
TYPE Review 
PUBLISHED 16 July 2025 
DOI 10.3389/fevo.2025.1587171 

OPEN ACCESS 

EDITED BY 

Christian Henri Nozais,
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This review investigates the current state of knowledge on trophic control and 
cascades in marine ecosystems. It critically examines claims that top-down 
control and trophic cascades are rarer in saltwater ecosystems than in their 
freshwater counterparts, that these phenomena are scarcer in the marine water 
column than in intertidal or benthic habitats, and that various abiotic and/or 
biotic factors explain the incidence of top-down control and trophic cascades in 
neritic and pelagic ecosystems. This review suggests that top-down control is 
more widespread in neritic and pelagic ecosystems than species-level trophic 
cascades, which in turn are more frequent than community-level cascades. The 
latter occur more often in marine benthic ecosystems than in their lacustrine and 
neritic counterparts and are least frequently found in pelagic ecosystems. These 
distinctions among ecosystem types likely derive from differences in the spatial 
dimensionality and scale of physical processes through their effects on nutrient 
availability and community composition. The incidence of community-level 
trophic cascades among neritic and pelagic ecosystems is inversely related to 
biodiversity and omnivory, which are in turn associated with temperature. 
Regional variability in benthic and neritic trophodynamics also results from 
differences in producer and consumer traits and food web structure. Fear of 
predators, rather than predation mortality itself, drives many marine trophic 
cascades and massive vertical migrations. Paradoxical and synergistic trophic 
interactions, as well as positive feedback loops derived from biological nutrient 
cycling, complicate the conventional dichotomy between top-down and 
bottom-up control. Finally, this review presents a set of ecological factors 
whose  alternative  states  favor  top-down  or  bottom-up  control  in  
marine ecosystems. 
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Fron
At sea man sees daily how nature makes his conjectures vanish 
Alejandro Malaspina (Kendrick, 1999, p. 146) 
Introduction 

The primary subjects of this paper are the importance and 
prevalence of trophic cascades and top-down trophic control in 
marine food webs, along with the nature and strength of the 
ecological and oceanographic mechanisms involved. These issues 
have stimulated perhaps the most contentious theoretical debate in 
marine ecology (Frank et al., 2015; Estes, 2018). Furthermore, they 
have strong and extensive implications for marine fisheries 
management and conservation, influencing prediction of fish 
production (Ware and Thomson, 2005; Chassot et al., 2010; 
Friedland et al., 2012; Ye and Carocci, 2018; Gregr et al., 2020; 
Marshak and Link, 2021) as well as design of protected areas and 
recovery plans for endangered species and depleted stocks 
(Salomon et al., 2008; Eddy et al., 2014; Gregr et al., 2020). 
Trophic control of marine ecosystem structure and dynamics is 
likewise relevant to broader environmental issues, including 
biodiversity conservation (Edwards and Konar, 2020; Eger et al., 
2024), ecotourism (Gregr et al., 2020), and carbon sequestration 
(Pershing et al., 2010; Wilmers et al., 2012; Schmoker et al., 2013; 
Atwood et al., 2015, 2018; Gregr et al., 2020; Mariani et al., 2020). 
Long-term cascading impacts of marine predator-prey interactions 
also include maintenance of biodiversity and prevention of 
extinction (Donohue et al., 2017), as well as strong selective 
pressures shaping the morphology and behavior of organisms 
across multiple trophic levels (Verity and Smetacek, 1996). 

This review examines the current state of knowledge on marine 
trophodynamics based on several decades of observational, 
experimental, and modeling studies. It harnesses the findings of 
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this research to evaluate the empirical basis of claims that trophic 
cascades and top-down control are less prevalent in saltwater 
ecosystems than in their freshwater counterparts and that they 
occur less frequently in neritic and pelagic (i.e. deep, open ocean) 
environments than in benthic habitats. This review also assesses the 
support for arguments that pelagic ecosystems share abiotic and/or 
biotic traits that inhibit trophic cascades. 
The development of trophic ecology 

The debate on control of ecosystem structure and dynamics by 
top-down factors (i.e. predation and grazing) versus bottom-up 
drivers (i.e. food availability and ultimately primary productivity) 
originated with the study of energy flux from producers to top 
predators in lacustrine ecosystems (Lindeman, 1942). This bottom-

up trophic paradigm (Figure 1a) dominated ecosystem ecology until 
the “green world” hypothesis attributed the prevalence of terrestrial 
vegetation to top-down control of herbivores by predators 
(Hairston et al., 1960). This publication was followed by two 
landmark studies from the Northeast Pacific demonstrating top-
down control of ecosystem structure in the rocky intertidal (Paine, 
1966) and a trophic cascade in kelp forests (Estes and Palmisano, 
1974), although the term “trophic cascade” would only be coined six 
years later (Paine, 1980). Soon after, an investigation of Arctic 
tundra ecosystems revealed a positive relationship between top-
down control and primary productivity (Oksanen et al., 1981). A 
further analysis demonstrated that cascades across four trophic 
levels (Figure 1b) could explain differences in plant communities 
among lakes with comparable nutrient availabilities (Carpenter 
et al., 1985). Conversely, later studies revealed that both top-
down and bottom-up control weakened with each successive 
trophic level, and hence high nutrient supply would overpower 
the cascading impacts of predators on producers in both lacustrine 
(McQueen et al., 1986) and pelagic ecosystems (Micheli, 1999). 
FIGURE 1 

Trophic control scenarios in an idealized food chain with four trophic levels. (a) Biomass under community-level bottom-up control (this diagram 
also represents abundance or production under bottom-up or top-down control). (b) Biomass under community-level top-down control (trophic 
cascade). (c) Biomass under a combination of attenuating community-level top-down and bottom-up control. (d) Biomass under species-level top-
down control (trophic cascade) and bottom-up control (gray arrows represent the direction of community-level trophic control). Solid lines indicate 
direct impacts, while dotted lines show indirect impacts. Arrow thickness and font size are approximately proportional to the strength of the impact 
and the biomass of the group in the ecosystem, respectively. Numbers on the left indicate trophic levels. 
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This finding established the current understanding that the 
biomasses of all trophic levels are  regulated by  a  pattern of

alternating bottom-up and top-down control (Figure 1c) 
modulated by nutrient cycling and spatiotemporal variability 
(Leroux and Loreau, 2015). 

Community-level trophic cascades (Figure 1b), in which 
predators ultimately regulate the distribution of biomass across 
multiple trophic levels, can be distinguished from species-level 
cascades (Figure 1d), in which predators govern the biomasses of 
individual species but not entire trophic levels (Polis, 1999). However, 
even in a marine ecosystem regulated by a community-level cascade, 
distributions of abundance and production across trophic levels 
would likely follow the classic pyramid pattern (Figure 1a) due  to
trophic level increasing with individual mass (Potapov et al., 2019), 
and maximum growth rate decreasing with individual mass (Lynch 
et al., 2022). Trophic cascades can also be fruitfully classified (Shurin 
et al., 2002) as attenuating (wherein top-down interaction strength 
increases with trophic level), amplifying (in which this interaction 
strength decreases with trophic level), or neither (wherein top-down 
interaction strength is independent of trophic level). 
 

 

Estuarine, intertidal, and benthic 
trophodynamics 

Trophic cascades and top-down control in general, and in 
marine ecosystems in particular, were once considered to be

restricted to rare, anomalous cases by food web complexity, 
omnivory, biodiversity, defensive adaptations, and spatial 
heterogeneity (Strong, 1992; Polis and Strong, 1996). However, 
meta-analyses (Pinnegar et al., 2000; Shurin et al., 2002; Borer et al., 
2005) have demonstrated that, contrary to this dismissal, trophic 
cascades and top-down control (at both species and community 
levels) occur frequently in a wide range of marine benthic 
ecosystems. One of these analyses concluded that while cascades 
were typically attenuating in lacustrine benthic ecosystems, they 
were usually neither amplifying nor attenuating in their marine 
counterparts (Shurin et al., 2002). Furthermore, the latest of these 
meta-analyses found that marine benthic habitats hosted the 
strongest trophic cascades of all terrestrial, freshwater, and 
marine ecosystems studied (Borer et al., 2005). The fairly frequent 
occurrence of cascades and top-down control in salt marshes 
(Silliman and Bertness, 2002; Altieri et al., 2012), estuaries and 
seagrass beds (Myers et al., 2007; Lewis and Anderson, 2012; Baden 
et al., 2012; Hughes et al., 2019), rocky intertidal zones (Paine, 1966; 
Wootton, 1995; Schultz et al., 2016), shallow tropical banks (Parrish 
and Boland, 2004), coral reefs (Dulvy et al., 2004; Kroon et al., 2021; 
Mumby et al., 2012; McClanahan and Muthiga, 2016; Wolfe et al., 
2025), kelp forests (Estes and Palmisano, 1974; Vicknair and Estes, 
2012; Eisaguirre et al., 2020; Kumagai et al., 2024), coralline algal 
reefs (Rasher et al., 2020), soft-bottom coastal habitats (Kvitek et al., 
1992; Kelaher et al., 2015), and continental shelves (Worm and 
Myers, 2003) is now well established. 

However, trophic cascades and top-down control are not the 
sole organizing principles of marine benthic trophodynamics. 
Frontiers in Ecology and Evolution 03 
While two studies (Silliman and Bertness, 2002; Altieri et al., 
2012) found community-level trophic cascades regulating both 
herbivore and producer biomass in salt marshes of the eastern 
United States, a third analysis (Griffin et al., 2011) revealed that at 
another salt marsh site in this region, predatory crabs actually 
increased grazing by herbivorous snails by shifting their vertical 
distribution through non-consumptive (i.e. fear-mediated) impacts. 
In addition, studies of the Ythan estuary in Scotland (Hall and 
Raffaelli, 1991; Raffaelli and Hall, 1992) failed to demonstrate 
trophic cascades or top-down control at the ecosystem level, 
though a later analysis (Emmerson and Raffaelli, 2004) did find 
strong trophic interactions between species. Several studies on small 
to intermediate spatial scales have demonstrated top-down control 
(and, in the latter two cases, community-level trophic cascades) in 
rocky intertidal zones of the northeast Pacific Ocean (Paine, 1966; 
Wootton, 1995; Schultz et al., 2016). However, a global meta

analysis of studies on intermediate to large scales (Menge, 2000) 
and a novel modeling analysis (Robles and Desharnais, 2002) found 
that bottom-up as well as physical oceanographic influences interact 
with top-down impacts to shape rocky intertidal community 
structure and composition. Similarly, a study of seagrass bed 
condition in the Swedish Skagerrak found that a community-level 
trophic cascade caused by predator overfishing combined with 
eutrophication to yield an outbreak of epiphytic algae, reducing 
seagrass growth (Baden et al., 2012). 

Finally, the role of the same species or functional group may 
differ among specific examples of an ecosystem type. While 
mesopredators hindered seagrass production in the Swedish 
Skagerrak by consuming grazers that would otherwise have 
limited epiphytic algal growth (Baden et al., 2012), mesopredators 
in a southern California estuary benefited seagrass beds by targeting 
epifauna that consumed or fouled seagrass blades (Lewis and 
Anderson, 2012). While predation on crabs by sea otters 
(Enhydra lutris) in a central California estuary supported seagrass 
through a community-level trophic cascade releasing grazers 
controlling epiphyte growth from crab predation pressure 
(Hughes et al., 2019), no significant impact on grazers of crab 
predation by sea otters was observed in southeast Alaska (Raymond 
et al., 2021). This unexpected result may stem from lower sea otter 
density and nutrient availability,  as well as greater  trophic
complexity and spatial heterogeneity, in southeast Alaska 
compared to central California (Raymond et al., 2021). 
Furthermore, while sea otter presence is associated with reduced 
cancrid crab abundance and size in California estuaries, there is no 
evidence that sea otters negatively affect Dungeness crab (Cancer 
magister) landings in California (Grimes et al., 2020). Crab landings 
per trip increased across California over the past four decades 
regardless of sea otter presence (Boustany et al., 2021). In fact, the 
rate of increase in Dungeness crab landings per trip was positively 
associated with sea otter abundance near fishing ports, suggesting 
that otters may have indirect positive impacts on crab abundance at 
large spatial scales. Sea otters also exercise top-down control over 
the invasive green crab (Carcinus maenas) in central California 
(Jeppesen et al., 2025), potentially benefiting native crab species. 
Furthermore, otters serve as ecosystem engineers in eelgrass beds in 
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central and southern British Columbia by promoting eelgrass sexual 
reproduction, and thus genetic diversity, through disturbance 
caused by digging for infaunal prey (Foster et al., 2021). 

Trophic cascades are apparently less prevalent in coral reefs 
than in temperate benthic ecosystems, likely due to high 
biodiversity and food web complexity (Sandin et al., 2010; Roff 
et al., 2016a, Desbiens et al., 2021). Community-level cascades have 
been found in coral reefs off northwestern Australia (Ruppert et al., 
2013) and the western Indian Ocean (McClanahan, 2000; 
McClanahan and Muthiga, 2016; Figure 2a). However, other 
studies in the Seychelles (Jennings et al., 1995), Fiji (Jennings and 
Polunin, 1997), the Caribbean Sea (Mumby et al., 2006), and the 
Great Barrier Reef (Rizzari et al., 2014a; Casey et al., 2017; Desbiens 
et al., 2021) failed to detect such trophic cascades. Furthermore, the 
northwestern Australian case, the only one involving sharks 
(Ruppert et al., 2013), is disputed (Roff et al., 2016a; Ruppert 
et al., 2016; Roff et al., 2016b). Several studies suggest that most 
reef sharks are in fact not apex predators but rather members of 
upper-level mesopredator guilds with high functional redundancy 
(Mourier et al., 2013; Heupel et al., 2014; Frisch et al., 2016; Roff 
et al., 2016a). This could explain the otherwise surprising paucity of 
community-level cascades involving these sharks. 

