the true value of the data was a positive example

but incorrectly predicted to be a negative example.
Predicting geographic location from
genetic variation with deep neural
networks

We had access to the location information for all samples, and

694 individuals (20% of all samples) were randomly sampled from

each subpopulation, masking their geographic locations to form the

validation set, while the remaining 2,765 samples were used as the

training set. We used a deep neural network-based method, Locator

(Battey et al., 2020), to train the model via the training set and

subsequently predicted the latitude and longitude of the samples in

the validation set. The model directly uses unphased genotype data

and sample latitude and longitude information as inputs. The

network is trained to estimate a nonlinear function that maps

genotypes to locations via gradient-based optimization. The models

begin with randomly initialized parameters and are fitted to the data

by iteratively adjusting the network’s weights and biases through

repeated passes over the training set. Predictions from various regions

of the genome can be visualized as a cloud of points, with the spatial

distribution of these points providing an approximate indication of

the uncertainty associated with individual-level predictions. We

quantify the uncertainty in the predicted locations by estimating a

two-dimensional kernel density surface from the set of predicted

locations and offer plotting scripts to visualize the 95%, 50%, and 10%

quantiles within geographic space. We use the Adam optimizer with

Euclidean distance as a loss function:

loss =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xpredicted − xtrue)

2 + (ypredicted − ytrue)
2

q
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