It has been suggested that predatory fish exercise top-down 
control over crown-of-thorns sea stars (Acanthaster spp.), voracious 
corallivores capable of denuding reefs, by preying on juveniles in a 
community-level cascade sensitive to predator overfishing 
(Figure 2b). Such cascades have been recorded in Fiji (Dulvy 
et al., 2004) and on the Great Barrier Reef (Kroon et al., 2021). 
However, this trophic cascade may be mediated by mesopredatory 
fish switching from pelagic to benthic prey (including juvenile 
Acanthaster spp.) in the presence of apex predators (Meekan 
et al., 2025). A similar cascade, also capable of protecting coral 
reefs and resulting from predation by crabs on juvenile Acanthaster 
spp. (Figure 2c), has been found on the Great Barrier Reef (Wolfe 
et al., 2025). 

Although unfished reefs in the Northwestern Hawaiian Islands 
(Friedlander and DeMartini, 2002) and Line Islands (Sandin et al., 
2008) showed higher predator biomass and lower algal cover than 
Frontiers in Ecology and Evolution 04
fished reefs, herbivorous fish biomass was similar across fished and 
unfished sites in both island chains. However, herbivorous fish guild 
composition differed between fished and unfished atolls in the Line 
Islands (DeMartini et al., 2008). This suggests that cascading 
impacts of top predators on algae (via mesopredator biomass) on 
unfished reefs may affect the biodiversity or behavior of herbivores 
rather than their biomass (Sandin et al., 2008). Furthermore, high 
predator populations on unfished reefs are likely subsidized by 
exogenous pelagic production (McCauley et al., 2012a; Frisch et al., 
2016; Mourier et al., 2016; Skinner et al., 2021). This is also 
apparently the case for two remote islets in the northern 
Galápagos Islands (Salinas-de-León et al., 2016), kelp forests in 
the neritic archipelago of Haida Gwaii in British Columbia, Canada 
(Trebilco et al., 2016), highly protected areas in the Mediterranean 
Sea (Guidetti et al., 2014), and other freshwater, marine, and 
terrestrial ecosystems where inverted trophic pyramids were 
reported (McCauley et al., 2017). 
Trophic cascades in kelp forest 
ecosystems 

The kelp forest is perhaps the ecosystem most readily associated 
with top-down control and trophic cascades. Similarly, the 
maintenance of Northeast Pacific kelp forests through intense 
predation on herbivorous sea urchins (Strongylocentrotus spp.) by 
sea otters (Estes and Palmisano, 1974; Figure 3a) is likely the most 
familiar trophic cascade, and the sea otter probably the most 
recognizable keystone species (Schiel and Foster, 2015). The otter 
- urchin - kelp community-level cascade was observed upon sea 
otter reintroduction or recovery in Alaska (Estes and Palmisano, 
1974; Estes and Duggins, 1995), British Columbia (Breen et al., 
1982; Burt et al., 2018; Langendorf et al., 2025), and California 
(Palumbi and Sotka, 2011; Nicholson et al., 2024; Langendorf et al., 
2025) in the 20th century, following depletion and extirpation 
throughout the North Pacific Ocean by the maritime fur trade of 
the 18th and 19th centuries (Ogden, 1941; Jones, 2014; Gibson, 
2024). This cascade was also widespread prior to European contact, 
FIGURE 2 

Community-level trophic cascades detected in coral reef ecosystems. (a) western Indian Ocean (McClanahan, 2000; McClanahan and Muthiga, 
2016). (b) Fiji (Dulvy et al., 2004) and the Great Barrier Reef (Kroon et al., 2021). (c) Great Barrier Reef (Wolfe et al., 2025). CoTSS refers to crown-of
thorns sea star (Acanthaster spp.). Solid lines indicate direct impacts, while dotted lines show indirect impacts. Arrow thickness and font size are 
approximately proportional to the strength of the impact and the biomass of the group in the ecosystem, respectively. 
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despite localized sea otter depletion in the Aleutian Islands of 
Alaska (Simenstad et al., 1978), Haida Gwaii (Szpak et al., 2012, 
2013), and the Channel Islands of California (Erlandson et al., 
2005). However, there is surprisingly little evidence of this trophic 
cascade from the Northwest Pacific, despite the full recovery of 
Russian sea otter populations (Kornev and Korneva, 2006). In 
British Columbia (Burt et al., 2018; Langendorf et al., 2025) and 
central California (Selgrath et al., 2024), complementary predation 
on large sea urchins by sea otters and on smaller individuals by the 
sunflower sea star (Pycnopodia helianthoides) exerted cascading 
positive effects on kelp (Figure 3b). 

The reduction of sea urchin grazing by sea otters also yielded 
many indirect impacts on kelp forest ecosystems (Estes, 2018). 
Firstly, high concentrations of suspended detritus particles derived 
from dead kelp (Ramshaw et al., 2017) stimulated the growth of 
filter feeders such as mussels and barnacles (Duggins et al., 1989) as  
well as heterotrophic bacteria (Clasen and Shurin, 2015). Filter 
feeder biomass was also supported, in an independent community-

level trophic cascade, by sea otter consumption of carnivorous sea 
stars and the resulting release of mussels and barnacles from 
predation pressure (Vicknair and Estes, 2012). Secondly, high 
kelp cover augmented the biomass of inshore fish such as 
greenlings (Hexagrammidae) and rockfish (Sebastidae) through 
Frontiers in Ecology and Evolution 05 
increased supply of kelp detritus (and thus small detritivores as 
prey) and/or improved nursery habitat in kelp forests (Reisewitz 
et al., 2006; Markel and Shurin, 2015). Kelp forests are globally 
important as fish nurseries (Pérez-Matus et al., 2025). The diets of 
Aleutian glaucous-winged gulls (Larus glaucescens) and bald eagles 
(Haliaeetus leucocephalus) shifted from fish to invertebrates (Irons 
et al., 1986) and seabirds (Anthony et al., 2008), respectively, likely 
due to reduced inshore fish biomass resulting from a decline in sea 
otters and the consequent loss of kelp forests. Thirdly, in an 
example of an apparently global pattern (Eger et al., 2024), 
Aleutian kelp forests supported by sea otters demonstrated 
significantly higher species richness and spatial heterogeneity than 
urchin barrens (Edwards and Konar, 2020). Finally, kelp forest 
recovery due to otter predation on urchins has increased carbon 
fixation and reduced ocean acidification in Alaska and British 
Columbia (Wilmers et al., 2012). A recent ecosystem modeling 
analysis concluded that the total economic benefits of sea otter 
recovery, including increases in ecotourism, finfish yields, and 
sequestration of carbon by kelp, outweigh the costs of drastically 
reduced invertebrate yields (Gregr et al., 2020). 

While sea otters were originally abundant in southern 
California, they are now absent there except around San Nicolas 
Island. Here, the classic sea otter–sea urchin–kelp cascade was 
FIGURE 3 

Community-level trophic cascades found in kelp forest ecosystems. (a) Aleutian Islands i) before sea otter depletion in the 19th century and ii) 
between sea otter recovery and collapse in the late 20th century. (b) south-central and southeast Alaska, central British Columbia, western 
Vancouver Island, and central California since sea otter population recovery; historically also northern British Columbia, Washington, Oregon, and 
northern California. SS refers to sunflower star (Pycnopodia helianthoides), functionally extinct since 2013. (c) San Nicolas Island, southern California; 
historically southern California (USA) and Baja California (Mexico). CS refers to California sheephead (Semicossyphus pulcher) and CSL to California 
spiny lobster (Panulirus interruptus). (d) southern California (USA) and Baja California (Mexico). (e) northwest Atlantic Ocean (Gulf of Maine to 
Labrador) before groundfish stock collapses in the late 20th century. (f) New Zealand. “Snapper” refers to Australasian snapper (Chrysophrys auratus) 
and “Spiny lobster” to southern rock lobster (Jasus edwardsii). Underlined names refer to species functionally extinct in part of their historical range. 
Italicized names refer to species fished outside marine protected areas. Solid lines indicate direct impacts, while dotted lines show indirect impacts. 
Arrow thickness and font size are approximately proportional to the strength of the impact and the biomass of the group in the ecosystem, 
respectively. 
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dampened by additional interactions in the kelp forest food web, 
particularly competition among herbivores and seaweeds, although 
interaction strengths in the cascade itself were not weakened 
(Langendorf et al., 2025; Figure 3c). However, numerous kelp 
forests remain elsewhere in southern California, raising the 
question of the mechanisms responsible (Schiel and Foster, 2015). 
Unlike waters to the north, southern California hosts two additional 
urchin predators (Figure 3d), the California spiny lobster (Panulirus 
interruptus) and California sheephead (Semicossyphus pulcher). 
Early findings of community-level trophic cascades driven by 
spiny lobsters (Tegner and Dayton, 1981; Tegner and Levin, 
1983), sheephead (Cowen, 1983), and both species (Lafferty, 2004; 
Behrens and Lafferty, 2004; Halpern et al., 2006) have been disputed 
on methodological grounds (Schiel and Foster, 2015), while several 
later analyses (Foster and Schiel, 2010; Guenther et al., 2012; 
Malakhoff and Miller, 2021) failed to detect such cascades. 
Nevertheless, more convincing cases for the importance of 
predation on sea urchins by sheephead (Hamilton and Caselle, 
2015) and sheephead and lobsters (Eisaguirre et al., 2020; Kumagai 
et al., 2024) in preserving southern California kelp forests have since 
been made. Furthermore, large fish such as sheephead support these 
forests through nutrient recycling (Shrestha et al., 2023, 2024; Peters 
et al., 2025). Another trophic cascade links inshore planktivorous 
fish to kelp forest maintenance in southern California through 
predation on mesograzers, which would otherwise reduce kelp 
condition and biomass (Davenport and Anderson, 2007). 
Nevertheless, kelp cover in this region declined between 1910– 
1912 and 2014–2016, likely due to the longstanding absence of sea 
otters (Nicholson et al., 2024). In central California, complementary 
predation on sea urchins by sea otters and sunflower stars prevented 
kelp cover from decreasing to extremely low levels from 1897–1899 
until the sea star epizootic of 2013 (Selgrath et al., 2024), while sea 
otter recovery allowed it to increase between 1910–1912 and 2014– 
2016 (Nicholson et al., 2024). Sea otter control of sea urchins in the 
latter period was supported by the release of California mussels 
(Mytilus californianus), a sea otter prey item, from top-down 
control by the ochre sea star (Pisaster ochraceus), the keystone 
species of the Northeast Pacific rocky intertidal, devastated by the 
same epizootic as the sunflower star (Smith et al., 2025). 
Considering the decline in southern California kelp cover during 
this period (Nicholson et al., 2024), the low proportion (3.6%) of the 
total kelp forest area protected by marine reserves in southern 
California is a cause for concern (Arafeh-Dalmau et al., 2021), 
particularly compared to the increase in kelp cover (Nicholson et al., 
2024) and higher (12.8%) proportion of kelp forest area protected in 
central California (Arafeh-Dalmau et al., 2021). Given projected 
increases in marine heatwave exposure (Cheung and Frölicher, 
2020), stronger protection would likely be needed to safeguard 
kelp forests in southern California (Arafeh-Dalmau et al., 2025). 

In northern California, where sea otters have long been absent, 
the sunflower star exercised top-down control over sea urchins, thus 
maintaining healthy kelp forests (Byrnes et al., 2006), until its 
population collapsed in the 2013 epizootic (Harvell et al., 2019; 
McPherson et al., 2021). However, unlike in southern and central 
California, where sunflower star abundance likewise plummeted 
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(Harvell et al., 2019), in northern California no effective sea urchin 
predators remained due to the longstanding absence of sea otters 
and lower functional complementarity and redundancy in the 
predator guild. Thus, due to overgrazing and the 2014–16 
Northeast Pacific marine heatwave, kelp forests were replaced by 
urchin barrens, devastating red abalone (Haliotis rufescens) 
recruitment and the associated fishery (Rogers-Bennett et al., 
2024). Considering forecast increases in the future impacts of 
marine heatwaves in the Northeast Pacific (Cheung and Frölicher, 
2020) sea otter and/or sunflower star population recovery would 
likely be required to restore kelp forests in northern California. 

In Oregon, where sea otters have likewise long been absent and 
may never have been abundant (Ogden, 1941; p. 6), reduced kelp 
condition, likely due to the marine heatwave and epizootic, was 
associated with lower zooplankton abundance and gray whale 
(Eschrichtius robustus) feeding time, suggesting indirect benefits 
of kelp to gray whales through habitat provision to their 
zooplankton prey (Hildebrand et al., 2024). Off western 
Vancouver Island (Langendorf et al., 2025) and central British 
Columbia (Burt et al., 2018), sea otters and sunflower stars 
functioned in a complementary fashion, controlling large and 
medium-sized urchins, respectively, with an increase in the latter 
and a slight reduction in kelp density in central British Columbia 
after the epizootic and marine heatwave (Burt et al., 2018). These 
studies illuminate the importance of coastal biogeography and 
functional complementarity and redundancy among sea urchin 
predators to trophic cascade and kelp forest persistence across the 
Northeast Pacific. They also underscore the unique benefits of sea 
otters as keystone predators in these ecosystems. These exceptional 
benefits almost certainly result from the extremely high prey 
consumption rates of endothermic sea otters (Borer et al., 2005), 
which lack blubber and rely solely on their extremely dense fur for 
insulation in cold seas. 

In the Northwest Atlantic, a community-level trophic cascade 
linking large demersal fish, mainly wolffish (Anarhichas spp.) and 
Atlantic cod (Gadus morhua), to kelp forests through predation on 
sea urchins (Figure 3e) operated prior to overfishing of these fish 
(Vadas and Steneck, 1995). Groundfish stock collapses caused by 
overfishing released sea urchins from predation pressure, 
precipitating the loss of kelp forests, which was then reversed by 
the reimposition of top-down control over sea urchins by the 
introduction of a new fishery (Jackson et al., 2001). This sequence 
of events provides a classic example of “fishing down marine food 
webs” (Pauly et al., 1998). In this process, fisheries serially target and 
deplete biomass at successively lower trophic levels (in this case 
predatory groundfish and herbivorous sea urchins). However, in the 
Northeast Atlantic evidence for trophic cascades perpetuating kelp 
forests is relatively sparse (Steneck et al., 2002), despite similar large 
groundfish guilds operating across the North Atlantic Ocean. While 
edible crabs (Cancer pagurus) may support Norwegian kelp forests 
by preying on sea urchins (Fagerli et al., 2014), the persistence of 
these forests is influenced by temperature as well as cascading 
impacts of crab abundance (Christie et al., 2018). Furthermore, in a 
surprising contrast to the Northwest Atlantic case, the Norwegian 
coastal cod stock negatively impacts kelp by consuming crabs, 
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thereby releasing sea urchins from predation (Christie et al., 2018). 
Thus, Northeast Atlantic kelp forests include a mesopredator (the 
edible crab) absent from their Northwest Atlantic counterparts, 
resulting in opposite impacts of the same predator (Atlantic cod) on 
kelp in these two regions. These cases again highlight the influences 
of biogeography and predator community composition on the 
strength of trophic cascades in kelp forest ecosystems. 

Trophic cascades are apparently less prevalent in Southern 
Hemisphere kelp forests than in their northern equivalents (Tegner 
and Dayton, 2000; Steneck et al., 2002; Schiel and Foster, 2015). In the 
absence of a keystone predator such as the sea otter, an evolutionary 
arms race between kelps and herbivores is apparently occurring in 
New Zealand, with kelps developing stronger chemical defenses, and 
herbivores acquiring greater tolerance for these compounds, than 
their northern kin (Steinberg et al., 1995). However, community-level 
kelp forest trophic cascades due to predation on sea urchins by spiny 
lobsters (Jasus spp.) occur in New Zealand (J. edwardsii; Babcock 
et al., 1999; Shears and Babcock, 2002; Eddy et al., 2014; Edgar et al., 
2017; Figure 3f) and Western Cape Province, South Africa (J. lalandii; 
Barkai and McQuaid, 1988; Anderson et al., 1997; Blamey and 
Branch, 2010). The Australasian snapper (Chrysophrys auratus) 
likewise controls sea urchins and supports kelp forests in New 
Zealand (Cole and Keuskamp, 1998; Babcock et al., 1999; Shears 
and Babcock, 2002; Edgar et al., 2017; Figure 3f). There is also 
evidence of non-consumptive (fear-mediated) impacts of predators 
on kelp grazing by sea urchins in New Zealand (Spyksma et al., 2017; 
Curtis and Wing, 2024) and in northern California (Byrnes et al., 
2006). Top-down, bottom-up, and physical oceanographic processes 
may all combine to determine kelp forest persistence in Tasmania 
(Ling et al., 2009) and New Zealand (Salomon et al., 2008). In 
southern Patagonia and the subantarctic archipelagoes, sea urchin 
larvae are largely dispersed by the powerful Antarctic Circumpolar 
Current, impairing juvenile urchin settlement and maintaining kelp 
forests in the apparent absence of top-down control (Tegner and 
Dayton, 2000). 

While community-level trophic cascades are common in kelp 
forests, bottom-up and non-trophic factors (e.g. physical stress or 
infectious disease) often complicate and moderate the impacts of 
these cascades (Schiel and Foster, 2015). For example, direct 
physical effects of wave action often overpower both top-down 
and bottom-up impacts in California kelp forests (Reed et al., 2011). 
In the Gulf of Maine, ocean warming is driving kelp forest declines 
even without overgrazing by sea urchins (Suskiewicz et al., 2024), 
while allelopathic (i.e. adverse chemical) effects of competing turf 
algae hinder kelp recovery (Farrell et al., 2025), shifting the base of 
coastal food webs from benthic kelp to neritic phytoplankton (Yiu 
et al., 2025). Mesocosm experiments reveal that besides its direct 
negative impacts, warming indirectly harms Australian kelp by 
increasing consumption rates in sea urchins and reducing 
predation rates in spiny lobsters (Sagmariasus verreauxi; Provost 
et al., 2017). In central California, the epizootic among sunflower 
stars and the 2014–2016 marine heatwave produced a mosaic of 
urchin barrens and kelp forests (Smith et al., 2024). However, sea 
otter presence prevented a complete collapse of kelp forests in the 
region (Smith et al., 2021). 
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A catastrophic decline in Aleutian sea otter abundance in the 
late 20th century (Doroff et al., 2003) released sea urchins from top-
down control, causing a transition from kelp forests to urchin 
barrens (Estes et al., 1998) and combining with ocean warming and 
acidification to imperil coralline algal reefs (Rasher et al., 2020). 
These events were attributed to killer whale (Orcinus orca) 
predation adding a trophic level to the otter – urchin – kelp 
trophic cascade (Estes et al., 1998). The sequential megafaunal 
collapse hypothesis proposed that whaling had removed prey 
biomass from the ecosystem, leading transient killer whales to 
successively overexploit pinniped and sea otter populations 
(Springer et al., 2003). Demographic and bioenergetic modeling 
studies conditionally supported this hypothesis (Springer et al., 
2003; Williams et al., 2004; Estes et al., 2009). However, several 
critical analyses successfully challenged its core tenets, i.e. that large 
whales were important prey for killer whales, that whale, pinniped, 
and otter population declines in western Alaska in the late 20th 

century were sequential, and that pinniped declines were due to 
predation (DeMaster et al., 2006; Mizroch and Rice, 2006; Mehta 
et al., 2007; Trites et al., 2007; Wade et al., 2007, 2009). 
Furthermore, the original attribution of the sea otter decline to 
killer whale predation (Estes et al., 1998) has been reassessed as an 
overinterpretation of the limited existing data (Kuker and Barrett-
Lennard, 2010). Only two indisputable records of sea otter 
consumption by killer whales exist; one from Prince William 
Sound, Alaska (Vos et al., 2006) and the other from the 
Commander Islands, Russia (Fomin et al., 2023). 
Neritic and pelagic trophodynamics 

Trophic cascades and top-down control are apparently weaker 
and less frequent in neritic and pelagic ecosystems than in their 
intertidal, benthic, and lacustrine counterparts (Shurin et al., 2002; 
Borer et al., 2005). Furthermore, while top-down control is quite 
common in pelagic ecosystems, community-level cascades are 
distinctly less frequent (Baum and Worm, 2009; Essington, 2010). 
While such cascades in the lacustrine water column were originally 
observed to be attenuating (McQueen et al., 1986) and later found 
to be neither amplifying nor attenuating (Shurin et al., 2002) or
non-attenuating (Carpenter et al., 2010), their marine counterparts 
were observed to be generally attenuating (Shurin et al., 2002). 
Although community-level cascades in neritic ecosystems were 
found to occupy the neutral border space between amplification 
and attenuation (Rossberg et al., 2019), such cascades in pelagic 
ecosystems were observed to be attenuating (Micheli, 1999). It may 
be argued that this cross-ecosystem pattern is due to a chain of 
physical, chemical, and biological factors. 

The spatial structure of the water column has been suggested to 
promote bottom-up control in pelagic ecosystems by spreading 
predation pressure across three dimensions, rather than two as in 
benthic and terrestrial habitats (McCann et al., 2005). Although 
lacustrine and neritic ecosystems, where trophic cascades are more 
prevalent (Essington, 2010) and less susceptible to attenuation 
(Carpenter et al., 2010; Rossberg et al., 2019), are likewise three-
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dimensional, the magnitude of the third dimension (i.e. depth) is 
one to two orders greater (103 vs. 101–102 m) in pelagic ecosystems. 
A related explanation for the decreasing frequency of community-

level trophic cascades from lacustrine through neritic to pelagic 
ecosystems involves the increasing scale of physical processes, 
particularly advection (Essington, 2010; Pershing et al., 2015). 
Advective transport of nutrients and biota is negligible in lakes, 
driven by tides on modest scales (103–105 m) in coastal waters, and 
by currents on enormous scales (106–107 m) in the open ocean. 
While such transport, combined with stronger mixing and weaker 
stratification resulting from longer wind and wave fetch, and with 
upwelling in several key ecosystems, renders saltwater fisheries 
more productive than their freshwater counterparts (Nixon, 
1988), it may also disrupt the strong trophic interactions required 
for community-level cascades. The spatial scale of advection and 
mixing is smaller in neritic ecosystems than in their pelagic 
counterparts, which is reflected in the higher frequency of known 
trophic cascades in neritic waters (Essington, 2010). However, 
exhaustively testing this hypothesis would require long-term 
ecological research involving intensive and extensive sampling of 
large pelagic ecosystems across multiple scales, which would be 
both logistically challenging and costly. 

Nutrient availability has been suggested to favor bottom-up 
control (Gasol et al., 2003; Banse, 2013), allowing primary 
productivity to overpower grazing and attenuate trophic cascades 
in both lakes (McQueen et al., 1986) and oceans (Micheli, 1999). 
However, a more recent study of lacustrine ecosystems casts doubt 
on this hypothesis (Carpenter et al., 2010). In addition, as was 
originally observed in the Arctic tundra (Oksanen et al., 1981), 
nutrient availability may promote trophic cascades in estuaries 
(Stoecker et al., 2008) as well as neritic and pelagic ecosystems 
(Rossberg et al., 2019), particularly where zooplankton are small 
relative to their food (Fuchs and Franks, 2010), although this effect 
is not universal (Stibor et al., 2004a). Furthermore, despite the wide 
ranges of eutrophic, mesotrophic, and oligotrophic conditions 
occurring in lacustrine, neritic, and pelagic ecosystems, theoretical 
modeling suggests that decreasing nutrient availability with 
increasing spatial scale (i.e. from lakes and coastal waters to open 
oceans) could explain the pattern of cascade prevalence and 
attenuation across these three ecosystem types (Rossberg et al., 
2019). While the productivity of saltwater fisheries is elevated 
relative to their freshwater counterparts by increased nutrient 
availability due to mixing and upwelling (Nixon, 1988), most 
productive marine fisheries occur in neritic rather than pelagic 
waters. This is most likely due to the higher input, lower export, and 
more efficient recycling of nutrients on continental shelves and 
slopes relative to the deep sea. 

While global abundances of all zooplankton taxa are 
significantly correlated with macronutrient (nitrate, phosphate, 
and silicate) concentrations, correlations with depth-integrated 
chlorophyll a are far more ambiguous (Brandão et al., 2021). This 
suggests that control of trophic interactions between phytoplankton 
and zooplankton varies across the world ocean. In macronutrient

limited oligotrophic and micronutrient-limited high nutrient – low 
chlorophyll (HNLC) ecosystems, which predominate at low and 
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high latitudes, respectively, phytoplankton is subject to top-down 
control by grazing (Banse, 2013). This allows the biomass of 
zooplankton to exceed that of phytoplankton (Gasol et al., 2003), 
as in the HNLC Southern Ocean (Yang et al., 2022). If 
macronutrients were assigned a trophic level of zero, a type of 
community-level trophic cascade could be postulated for HNLC 
waters in which herbivorous zooplankton exercised top-down 
control over phytoplankton, with indirect positive effects on 
macronutrient concentrations. Such a cascade, albeit with four 
trophic levels (plus nutrients) has indeed been observed in a 
Norwegian fjord (Sommer et al., 2004). In HNLC ecosystems, 
phytoplankton biomass could be caught in a “trophic vise” of 
top-down and bottom-up control by grazing and micronutrient 
limitation, respectively. This hypothesis could be tested by 
micronutrient fertilization experiments in HNLC waters. An 
increase in zooplankton biomass exceeding that detected in 
phytoplankton in response to fertilization would support the 
“trophic vise” hypothesis, while the opposite pattern of biomass 
increases would contradict it. 

Plankton community composition and trophic ecology also 
influence the pattern of trophic cascade incidence and attenuation 
across lacustrine, neritic, and pelagic ecosystems (Sommer and 
Sommer, 2006; Sommer, 2008). A study using freshwater, brackish, 
and saltwater mesocosm experiments (Sommer and Sommer, 2006) 
revealed that grazing by copepods, a dominant group of saltwater 
zooplankton, mainly reduces microphytoplankton biomass 
(Figure 4a). By contrast, cladocerans, the foremost components of 
freshwater  zooplankton,  primarily  deplete  nano- and  
picophytoplankton biomass (Figure 4b). These small size classes are 
favored by the strong stratification and resulting nutrient limitation 
characteristic of many lacustrine ecosystems. Since small 
phytoplankton can increase in biomass more rapidly than their 
larger counterparts due to their higher turnover rates and more 
efficient nutrient uptake resulting from higher surface area to volume 
ratios,  cladocerans,  which  mainly  consume  nano- and  
picophytoplankton, can regulate total phytoplankton biomass more 
strongly than copepods, which focus on microphytoplankton. Thus, 
predation on cladocerans, whose dominance in freshwater 
ecosystems likely results at least partly from their efficient grazing 
of small phytoplankton, is more likely to cause non-attenuating, 
community-level trophic cascades than comparably intense 
predation on copepods, which likely predominate in saltwater 
ecosystems due to their effective grazing of large phytoplankton 
(Sommer and Sommer, 2006). Furthermore, both laboratory bottle 
incubation studies (Nejstgaard et al., 2001; Leising et al., 2005a, b; 
Olson et al., 2006; Stoecker et al., 2008; Sherr et al., 2009) and

mesocosm experiments (Stibor et al., 2004a; Vadstein et al., 2004; 
Sommer and Sommer, 2006) based on sampling of the North 
Atlantic, North Pacific, and Arctic Oceans indicate that marine 
copepod predation on microzooplankton releases nano- and 
picophytoplankton from top-down control through species-level 
trophic cascades (Figure 4a). This indirect positive impact further 
increases the resistance of total saltwater phytoplankton biomass to 
herbivory, contributing to attenuation of community-level cascades 
in the marine water column (Sommer and Sommer, 2006). 
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The trophic impacts of global warming also differ between 
freshwater and saltwater ecosystems (Murphy et al., 2020). In fresh 
water, warming reduces zooplankton biomass, causing a top-down 
release of phytoplankton from grazing pressure. In salt water, it 
reduces phytoplankton biomass, exerting a bottom-up adverse 
impact on zooplankton. In both cases, effect size is attenuating and 
only the direct impacts of warming are statistically significant, 
suggesting that both top-down and bottom-up control operate in 
each ecosystem type (Murphy et al., 2020). The mechanism driving 
the adverse impacts of warming on marine phytoplankton likely 
depends on nutrient availability (Lewandowska et al., 2014). In waters 
with strong mixing, weak stratification, and high nutrient supply, 
warming increases copepod grazing rates, creating a top-down 
impact. In seas with weak mixing, strong stratification, and low 
nutrient availability, it reduces the depth of the thermocline, further 
decreasing nutrient availability and generating a bottom-up impact. 
Given the declines in phytoplankton detected across much of the 
world ocean during the 20th century (Boyce et al., 2010, 2014; Boyce 
and Worm, 2015), these impacts of warming may have overpowered 
or masked many pelagic trophic cascades. Increased feeding rates 
would likely not prevent copepod biomass from decreasing but would 
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cause phytoplankton biomass to decline, thus creating a positive 
correlation between copepod and phytoplankton biomasses and 
obscuring the lowest link in a trophic cascade. 

Plankton community ecology likewise helps explain the differences 
in trophic cascade frequency and attenuation among marine water 
column ecosystems (Sommer et al., 2002; Sommer and Stibor, 2002; 
Sommer, 2008; Figure 5). In polar and subpolar waters (Figure 5a), 
frequent storms increase mixing and decrease stratification, improving 
nutrient availability and thus raising the importance of large 
phytoplankton (Sommer et al., 2017). In these ecosystems, large 
copepods forage on microphytoplankton and euphausiids feed on 
micro- and nanophytoplankton, while salps consume all size classes 
from micro- to picophytoplankton (Sommer and Stibor, 2002). Thus, 
the entire phytoplankton size spectrum is exposed to grazing in 
subpolar and polar waters, supporting top-heavy plankton biomass 
distributions (Gasol et al., 2003), top-down control (Strom et al., 2007; 
Banse, 2013; Yang et al., 2022), and unattenuated community-level 
trophic cascades (Sommer, 2008). 

It is thus not surprising that the only universally accepted 
community-level cascade in a pelagic ecosystem was detected in 
decadal (1985-1994) time series from the central subarctic Pacific 
FIGURE 4 

Trophic structure of plankton communities. (a) saltwater and copepod-dominated, after Sommer and Sommer (2006, Figure 5, left panel), 
(b) freshwater and cladoceran-dominated, after Sommer and Sommer (2006, Figure 5, right panel). Directional arrows indicate direct negative 
(top-down) impacts, while double-headed arrows indicate bidirectional interactions. The double-headed arrow accompanied by a plus sign indicates 
improved feeding opportunities for copepods in the presence of cladocerans and vice versa, while the double-headed arrows with minus signs 
represent competition for nutrients among phytoplankton groups. Arrow thickness and font size are approximately proportional to the strength of 
the impact and the importance of the plankton group in the ecosystem, respectively. 
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Ocean south of the Aleutian Islands (Shiomoto et al., 1997). These 
time series revealed a biennial cycle in pink salmon (Oncorhynchus 
gorbuscha) catch  per  unit effort in  phase  with  chlorophyll a

concentration, while large zooplankton biomass cycled out of 
phase with both of these groups (Figure 6). This pattern 
represents the classic signature of a community-level trophic 
cascade, a conclusion supported by somewhat longer and later 
(2000-2015) pink salmon, large copepod, and large diatom time 
series from the same area (Batten et al., 2018). Moreover, a further 
study found an inverse relationship between pink salmon 
abundance and seabird reproductive success in the subarctic 
Pacific, indicating that birds suffer from competition with pink 
salmon for shared prey, particularly large copepods (Springer and 
van Vliet, 2014). The causes of this cascade likely lie in the biomass 
fluctuations driven by the unique biennial life cycle of pink salmon 
and in a chain of physical, chemical, and ecological features of the 
subarctic Pacific. This chain links frequent storms, large waves, 
powerful mixing, low stratification, high nutrient availability, 
intense microphytoplankton blooms, and abundant grazing 
copepods and euphausiids (Sommer, 2008; Sommer et al., 2017). 
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Upwelling zones are found primarily in tropical to temperate 
eastern boundary currents flowing toward the Equator, although 
they also occur in the equatorial Atlantic and Pacific Oceans and the 
Southern Ocean. Despite their latitudes, eastern boundary 
upwelling zones share a similar plankton community composition 
(i.e. the importance of large phytoplankton and herbivorous 
zooplankton) with other cold waters (Sommer et al., 2002). 
However, in these unique ecosystems, interannual and decadal 
variability in upwelling strength, and thus in nutrient supply, 
appears to be sufficiently strong to overpower top-down control 
and cause attenuation of community-level trophic cascades. 

In comparison to polar and subpolar waters, temperate and warm 
seas (Figure 5b) show less frequent storms, weaker mixing, and 
stronger stratification, reducing nutrient availability and thus the 
importance of large phytoplankton (Sommer et al., 2017). Copepods 
in these waters also consume microphytoplankton, while 
thaliaceans (salps, doliolids, and pyrosomes) feed on all 
phytoplankton size classes. However, euphausiids foraging on 
micro- and nanophytoplankton are less abundant in these 
ecosystems than in subpolar and polar seas, while appendicularians 
FIGURE 5 

Trophic structure of plankton communities. (a) subpolar and polar, (b) temperate and warm, (c) tropical oligotrophic. Directional arrows indicate 
direct negative (top-down) impacts, while double-headed arrows represent competition for nutrients among phytoplankton groups. Arrow thickness 
and font size are approximately proportional to the strength of the impact and the importance of the plankton group in the ecosystem, respectively. 
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feeding on nano- and picophytoplankton appear (Sommer and 
Stibor, 2002). Appendicularian eggs and juveniles are in turn 
consumed by copepods, releasing nano- and picophytoplankton 
from grazing pressure (Stibor et al., 2004b). Furthermore, copepods 
also feed on microzooplankton, with similar indirect impacts on 
nano- and picophytoplankton (Stibor et al., 2004a; Vadstein et al., 
2004; Sommer and Sommer, 2006). Thus, micro-, nano-, and 
picophytoplankton are at least partially protected from grazing in 
temperate and warm waters, leading to attenuation of community-

level cascades (Sommer, 2008). 
In tropical and subtropical seas (Figure 5c), storms are 

infrequent, mixing weak, and stratification strong, leading to 
oligotrophic conditions and picophytoplankton dominance, 
except in eastern boundary upwelling zones (Sommer et al., 
2017). The dominant picophytoplankton is consumed by 
nanoflagellates and ciliates. The latter in turn forage on 
nanoflagellates and picophytoplankton, while copepods feed on 
ciliates and nanoflagellates (Sommer et al., 2002; Sommer and 
Stibor, 2002). This high level of omnivory in meso- and 
microzooplankton permits zooplankton biomass to exceed that of 
phytoplankton (Gasol et al., 2003) due to top-down control (Banse, 
2013), but does not favor non-attenuating, community-level 
cascades with well-defined trophic levels. 

Copepod functional diversity displays consistent patterns across 
the world ocean (Benedetti et al., 2025). In the oligotrophic gyres of 
tropical and subtropical oceans, copepods show the highest 
functional richness and lowest functional evenness (i.e. functional 
types are most numerous but the distribution of biomass among 
them is least even). These waters feature top-down control of 
phytoplankton by zooplankton (Gasol et al., 2003; Banse, 2013) 
but apparently no community-level trophic cascades. This may be 
partly due to the many weak links in the planktonic food web 
created by the high richness and low evenness of copepod 
functional types. In the subarctic Pacific and the Southern Ocean, 
copepods demonstrate the lowest functional richness and 
intermediate functional evenness. These waters host the only 
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known non-attenuating, community-level pelagic trophic cascade 
(in the subarctic Pacific; Shiomoto et al., 1997), as well as top-down 
control of phytoplankton by zooplankton (in the Southern Ocean; 
Yang et al., 2022). This may partly result from the few strong links 
in the planktonic food web yielded by the low richness and 
intermediate evenness of copepod types. In temperate seas, 
copepods show intermediate functional richness and the highest 
functional evenness. These waters feature attenuating trophic 
cascades (Sommer, 2008).  This  may partly stem from the

substantial number of moderately strong links in the planktonic 
food web generated by the intermediate richness and high evenness 
of copepod functional types. 

In temperate and polar waters, reduced nutrient availability can 
cause zooplankton to switch from trophic cascades based on 
photosynthesis to ones founded on detritus (Stibor et al., 2019). 
Under eutrophic conditions, copepods in the Baltic Sea forage on 
microphytoplankton (Lewandowska et al., 2014) and rotifers, which 
in turn consume picophytoplankton. The latter interactions belong 
to a cascade linking mesopredators (Berthold et al., 2023), 
copepods, rotifers, and picophytoplankton (Heiskanen et al., 
1996; Berthold et al., 2023). However, under oligotrophic 
conditions, copepods switch to foraging on ciliates, which 
consume flagellates, which in turn feed on bacterioplankton, 
forming a second trophic cascade (Lewandowska et al., 2014). In 
Kongsfjorden, an inlet of the Greenland Sea in western Spitzbergen, 
copepods consume ciliates. Under eutrophic conditions, the latter 
feed on autotrophic flagellates, but in oligotrophic conditions they 
switch to consuming heterotrophic flagellates, which in turn forage 
on bacterioplankton (Thingstad, 2020). The detritus-based trophic 
cascade observed under oligotrophic conditions in Kongsfjorden is 
nearly identical to one detected by mesocosm experiments in a 
Norwegian fjord further south (Zöllner et al., 2009). 

In a different example of plankton-mediated switching between 
two trophic cascades, a mesocosm experiment conducted in a 
Norwegian fjord detected that jellyfish predation on calanoid 
copepods triggered positive effects on phytoplankton biomass in a 
FIGURE 6 

The only community-level trophic cascade known from a pelagic ecosystem, in this case driven by the biennial population cycle of pink salmon 
(Oncorhynchus gorbuscha) in the subarctic North Pacific (Shiomoto et al., 1997). (a) High pink salmon biomass (odd years). (b) Low pink salmon 
biomass (even years). Solid lines indicate direct impacts, while dotted lines show indirect impacts. Arrow thickness and font size are approximately 
proportional to the strength of the impact and the biomass of the group in the ecosystem, respectively. 
frontiersin.org 

https://doi.org/10.3389/fevo.2025.1587171
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Surma et al. 10.3389/fevo.2025.1587171 
cascade featuring three trophic levels and an algal guild initially 
dominated by large phytoplankton. However, these indirect impacts 
became negative in a cascade including four trophic levels and an 
algal community originally characterized by small phytoplankton. 
In each case, a species-level trophic cascade was found but a 
community-level cascade was not detected when both food chains 
were examined together (Stibor et al., 2004a). 

Similarly, while species-level trophic cascades driven by jellyfish 
predation and involving meso- and microzooplankton were 
obtained by mesocosm experiments in Lake Illawarra (a saline 
coastal lagoon in New South Wales, Australia), neither a 
communi ty- l eve l  cascade  nor  top-down  impacts  on  
phytoplankton occurred (Pitt et al., 2007; West et al., 2009). 
Furthermore, bottle incubation experiments based on large-scale 
sampling in the North Atlantic Ocean failed to find a community-

level cascade connecting copepods, microzooplankton, and 
phytoplankton (Morison et al., 2020). However, a global marine 
biogeochemical model predicted community-level trophic cascades 
driven by jellyfish predation on crustacean macrozooplankton 
(Wright et al., 2021). 

Ctenophores also appear capable of causing community-level 
cascades in marine ecosystems. In the most famous example, 
“fishing down” the Black Sea food web triggered a cascade 
involving the invasive ctenophore Mnemiopsis leidyi suppressing 
other zooplankton and thereby releasing phytoplankton from 
control by grazers. These impacts were later partly reversed by 
predation on M. leidyi by a later-invading ctenophore, Beroe ovata 
(Daskalov et al., 2007; Oguz and Gilbert, 2007; Oguz et al., 2012). 
However, top-down control of planktonic bivalve larvae by M. leidyi 
coupled the pelagic and benthic ecosystems through reduced larval 
bivalve settlement, causing a shift from bivalve to polychaete 
dominance in the benthos (Oguz et al., 2012). Invasions by M. 
leidyi also triggered community-level cascades involving 
mesozooplankton and phytoplankton in the Baltic Sea (Dinasquet 
et al., 2012) and a Norwegian fjord (Tiselius and Møller, 2017), 
while the native ctenophore Pleurobrachia pileus exerted cascading 
impacts on copepods, ciliates, and autotrophic flagellates in an inlet 
of the Skagerrak (Granéli and Turner, 2002). The high biomasses 
and consumption rates of cestid and lobate ctenophores in the open 
ocean suggest the potential for top-down impacts of these pelagic 
groups (Potter et al., 2023; Child et al., 2025; Irvine et al., 2025), 
including community-level trophic cascades similar to those 
observed in neritic waters. 

In addition to the biotic and abiotic factors discussed above, 
several less objective circumstances may contribute to the apparent 
paucity of non-attenuating, community-level trophic cascades in 
pelagic ecosystems. Firstly, the bottom-up paradigm which 
continues to prevail in marine science despite increasing evidence 
of top-down control and trophic cascades (Verity and Smetacek, 
1996; Estes, 2018) may discourage researchers from investigating 
potential instances of these processes. Secondly, the academic 
culture of excessive specialization (Essington, 2010; Sergio et al., 
2014) may impair the development of an ecosystem perspective in 
marine science and the flow of ideas between oceanography (which 
is focused on the marine water column and remains dominated by 
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the bottom-up paradigm) and marine ecology (which is mainly 
concerned with benthic ecosystems and more open to a top-down 
perspective). Thirdly, the impracticability of conducting large-scale 
experiments in pelagic ecosystems may hinder the detection of 
community-level trophic cascades. Mesocosm experiments, while 
valuable, cannot account for the massive three-dimensional scale 
and spatiotemporal variability of the open ocean. This obstacle 
necessitates a reliance on time series in investigations of pelagic 
ecosystem dynamics (e.g. Shiomoto et al., 1997; Batten et al., 2018), 
which in turn presents methodological difficulties for excluding 
alternate hypotheses based on bottom-up or non-trophic drivers 
(Essington, 2010). Fourthly, due to the enormous logistical 
challenges and costs of conducting intensive and extensive 
sampling and long-term ecological research programs in the open 
ocean, as well as the typically low perceived relevance of pelagic 
trophic ecology to fisheries management (except in Japan, Russia, 
and Norway), the availability of sufficiently fine-grained data on the 
pelagic biota across all trophic levels is typically poor (with the 
laudable exceptions of the intensively investigated western North 
Pacific and Norwegian Sea). 

Furthermore, overexploitation may obscure the past trophic 
importance of currently depleted large predators and grazers 
(Jackson et al., 2001; Jackson, 2006; O'Dea et al., 2025) and favor 
bottom-up control in neritic and pelagic ecosystems (Essington, 
2010; Boyce et al., 2015). Such masking of knowledge of past species 
abundances and ecosystem structures by the shortness of human 
memory and skepticism towards oral and written records of richer 
past ecosystem states is known as “the shifting baseline syndrome of 
fisheries” (Pauly, 1995). The widespread occurrence of the related 
phenomenon of “fishing down marine food webs” (Pauly et al., 
1998), discussed above, which was first detected in modern 
industrial fisheries but dates back for millennia in the Americas 
(Bourque et al., 2008; Fitzpatrick et al., 2008; Kennett et al., 2008; 
Steneck and Pauly, 2019), implies that top-down control and 
mesopredator release, and potentially community-level trophic 
cascades, occurred in many neritic and pelagic ecosystems. 

While high productivity and past overexploitation may now 
favor bottom-up control in marine ecosystems at large spatial scales 
(Mcowen et al., 2014), pristine neritic and pelagic ecosystems may 
have featured an hourglass-shaped trophic structure with biomasses 
alternately increasing and decreasing with successive trophic levels 
(Woodson et al., 2018, 2020). This structure suggests a somewhat 
attenuating community-level cascade regulating higher trophic 
levels (thus the inverted pyramid above) and overlapping with 
likewise attenuating bottom-up control governing lower trophic 
levels (hence the classic pyramid below). Such a structure would 
have been supported by high food web complexity, generalist 
predation, and rapid biomass turnover at low trophic levels 
(Woodson et al., 2018, 2020). As large cetaceans (Rocha et al., 
2014) and predatory fishes (Myers and Worm, 2003; Pacoureau 
et al., 2021; Juan-Jordá et al., 2022) were depleted and “fishing down 
the food web” intensified (Pauly et al., 1998), the hourglass-shaped 
trophic structure would have been replaced by the classic trophic 
pyramid (Elton, 1927). Such a drastic shift would have notably 
reduced marine carbon sequestration by reducing the number of 
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carcasses of whales (Smith, 2006; Pershing et al., 2010) and large 
pelagic fish (Mariani et al., 2020) sinking into the deep ocean. 

However, hourglass-shaped trophic structures could also result 
from exogenous prey subsidies to predators (McCauley et al., 2012a; 
Skinner et al., 2021) and from trade-offs between attack and growth 
rates in mesopredators (Gibert and Yeakel, 2019). Furthermore, the 
apparent dominance of generalist predators in aquatic ecosystems 
has recently been challenged by a study emphasizing the 
importance of two additional predator types specializing in prey 
larger and smaller than expected based on predator size (Garcıa-́
Oliva and Wirtz, 2025). These types are exemplified by anglerfish 
(Lophiiformes) and baleen whales (Mysticeti), and together they 
predict approximately half of food web organization. The impacts of 
this tripartite structure of predator guilds on trophic control and 
cascades in aquatic ecosystems remain to be investigated, but may 
well be significant. 

Trophic cascades and top-down control, revealed by the 
widespread overfishing of top predators, could still govern entire 
neritic food webs in the North Atlantic Ocean, especially northern 
seas characterized by low temperature and species richness (Frank 
et al., 2005, 2006, 2007, 2013, 2015). These conclusions, at least as 
originally stated for the Northwest Atlantic (Frank et al., 2005, 
2006), were disputed by several analyses seeking to explain the data 
through climatic and oceanographic change in the Arctic (Greene 
and Pershing, 2007; Greene, 2013; Pershing et al., 2015). The 
authors of the original studies responded with rebuttals based on 
data from the entire North Atlantic which expanded and 
strengthened their argument (Frank et al., 2007, 2013, 2015; 
Petrie et al., 2009). 

While one global study (Chassot et al., 2010) did not support 
inclusion of temperature or species richness as explanatory 
variables in a cross-ecosystem model of marine fisheries catches, 
another worldwide modeling analysis (Ye and Carocci, 2018) 
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recovered temperature as an explanatory factor. Furthermore, a 
third global study (Boyce et al., 2015) demonstrated that 
temperature and biodiversity predict the direction of trophic 
control in neritic and pelagic ecosystems, providing ultimate and 
proximate explanations of the observed patterns, respectively. Thus, 
this analysis corroborated the conclusions originally drawn from 
the North Atlantic data (Frank et al., 2007, 2013, 2015; Petrie et al., 
2009). Globally, marine biodiversity is positively associated with 
temperature, especially for ectotherms, perhaps due to increased 
metabolic and speciation rates or greater tolerance for higher 
temperatures in ectothermic species (Tittensor et al., 2010). It is 
thus not surprising that the number of links in marine fish food 
webs is likewise positively correlated with temperature, while 
connectance (i.e. the number of actual food web links divided by 
the number of possible links) and the mean number of predator 
species targeting a prey species are both negatively associated with 
temperature (Albouy et al., 2019). This suggests that temperature 
could indirectly inhibit trophic cascades in neritic and pelagic 
ecosystems by increasing food web complexity while decreasing 
functional complementarity and/or redundancy in predator guilds. 

Several community-level trophic cascades associated with 
predator overexploitation are known from neritic ecosystems in 
coastal or semi-enclosed seas (Figure 7). Firstly, depletion of 
Atlantic cod (Gadus morhua) and  other groundfish in the 
Northwest Atlantic triggered cascading effects on forage fish (i.e. 
small, schooling planktivores), zooplankton, and phytoplankton 
(Frank et al., 2005, 2006; Scheffer et al., 2005; Figure 7a). This 
cascade may have partly stemmed not from reduced cod abundance 
but from decreased adult size of these predators due to evolutionary 
effects of fishing (Shackell et al., 2010). Furthermore, the release of 
forage fish from cod predation may have inhibited cod recovery 
through predation by forage fish on cod larvae, in what is known as 
cultivation/depensation, reinforcing the trophic cascade (Walters 
FIGURE 7 

Community-level trophic cascades driven by groundfish overfishing in northern neritic ecosystems. (a) Northwest Atlantic. (b) Baltic Sea (deeper, 
saltier waters, including Gulf of Riga). (c) Baltic Sea (coastal brackish waters). Solid straight lines indicate top-down negative impacts, solid curved 
lines represent negative impacts of predation by planktivorous fish on eggs and larvae of predatory fish (cultivation/depensation), while dotted 
curved lines show indirect impacts. Arrow thickness and font size are approximately proportional to the strength of the impact and the biomass of 
the group in the ecosystem, respectively. 
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and Kitchell, 2000). However, as discussed above, this putative 
cascade has been disputed in several studies (Greene and Pershing, 
2007; Greene, 2013; Pershing et al., 2015). Secondly, in the Gulf of 
Saint Lawrence, top-down impacts of predation by marine 
mammals inhibited the recovery of cod and other groundfish, 
with cascading positive impacts on small demersal fish and 
benthos (Morissette et al., 2006). It has also been suggested that 
the wider Northeast Atlantic cascade (Frank et al., 2005; Scheffer 
et al., 2005) had reduced euphausiid availability to endangered blue 
whales (Balaenoptera musculus) in the Gulf of Saint Lawrence 
(Comtois, 2010). However, a later study has cast doubt on this 
hypothesis (Savenkoff et al., 2013). Thirdly, overfishing of cod in the 
Baltic Sea initiated a trophic cascade in Atlantic sprat (Sprattus 
sprattus), zooplankton, and phytoplankton (Möllmann and Köster, 
2002; Essington and Hansson, 2004; Casini et al., 2009), while 
interruption of cod immigration from the central Baltic into the 
Gulf of Riga triggered a nearly identical cascade involving Atlantic 
herring (Clupea harengus; Casini et al., 2012; Figure 7b). 

Fourthly, in the brackish coastal waters of the Baltic Sea, fishing, 
habitat loss, and predation by gray seals (Halichoerus grypus) and  great  
cormorants (Phalacrocorax carbo), exacerbated by eutrophication and 
warming, reduced the biomasses of northern pike (Esox lucius) and  
Eurasian perch (Perca fluviatilis), both important piscivores (Olin et al., 
2022). These predator declines, compounded by reduced herring 
biomass (Donadi et al., 2024), triggered mesopredator release of 
three-spined stickleback (Gasterosteus aculeatus), which has 
proliferated and now consumes pike eggs and larvae, reducing 
recruitment (Nilsson, 2006; Byström et al., 2015; Nilsson et al., 2019; 
Eklöf et al., 2020) through the cultivation/depensation mechanism 
(Walters and Kitchell, 2000). Furthermore, stickleback exerts negative 
impacts on grazers and cascading positive impacts on filamentous algae 
(Figure 7c), exacerbating the effects of the eutrophication that 
contributed to the original decline in predatory fish (Eriksson et al., 
2009; Candolin et al., 2016; Donadi et al., 2017). 

Fifthly, overexploitation of marine mammals in the Bering Sea 
may have released groundfish, mainly Alaska pollock (Gadus 
chalcogrammus), from predation, with cascading negative impacts 
on forage fish, especially capelin (Mallotus villosus), thus reducing the 
availability of energy-rich prey to marine mammals and exacerbating 
their decline (Merrick, 1997). Sixthly, predation by Antarctic minke 
whales (Balaenoptera bonaerensis) and Adélie penguins (Pygoscelis 
adeliae) on crystal krill (Euphausia crystallorophias), and by penguins 
and killer whales on Antarctic silverfish (Pleuragramma 
antarcticum), combine to exert cascading positive impacts on 
phytoplankton in the marginal ice zone of the Ross Sea (Ainley 
et al., 2006, 2015). However, this cascade, unlike the previous five, is 
not due to overfishing and may be spatially constrained by predator 
distributions (Ainley, 2007; Smith et al., 2007). 

Pelagic ecosystems in the tropical Pacific Ocean demonstrate 
top-down control of mesopredators by upper-level predators, 
including large fish (Ward and Myers, 2005; Hunsicker et al., 
2012), sperm whales (Physeter macrocephalus; Essington, 2006) 
and Hawaiian monk seals (Monachus schauinslandi; Parrish, 
2009), but no trophic cascades, despite the massive depletion of 
pelagic sharks (Pacoureau et al., 2021) and  sperm whales
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(Whitehead and Shin, 2022). Cascade attenuation is likely due to 
plankton community structure in these waters, as discussed above 
(Sommer et al., 2002; Sommer and Stibor, 2002; Sommer et al., 
2017; Benedetti et al., 2025). Reviews of the trophic roles of sharks 
(Ferretti et al., 2010; Dedman et al., 2024) found that while 
overfishing of apex predatory species could cause mesopredator 
release and occasionally cascading suppression of lower-order 
consumers, such impacts occurred more frequently in coastal 
than pelagic waters. 

Humpback whales (Megaptera novaeangliae) may exercise top-
down control over Pacific herring  (Clupea pallasii) off  Alaska  (Heintz 
et al., 2010; Boswell et al., 2015; Moran et al., 2018; Straley et al., 2018) 
and British Columbia (Surma and Pitcher, 2015; Doherty et al., 2024), 
although this hypothesis has been disputed (Fu et al., 2017; 
Tanasichuk, 2017; Ward et al., 2017; Sewall et al., 2018). 
Multispecies modeling studies show that northern minke whales (B. 
acutorostrata) exert top-down impacts on herring and juvenile cod in 
the Norwegian and Barents Seas (Bogstad et al., 1997; Schweder et al., 
2000; Lindstrøm et al., 2009) and on capelin in the Barents Sea 
(Smout and Lindstrøm, 2007). Finally, abundant baleen whale 
populations apparently exercised top-down control over Antarctic 
krill (E. superba), a crucial forage species in the Southern Ocean, 
before their depletion by whaling in the 20th century, with ecosystem-

wide impacts on other predators (Laws, 1977; Reid and Croxall, 2001; 
Murphy et al., 2007; Ainley et al., 2007, 2009; Trivelpiece et al., 2011; 
Trathan et al., 2012; Surma et al., 2014; Tulloch et al., 2018, 2019). A 
scenario nearly identical to this “krill surplus” hypothesis involves 
top-down control of copepods by bowhead whales (Balaena 
mysticetus), and of bivalves by walrus (Odobenus rosmarus), off 
Svalbard before the overhunting of these once common mammals 
in the early modern period (Hacquebord, 2001). 

Some abundant species occupying intermediate trophic levels in 
neritic and pelagic ecosystems, particularly forage fish in eastern 
boundary upwelling zones, have been suggested to exhibit wasp-
waist dynamics, i.e. simultaneously exercise top-down control over 
prey and bottom-up control over predators (Cury et al., 2000; 
Figure 8a). However, the high levels of omnivory in many marine 
predators, e.g. Pacific bluefin tuna (Thunnus orientalis) and

yellowfin tuna (T. albacares) in the southern California Current 
(Madigan et al., 2012), and of functional redundancy at 
intermediate trophic levels in numerous ecosystems (Fréon et al., 
2009; Bundy and Guénette, 2014; Cardona et al., 2015; Gaichas 
et al., 2015), have cast doubt on this hypothesis. The wasp-waist 
idea has been questioned in studies of the southern Caribbean Sea 
(Duarte and Garcı ́ zones a, 2004), eastern boundary upwelling 
(Fréon et al., 2009), including the northern Humboldt Current 
(Ayón et al., 2008; Taylor et al., 2008) and southern California 
Current ecosystems (Madigan et al., 2012); the western 
Mediterranean Sea (Cardona et al., 2015), and the Gulf of Alaska 
and Bering Sea (Gaichas et al., 2015), as well as in a global analysis 
(Bundy and Guénette, 2014). A suggested refinement to the wasp-
waist concept would only require local top-down impacts on prey of 
the mid-trophic species, allowing Antarctic krill to qualify 
(Atkinson et al., 2014). Nevertheless, wasp-waist ecosystem 
structures have been found in the  Arctic  Ocean (Thingstad, 
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2021), the tropical Pacific Ocean (Griffiths et al., 2013), the 
southwest Atlantic Ocean (Padovani et al., 2012; Laptikhovsky 
et al., 2013; Saporiti et al., 2015; Riccialdelli et al., 2020; Büring 
et al., 2024; Marina et al., 2024), the adjacent Drakes Passage (Scian 
et al., 2025), and the South Shetland Islands in the Southern Ocean 
(Rodriguez and Savaria, 2024). The species found to exercise wasp-
waist control include copepods (Thingstad, 2021), amphipods 
(Padovani et al., 2012; Rodriguez and Savaria, 2024; Scian et al., 
2025), the Patagonian squid Doryteuthis gahi (Laptikhovsky et al., 
2013; Büring et al., 2024; Marina et al., 2024), the squat lobster 
Munida gregaria (Riccialdelli et al., 2020), and many small pelagic 
fish (Padovani et al., 2012; Griffiths et al., 2013; Laptikhovsky et al., 
2013; Riccialdelli et al., 2020; Büring et al., 2024; Rodriguez and 
Savaria, 2024). For clupeid forage fish in the North Sea, bottom-up 
control of predators was only demonstrated for seabirds (Fauchald 
et al., 2011). Wasp-waist control should not be confused with the 
hourglass-shaped trophic structure associated with community-

level trophic cascades in pristine marine ecosystems (Woodson 
et al., 2018, 2020). In fact, wasp-waist ecosystems would likely show 
the rare diamond-shaped distribution of biomass across trophic 
levels, with several wasp-waist species at intermediate trophic levels 
concentrating much of the total ecosystem biomass (Gibert and 
Yeakel, 2019). 

Forage fish exercise top-down control over zooplankton in 
some cases (Cury et al., 2000; Yebra et al., 2020) and  are
controlled by them in a bottom-up manner in others (Duarte and 
Garcı ́ ́a, 2004; Ayon et al., 2008; Taylor et al., 2008; Engelhard et al., 
2014). These fish also demonstrate bottom-up control over diverse 
predators (Smith et al., 2011; Engelhard et al., 2014; Pikitch et al., 
2012, 2018), notably central place foragers and mobile predators 
forming feeding aggregations. These groups encompass most 
seabirds (Cury et al., 2011; Sydeman et al., 2017) and marine 
mammals (e.g. McClatchie et al., 2016), as well as some 
piscivorous fish (Hannesson, 2013; Kaplan et al., 2017; Koehn 
et al., 2017). Conversely, a theoretical modeling study predicted 
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top-down control over forage fish by predators (Houle et al., 2013), 
which has been detected for demersal fish and seals in the North Sea 
(Engelhard et al., 2014). 

Many statistical and modeling studies of marine ecosystem 
structure and fisheries dynamics in European neritic seas (Chassot 
et al., 2007), pelagic waters of the tropical and subtropical Atlantic 
(Finenko et al., 2003), Northeast Pacific continental shelf ecosystems 
(Ware and Thomson, 2005),  large marine ecosystems of the  United  
States (Marshak and Link, 2021), and globally (Chassot et al., 2010; 
Friedland et al., 2012; Schlenger et al., 2018; Ye and Carocci, 2018; 
Marshak and Link, 2021), support the primacy of bottom-up control at 
large spatial scales. However, while primary productivity constrains fish 
production across large marine ecosystems in the USA and worldwide 
(Marshak and Link, 2021), bottom-up, top-down, and wasp-waist 
control may all act at smaller scales (Hunt, 2006; Hunt and 
McKinnell, 2006). Other studies indicate that top-down and bottom-

up control often occurs simultaneously or successively in pelagic and 
neritic ecosystems, including the Southern Ocean (Smetacek and Nicol, 
2005; Ainley et al., 2007; Nicol et al., 2007), Barents Sea (Johannesen 
et al., 2012; Dalpadado et al., 2014), and North Sea (Lynam et al., 2017). 
Furthermore, both top-down processes (i.e. predation and fishing 
pressure) and bottom-up forcing (i.e. climate, physical oceanography, 
and primary productivity) are necessary to explain ecosystem and 
fisheries dynamics in the Gulf of Alaska (Gaichas et al., 2011), North 
Sea (Lynam et al., 2017), and worldwide (Mackinson et al., 2009; 
Chassot et al., 2010; Fu et al., 2012; Mcowen et al., 2014; Ye and 
Carocci, 2018). 

Behaviorally mediated trophic 
cascades and marine ecosystem 
dynamics 

Optimal foraging theory suggests that three-level trophic 
cascades can operate not only through predation mortality of 
FIGURE 8 

Unconventional patterns of trophic control in marine ecosystems. (a) wasp-waist control (Cury et al., 2000). (b) Trophic feedback loop (e.g. 
Smetacek and Nicol, 2005). (c) Synergistic trophic interactions (Johannessen, 2014). Solid lines indicate direct impacts, while dotted lines show 
indirect impacts. Arrow thickness and font size are approximately proportional to the strength of the impact and the biomass of the group in the 
ecosystem, respectively. 
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organisms at the intermediate trophic level (as in the cases discussed 
above), but also through alteration of their foraging behavior by fear 
of predators, with these two pure states bounding a continuum of 
intermediate cases (Brown et al., 1999). This theoretical argument is 
supported by numerous fear-mediated cascades observed in the field 
(Schmitz et al., 2004). In some cases, these fear-mediated cascades 
may yield indirect effects that appear counterintuitive from the 
perspective of a classic trophic cascade (e.g. Griffin et al., 2011). 
Furthermore, predator hunting strategies, combined with 
proportions of all available habitats in the ecosystem used by 
predators and prey, could determine whether mortality or fear will 
drive cascades, with the latter predicted to dominate across most 
combinations of predator and prey behaviors (Schmitz et al., 2004). 
Specifically, classical mortality-driven trophic cascades should occur 
only when predators hunt actively and both predators and prey use 
multiple habitats. Although this hypothesis requires further testing, it 
is thus not surprising that fear-mediated cascades occur across 
terrestrial and freshwater ecosystems (Schmitz et al., 2004). 

Marine fear-mediated trophic cascades, or “seascapes of fear” 
(Wirsing et al., 2008), are likewise widespread, occurring in salt 
marsh (Griffin et al., 2011), rocky intertidal (Trussell et al., 2004; 
Donohue et al., 2017), oyster bed (Grabowski and Kimbro, 2005), 
seagrass bed (Wirsing et al., 2007; Burkholder et al., 2013; Heithaus 
et al., 2012, 2014), kelp forest (Duggins, 1983; Byrnes et al., 2006; 
Spyksma et al., 2017; Haggerty et al., 2018; Curtis and Wing, 2024), 
coral reef (Madin et al., 2011, 2019; Rizzari et al., 2014b; Rasher et al., 
2017; Atwood et al., 2018; Meekan et al., 2025), and neritic ecosystems 
(Frid et al., 2008, 2009; Matthews et al., 2020). In agreement with 
optimal foraging theory (Brown et al., 1999), these fear-mediated 
cascades typically span three trophic levels. However, a recent study 
failed to detect a “seascape of fear” on a coral reef (Tebbett et al., 2024). 
Potential cascades involving at least partly fear-mediated interactions 
between two top predators, the killer whale and white shark 
(Carcharodon carcharias), have been reported from neritic waters off 
central California (Jorgensen et al., 2019) and  South Africa (Towner 
et al., 2022). However, further research is necessary to establish that 
intraguild impacts of killer whales on white sharks have cascading 
effects on lower  trophic levels.  While the  existence of  fear-mediated

trophic cascades in pelagic ecosystems has likewise yet to be 
conclusively demonstrated, this may result from some of the same 
causes as the apparent dearth of mortality-driven pelagic cascades 
discussed above, particularly the logistical challenges to ecological 
research in the open ocean. Furthermore, there are strong indications 
that pelagic “seascapes of fear” not only exist  but may  in  fact  be  a
ubiquitous feature of ocean ecology, driving and modulating 
spatiotemporal activity patterns of plankton and nekton across 
multiple trophic levels and timescales (Urmy and Benoit-Bird, 2021). 

It is also increasingly recognized that predator and prey 
bioenergetics influence trade-offs between foraging and predation 
risk avoidance (Gallagher et al., 2017), potentially modulating 
mortality- and fear-driven trophic cascades (Papastamatiou et al., 
2023). Examples of such influences have been documented in 
terrestrial (Gallagher et al., 2017), fluvial (Gil et al., 2025), coral 
reef (Papastamatiou et al., 2021, 2023), and pelagic ecosystems 
(Beltran et al., 2023). Theory predicts that top-down impacts should 
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increase with spatiotemporal overlap and conflict between prey 
energy savings (and/or gains) and predation risk (Gil et al., 2025). 
Thus, according to this argument, a species-level trophic cascade 
would occur if the interaction between the prey and the next trophic 
level involved a similarly irreconcilable conflict between energy 
optimization and the risk of being consumed. Community-level 
cascades would occur if strong interactors (e.g. foundation, 
keystone, or wasp-waist species) were involved. Trophic cascades 
would be primarily fear-mediated if prey more frequently 
prioritized risk avoidance over foraging optimization, and mainly 
mortality-driven in the opposite situation (Gil et al., 2025; Table 1). 
However, the multiple spatiotemporal scales of factors affecting 
energetics and predation risk for pelagic organisms, which move in 
three dimensions according to circadian and seasonal rhythms 
(Bandara et al., 2021; Urmy and Benoit-Bird, 2021; Beltran et al., 
2023), along with the logistical challenges to research in the open 
ocean discussed above, render the frequency and drivers of pelagic 
cascades highly challenging to predict. 

Foraging arena theory predicts the direction of control over a 
trophic interaction using the rate at which prey switch between states 
of vulnerability and invulnerability to a given predator (Walters and 
Juanes, 1993; Ahrens et al., 2012). This rate is affected by factors 
including prey aggregation, predator attack strategy, predator and 
prey mobility, and spatiotemporal refuge availability. Prey 
aggregation behavior (fish schooling and krill swarming) involves 
trade-offs between predation risk and other considerations, e.g. 
oxygen availability (Brierley and Cox, 2010). Foraging arena theory 
predicts that ephemeral aggregations should favor top-down control 
and non-attenuation of trophic cascades, while stable aggregations 
should promote bottom-up control and attenuation of cascades. In 
turn, prey aggregation stability is affected by predator attack strategy. 
Atlantic herring schools in the Norwegian Sea remained stable in 
response to attacks by individual Atlantic cod and haddock 
(Melanogrammus aeglefinus), but were disrupted by aggregations of 
predatory saithe (Pollachius virens; Pitcher et al., 1996). Similarly, 
large schools of overwintering Pacific herring  (Clupea pallasii) in

Lynn Canal, a Pacific fjord in southeast Alaska, were dissipated and 
forced to surface by lunge-feeding humpback whales, facilitating 
attacks by Steller sea lions (Eumetopias jubatus; Boswell et al., 
2015). Thus, predators whose attack strategies allow them to 
TABLE 1 Factors favoring mortality-driven versus fear-driven 
trophic cascades. 

Factor State favoring 
mortality-driven 
cascades 

State favoring 
fear-driven 
cascades 

Active hunting 
by predators 

Yes No 

Use of multiple 
habitats by both 
predators and prey 

Yes No 

Prey behavioral priority Energetic optimization Predation risk 
avoidance 
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disrupt prey aggregations are more likely to exercise top-down 
control over prey, promoting trophic cascades. 

Predator mobility has been suggested to promote bottom-up 
control and weaken trophic cascades in marine ecosystems by 
spreading predation pressure in three-dimensional space (McCann 
et al., 2005). However, mobile predators have also been hypothesized 
to promote top-down control and trophic cascades (Borer et al., 
2005), particularly in spatially confined habitats contiguous with 
open ecosystems (McCann et al., 2005). For example, sharks which 
often forage in the epipelagic zone surrounding Palmyra Atoll, a 
near-pristine coral reef in the South Pacific, exert cascading negative 
impacts on algal cover, mediated by herbivore diversity and/or 
behavior (Sandin et al., 2008; McCauley et al., 2012a). More 
generally, the direction of trophic control in a marine predator-
prey interaction could depend on the balance between predator and 
prey mobility (Hunt, 2006). When predators are more mobile than 
prey (e.g. in the cases of sharks and resident fish on coral reefs, 
swimming predators and benthic grazers in kelp forests, and baleen 
whales and their prey), top-down impacts (whether mediated by 
mortality of fear) would be expected. Conversely, when prey are more 
mobile than predators (e.g. in the case of pelagic fish and central place 
foragers or epipelagic visual predators and vertically migrating prey), 
bottom-up control would be favored. Perhaps due to this multiplicity 
of possible predator-prey interaction scenarios in every ecosystem, 
predator mobility does not significantly affect the prevalence of 
trophic cascades across ecosystem types (Borer et al., 2005). This 
result may also stem from the fact that along the spatial scale from 
lacustrine through neritic to pelagic habitats, potential predator 
mobility increases but so does the influence of advection on prey, 
yielding a constantly shifting balance between predator and prey 
mobility. Furthermore, the effects of scale and advection in pelagic 
ecosystems on the trade-off between prey energy optimization and 
predation risk avoidance, and thus on mortality- versus fear-
mediated trophic cascades (Gil et al., 2025), are highly variable and 
therefore difficult to predict. 

Diel vertical migration is determined primarily by trophic 
factors (Pinti et al., 2019), with studies revealing predation risk 
and prey availability as the principal drivers for plankton and large 
nekton, respectively (Bandara et al., 2021). However, there is a great 
deal of plasticity in the recorded responses to these factors among 
and within zooplankton species (Bandara et al., 2021), and typical 
migration patterns may be modulated by fear-mediated avoidance 
responses to encounters with pelagic predators (Urmy and Benoit-
Bird, 2021). Organisms avoiding visual predation typically migrate 
upward at dusk and downward at dawn, but zooplankton may also 
demonstrate the reverse pattern, which was first recorded in the 19th 

century (Brook and Calderwood, 1885). Reverse diel vertical 
migration occurs in both lacustrine (Farrell and Hodgson, 2012) 
and neritic ecosystems (Ohman et al., 1983; Frost and Bollens, 
1992), and may be more frequent in deeper waters (Irigoien et al., 
2004). Like the normal zooplankton pattern, it is driven by 
predation avoidance (Ohman et al., 1983; Frost and Bollens, 1992; 
Pinti et al., 2019). Normal and reverse diel vertical migrations may 
alternate across trophic levels, forming a cascade driven by 
avoidance of the highest predator, with potentially notable 
Frontiers in Ecology and Evolution 17 
implications for vertical biogeochemical fluxes (Bollens et al., 
2010). This phenomenon may be limited to lower trophic levels, 
with visual predation by nekton as the driver of migration cascades 
in plankton (Bandara et al., 2021). However, a recent study indicates 
that vertical movements of predators, including echolocating 
odontocetes and epipelagic schooling fish, modulate diel vertical 
migration in their prey, potentially affecting ocean biogeochemical 
cycles (Urmy and Benoit-Bird, 2021). From the perspective of 
foraging arena theory, such switching between vulnerability and 
invulnerability of prey to a given predator on diel and shorter 
timescales across multiple trophic levels may be expected to 
promote top-down control and trophic cascades. 

It has been suggested that the vast movement of biomass 
involved in diel vertical migration may contribute to noticeably to 
mixing of the upper ocean (Huntley and Zhou, 2004; Dewar et al., 
2006). This radical hypothesis has been supported by field studies 
(Katija and Dabiri, 2009) and modeling analyses (Dabiri, 2010), 
critiqued in a review (Kunze, 2019), and corroborated by laboratory 
experiments (Wilhelmus and Dabiri, 2014; Houghton et al., 2018; 
Houghton and Dabiri, 2019) and  further  field observations 
(Fernández Castro et al., 2022). If diel vertical migration indeed 
contributes significantly to ocean mixing, fear-mediated cascading 
impacts of predation may affect ocean biogeochemical cycling 
(Bollens et al., 2010; Urmy and Benoit-Bird, 2021), potentially 
creating trophic feedback loops supporting the top predators 
modulating the migrations themselves. 
Complications and paradoxes in 
marine trophodynamics 

A complication to the conventional dichotomy of top-down 
versus bottom-up control stems from trophic feedback loops 
generated by positive biogeochemical impacts of predators on 
producers (Figure 8b). A small-scale trophic feedback loop has 
been observed at Palmyra Atoll, where nutrients in seabird guano 
stimulate phytoplankton blooms, increasing zooplankton biomass, 
which in turn supports giant manta rays (Manta birostris; 
McCauley et al., 2012b). In another local feedback loop detected 
in southern California, ammonium ions recycled in the excretions 
of fish inhabiting kelp forests improve kelp productivity (Shrestha 
et al., 2024; Peters et al., 2025). 

However, the classic example of this effect is the “whale pump” 
concept, first mooted in a review of polar marine ecology (Smetacek 
and Nicol, 2005). This hypothesis states that unexploited whale 
populations fertilized surface waters with feces rich in bioavailable 
nutrients (particularly iron), thus recycling them in the euphotic 
zone and raising primary productivity (Smetacek and Nicol, 2005; 
Smetacek, 2008; Nicol et al., 2010; Roman and McCarthy, 2010; 
Pershing et al., 2010; Lavery et al., 2010, 2014; Smith et al., 2013; 
Willis, 2014; Ratnarajah et al., 2014, 2016, 2018; Woodstock et al., 
2023; Monreal et al., 2025). However, an ecosystem modeling 
analysis of historical and recent biological iron cycling in the 
Southern Ocean indicates that this recycling was, and is, carried 
out predominantly by zooplankton (Maldonado et al., 2016). 
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Nevertheless, this study also found that the iron demands of the 
primary production required to sustain baleen whales could be met 
entirely by the iron recycled by these same whales if the iron content 
of krill was sufficiently high (Maldonado et al., 2016). Furthermore, 
this analysis did not include recycling by sperm whales, which could 
be particularly effective in recirculating iron from the bathypelagic 
to the euphotic zone (Lavery et al., 2010). In addition, iron excreted 
by whales is bound by organic ligands, rendering it highly 
bioavailable (Monreal et al., 2025). A recent study found that the 
roles of cetaceans in nutrient recycling vary globally, with greater 
amounts of nutrients recycled by whales associated with higher 
primary productivity and their elemental composition dependent 
on cetacean functional diversity (Gilbert et al., 2023). 

In addition to the classic trophic cascade, in which biomasses at 
successive trophic levels show alternating negative and positive 
correlations with top predator biomass, “paradoxical top-down 
control” (Morozov et al., 2005), characterized by trophic effects 
with signs opposite to those in the classic cascade, is occasionally 
observed. This counterintuitive situation has been documented in the 
plankton of a shallow embayment of the northwest Atlantic Ocean 
(Hargrave et al., 1985), as well as in freshwater (Leibold et al., 1997; 
Alimov, 2000) and terrestrial ecosystems (Halaj and Wise, 2001). 
Such behavior is also predicted by a simple model of eutrophic pelagic 
ecosystems featuring high nutrient fluxes across the pycnocline 
(Morozov et al., 2005). Both empirical and model findings suggest 
that predation could prevent short-term overgrazing of 
phytoplankton by zooplankton, thus preventing consumer-resource 
cycles and effectively increasing and decreasing long-term 
zooplankton and phytoplankton biomass, respectively (Hargrave 
et al., 1985; Morozov et al., 2005). However, given how 
infrequently they have been observed, such dynamics are likely 
exceptional. Furthermore, empirical and modeling studies indicate 
that the increased zooplankton biomass generated in this way is 
prone to sudden collapses (Alimov, 2000; Morozov et al., 2005). 

The hypothesis of synergistic trophic interactions (Johannessen, 
2014) also departs radically from the traditional understanding of 
top-down versus bottom-up control (Figure 8c). It was advanced to 
explain observed patterns in data on phytoplankton, zooplankton, 
and planktivorous fish in the Skagerrak. This hypothesis states that 
high consumption by fish and zooplankton could reduce 
exploitation competition among zooplankton and phytoplankton. 
Thus, through multiple species-level trophic cascades, consumers 
could increase rather than decrease total biomasses at lower trophic 
levels. Such synergistic predator-prey interactions, associated with 
functional redundancy at lower trophic levels, would generate 
mutually supporting standing biomasses at adjacent trophic levels 
and constitute an evolutionarily stable strategy, i.e. a system of 
trophic interactions resistant to selective pressures favoring a classic 
evolutionary arms race. While this hypothesis is potentially 
revolutionary, it remains untested beyond the original study area 
off southern Norway. 

Unconventional trophic interactions may also be involved in the 
famous “paradox of the plankton” (Hutchinson, 1961), one of the 
greatest unsolved problems in aquatic ecology. The paradox stems 
from the apparent conflict between phytoplankton species richness in 
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well-mixed waters and the competitive exclusion principle (Gause, 
1934). Suppression of strong competitors by zooplankton grazing was 
advanced as a potential resolution but initially considered incapable 
of explaining its paradoxical magnitude (Hutchinson, 1961). 
However, a more recent study suggests that disruption of 
competition by grazing could indeed support high phytoplankton 
species richness (Prowe et al., 2012) through the synergistic trophic 
interactions described above (Johannessen, 2014). While horizontal 
spatial heterogeneity generated by mesoscale vortices in the epipelagic 
zone could also interfere with interspecific competition (Bracco et al., 
2000), this mechanism cannot explain the paradoxically high species 
richness of lacustrine phytoplankton. Chaotic phytoplankton guild 
dynamics have also been invoked to resolve this paradox. While 
chaotic dynamics could stem from multiple biotic and abiotic 
factors, including mesoscale vortices, trophic interactions are likely 
one of the mechanisms involved in generating such dynamics 
(Scheffer et al., 2003). 
Patterns and processes in marine 
trophodynamics 

Several biotic factors have been suggested to promote trophic 
cascades and top-down control in marine ecosystems. Firstly, 
palatability of dominant producers (e.g. Northern Hemisphere 
kelps and many phytoplankton) is associated with trophic 
cascades (Strong, 1992; Steinberg et al., 1995). Secondly, keystone 
species (Strong, 1992) and endothermic vertebrates with high 
metabolic rates (Borer et al., 2005) are frequently involved in 
trophic cascades and top-down control. The sea otter belongs to 
both of these categories, which explains the strength and variety of 
its top-down impacts on North Pacific coastal ecosystems. Thirdly, 
highly compartmentalized cold-water food webs, in which a few 
strong interactions among several species channel much of the total 
energy flow, e.g. the Antarctic Scotia Sea (Murphy et al., 2007), 
subarctic Atlantic (Frank et al., 2007), and North Pacific kelp forests 
(Estes and Palmisano, 1974) often demonstrate trophic cascades 
and top-down control. This is likely at least partly due to the fact 
that among marine fish, both connectance and the average number 
of predator species consuming a prey species are negatively 
correlated with temperature (Albouy et al., 2019). 

Conversely, several producer traits have been proposed to favor 
bottom-up control in marine ecosystems. Firstly, strong chemical 
defenses in the kelps of temperate Oceania (Steinberg et al., 1995) 
weaken grazing pressure and thus should attenuate community-

level trophic cascades, yet such cascades occur in New Zealand kelp 
forests (Babcock et al., 1999; Shears and Babcock, 2002; Edgar et al., 
2017), albeit not as frequently as in their North Pacific counterparts. 
Secondly, small phytoplankton size and short lifespan are globally 
associated with bottom-up control (Sommer, 2008; Boyce et al., 
2015). Phytoplankton size and lifespan decrease with increasing 
temperature, most likely due to increased stratification resulting in 
decreased nutrient availability (Sommer et al., 2017). This suggests 
that warmer waters should favor bottom-up control and attenuate 
trophic cascades (Sommer, 2008; Boyce et al., 2015; Murphy et al., 
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2020). While phytoplankton in tropical pelagic ecosystems is 
subject to top-down control (Gasol et al., 2003; Banse, 2013), 
community-level cascades are unlikely to occur due to the 
dominance of small phytoplankton and the resulting high levels 
of omnivory within the zooplankton guild (Sommer et al., 2002; 
Sommer and Stibor, 2002). 

Omnivory is a consumer trait often suggested to favor bottom-

up control in marine ecosystems (Strong, 1992; Bascompte et al., 
2005; Bruno and O’Connor, 2005; Boyce et al., 2015) by distributing 
predation pressure across trophic levels and thus increasing food 
web complexity. It is significantly more widespread in saltwater 
ecosystems than in their freshwater or terrestrial counterparts 
(Thompson et al., 2007). The typical degrees of omnivory among 
two zooplankton taxa dominating marine and lacustrine ecosystems 
(i.e. copepods and cladocerans, respectively) are a case in point 
(Sommer and Sommer, 2006). In marine ecosystems, omnivory is 
positively associated with temperature, again suggesting that 
bottom-up control is favored in warmer waters (Boyce et al., 
2015) and could increase with climate change (Murphy et al., 
2020). While top-down control does occur in tropical pelagic 
ecosystems (Gasol et al., 2003; Banse, 2013; Ward and Myers, 
2005; Essington, 2006; Parrish, 2009; Hunsicker et al., 2012), 
community-level trophic cascades are unlikely due to high 
omnivory among several zooplankton groups (Sommer et al., 
2002; Sommer and Stibor, 2002). The converse of omnivory is 
subsidized predation, in which feeding on one resource strengthens 
the impact of a predator on another (Polis, 1999; Borer et al., 2005). 
The top-down impact in this case is analogous to that of a mobile 
predator on resident prey inhabiting a spatially constrained habitat 
(McCann et al., 2005), such as the sharks feeding on coral reef fish at 
Palmyra Atoll (Sandin et al., 2008; McCauley et al., 2012a). 

Biodiversity has also been suggested to promote bottom-up 
control in marine ecosystems (Strong, 1992; Frank et al., 2006, 2007, 
2015; Petrie et al., 2009; Pershing et al., 2015; Boyce et al., 2015) by  
increasing the number of possible trophic interactions (Albouy 
et al., 2019) and thus decreasing the influence of each interaction 
through compensatory responses (Fahimipour et al., 2017). While 
biodiversity of prey (Stachowicz et al., 2007) and copepods 
(Benedetti et al., 2025) is associated with bottom-up control in 
marine ecosystems, the trophic effects of predator biodiversity vary 
(Stachowicz et al., 2007). Although the species richness of sharks 
(Boyce et al., 2015) and other marine predators (Baum and Worm, 
2009) is linked to bottom-up control and inimical to trophic 
cascades, predator species richness in Northeast Pacific kelp

forests strengthens trophic cascades, and thus kelp cover, through 
functional complementarity (Byrnes et al., 2006; Burt et al., 2018; 
Selgrath et al., 2024; Langendorf et al., 2025) and redundancy 
(Eisaguirre et al., 2020; Kumagai et al., 2024). Since marine 
species richness increases with temperature (Tittensor et al., 2010; 
Albouy et al., 2019), it is not surprising that tropical seas feature 
many species and few trophic cascades (Boyce et al., 2015). It may 
be relevant that prey consumption by coastal mesopredators 
(Whalen et al., 2020) and large pelagic fish (Roesti et al., 2020) 
peaks in subtropical and temperate waters, respectively, i.e. at 
higher latitudes than marine species richness (Tittensor et al., 
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2010; Albouy et al., 2019), although community-level cascades 
only appear in North Atlantic neritic ecosystems at subarctic 
latitudes with low species richness (Frank et al., 2007, 2015; Petrie 
et al., 2009). However, species richness is not a significant factor in 
the relative prevalence of trophic cascades across ecosystem types 
(Borer et al., 2005). 
Conclusions 

The studies discussed above reveal three general patterns in the 
prevalence of top-down control and trophic cascades across marine 
ecosystems. Firstly, top-down control of individual trophic 
interactions is more common in neritic and pelagic ecosystems 
than are species-level cascades, which in turn are more frequent 
than community-level cascades. Secondly, although top-down 
control and species-level trophic cascades are relatively common in 
neritic and pelagic ecosystems, community-level cascades are indeed 
more prevalent in lacustrine and marine benthic ecosystems than in 
their neritic counterparts, and occur least frequently in pelagic 
ecosystems. Thirdly, the incidence and strength of community-level 
trophic cascades in neritic and pelagic ecosystems is inversely related 
to species richness and omnivory, both of which are positively 
associated with temperature at large spatial scales. 

These studies also identify factors that provide plausible 
explanations of these patterns (Table 2). The distinctions between 
lacustrine, neritic, and pelagic trophodynamics apparently stem from 
the increasing scale of physical processes from lacustrine to pelagic 
ecosystems and from the effects of these processes on nutrient 
availability, plankton community composition, and the efficiency of 
phytoplankton control by grazing. This chain of physical, chemical, 
TABLE 2 Factors favoring top-down versus bottom-up control in 
marine ecosystems. 

Factor State favoring 
top-down 
control 

State favoring 
bottom-up 
control 

Omnivory Low High 

Prey biodiversity Low High 

Food web structure Compartmentalized Integrated 

Grazer control of producers Efficient Inefficient 

Changes in prey vulnerability Frequent Infrequent 

Prey aggregation stability Low High 

Predator-prey mobility ratio High Low 

Spatiotemporal overlap and 
conflict between prey energy 
savings and/or gains and 
predation risk 

High Low 

Overexploitation and “fishing 
down food webs” 

Low High 

Natural temperature and 
anthropogenic warming 

Low High 
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and biological influences also explains the differences in trophic 
structure and control among neritic and pelagic ecosystems in 
subpolar and polar, temperate and warm, and oligotrophic tropical 
waters. Top-down control and trophic cascades in marine ecosystems 
are seemingly hindered by high omnivory and prey species richness 
through their disruption of strong predator-prey interactions. The 
influence of temperature on these ecological variables is likely mediated 
by the effects of evolutionary and physiological factors on marine 
organisms. Ecological theory predicts that top-down control, and thus 
trophic cascades, should be favored by frequent changes in the 
vulnerability of prey to predators (including those caused by 
ephemeral prey aggregations and high predator-prey mobility ratios), 
as well as by overlap and conflict between prey energy gains and/or 
savings and predation risk avoidance. Overexploitation and 
anthropogenic warming weaken or obscure trophic cascades in many 
marine ecosystems. The logistical challenges of conducting ecological 
research in the open ocean hinder the detection of pelagic trophic 
cascades. Fear of predators drives trophic cascades and vertical 
migrations in numerous marine ecosystems. Paradoxical and 
synergistic trophic interactions, as well as feedback loops mediated 
by nutrient cycling, complicate the conventional dichotomy between 
top-down and bottom-up control. Finally, both of these types of 
trophic control often operate simultaneously, successively, or at 
different spatial scales in numerous marine ecosystems. 
 

Best practices and new research 
directions for marine trophic ecology 

While there may well be objective reasons for the paucity of 
observed trophic cascades in pelagic ecosystems, it is also highly 
likely that a dearth of research effort has contributed to this 
situation. Thus, formulation and implementation of best research 
practices for marine trophic ecology could help evaluate the true 
importance of trophic cascades and top-down control in 
pelagic ecosystems. 

Firstly, biological sampling across multiple trophic levels could 
be emphasized more strongly in planning standard oceanographic 
and fisheries research cruises. For example, net tows producing 
biomass and diet composition indices for pelagic species (i.e. fish, 
squid, and zooplankton) and physical and chemical sampling of the 
water column could be integrated with visual and acoustic surveys 
of marine mammals, seabirds, and fish and mark-recapture 
estimation of abundance and mortality to yield an end-to-end 
view of the abiotic and biotic dynamics of pelagic ecosystems. 
Currently, such comprehensive surveys of pelagic ecosystems are 
exceptional, as most research cruises focus on gathering data on 
physical and NPZ (nutrient, phytoplankton, and zooplankton) 
dynamics and/or providing inputs for fisheries stock assessments. 

Secondly, biological data from research cruises could be more 
effectively harnessed to investigate the prevalence of trophic 
cascades and top-down control in neritic and pelagic ecosystems. 
These data (with particular emphasis on biomass and diet 
composition indices) could be assembled into time series 
documenting seasonal, interannual, and decadal patterns in 
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ecosystem dynamics. Such patterns could then be analyzed using 
a variety of statistical techniques and food web models to determine 
the likely type of trophic control governing each predator-prey 
interaction. Currently, such an approach is limited to the best-
funded and staffed marine and fisheries research agencies and rarely 
applied to the open ocean, particularly the high seas. 

Thirdly, research cruises could be planned to facilitate 
comparative investigations of ecosystem dynamics across 
gradients in selected variables known or suggested to influence 
trophic control. On the scale of one or more large marine 
ecosystems, relevant variables could include latitude, temperature 
(by depth), mixed layer depth, nutrient concentrations (by depth), 
and biodiversity. To minimize confounding effects, these studies 
could be designed as “natural experiments” by selecting stations and 
transects known to differ in as few variables as possible. 

Finally, the current state of knowledge permits the formulation 
of several research questions to be addressed in the future using the 
best practices discussed above. 
 

1. Do as yet undetected community-level trophic cascades 
operate in pelagic ecosystems? 

2. Is the HNLC character of subpolar and polar pelagic waters 
due entirely to micronutrient limitation or do zooplankton 
– phytoplankton – macronutrient cascades also contribute? 

3. How does the tripartite functional classification of marine 
predators (i.e. generalists, large prey specialists, and small 
prey specialists) impact trophic cascades? 

4. Are	 community-level marine trophic cascades typically 
driven by mortality or by fear? 

5.	 Do cascading diel vertical migrations, driven and 
modulated by trophic interactions, trigger community-

level trophic cascades in pelagic ecosystems? 
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Cowen, R. K. (1983). The effect of sheephead (Semicossyphus pulcher) predation on 
red sea urchin populations: an experimental analysis. Oecologia 58, 249–255. 
doi: 10.1007/BF00399225 

Curtis, J. S., and Wing, S. R. (2024). Size-specific reduction in kelp consumption by 
New Zealand urchins exposed to chemical cues from the red rock lobster. Ecosphere 15, 
e4932. doi: 10.1002/ecs2.4932 

Cury, P., Bakun, A., Crawford, R. J. M., Jarre, A., Quiñones, R. A., Shannon, L. J., et al. 
(2000). Small pelagics in upwelling systems: patterns of interaction and structural 
changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618. doi: 10.1006/ 
jmsc.2000.0712 

Cury, P. M., Boyd, I. L., Bonhommeau, S., Anker-Nilssen, T., Crawford, R. J., Furness, 
R. W., et al. (2011). Global seabird response to forage fish depletion - one-third for the 
birds. Science 334, 1703–1706. doi: 10.1126/science.1212928 

Dabiri, J. O. (2010). Role of vertical migration in biogenic ocean mixing. Geophys. 
Res. Lett. 37, L11602. doi: 10.1029/2010GL043556 

Dalpadado, P., Arrigo, K. R., Hjøllo, S. S., Rey, F., Ingvaldsen, R. B., Sperfeld, E., et al. 
(2014). Productivity in the barents sea - response to recent climate variability. PloS One 
9, e95273. doi: 10.1371/journal.pone.0095273 

Daskalov, G. M., Grishin, A. N., Rodionov, S., and Mihneva, V. (2007). Trophic 
cascades triggered by overfishing reveal possible mechanisms of ecosystem regime 
shifts. PNAS 104, 10518–10523. doi: 10.1073/pnas.0701100104 

Davenport, A. C., and Anderson, T. W. (2007). Positive indirect effects of reef fishes 
on kelp performance: the importance of mesograzers. Ecology 88, 1548–1561. 
doi: 10.1890/06-0880 

Dedman, S., Moxley, J. H., Papastamatiou, Y. P., Braccini, M., Caselle, J., Chapman, 
D. D., et al. (2024). Ecological roles and importance of sharks in the Anthropocene 
Ocean. Science 385, eadl2362. doi: 10.1126/science.adl2362 

DeMartini, E. E., Friedlander, A. M., Sandin, S. A., and Sala, E. (2008). Differences in 
fish-assemblage structure between fished and unfished atolls in the northern Line 
Islands, central Pacific. Mar. Ecol. Prog. Ser. 365, 199–215. doi: 10.3354/meps07501 

DeMaster, D. P., Trites, A. W., Clapham, P., Mizroch, S., Wade, P., Small, R. J., et al. 
(2006). The sequential megafaunal collapse hypothesis: testing with existing data. Prog. 
Oceanogr. 68, 329–342. doi: 10.1016/j.pocean.2006.02.007 

Desbiens, A. A., Roff, G., Robbins, W. D., Taylor, B. M., Castro-Sanguino, C., 
Dempsey, A., et al. (2021). Revisiting the paradigm of shark-driven trophic cascades in 
coral reef ecosystems. Ecology 102, e03303. doi: 10.1002/ecy.3303 

Dewar, W. K., Bingham, R. J., Iverson, R. L., Nowacek, D. P., St. Laurent, L. C., and 
Wiebe, P. H. (2006). Does the marine biosphere mix the ocean? J. Mar. Res. 64, 541– 
561. doi: 10.1357/002224006778715720 

Dinasquet, J., Titelman, J., Møller, L. F., Setälä, O., Granhag, L., Andersen, T., et al. 
(2012). Cascading effects of the ctenophore Mnemiopsis leidyi on the planktonic food 
web in a nutrient-limited estuarine system. Mar. Ecol. Prog. Ser. 460, 49–61. 
doi: 10.3354/meps09770 

Doherty, B., Johnson, S. D. N., Benson, A. J., Cox, S. P., Cleary, J. S., and Lane, J. 
(2024). Predation by marine mammals explains recent trends in natural mortality of 
Pacific Herring (Clupea pallasii) and changes expectations for future biomass. ICES J. 
Mar. Sci. 82, fsae183. doi: 10.1093/icesjms/fsae183 
frontiersin.org 

https://doi.org/10.1525/9780520934290-010
https://doi.org/10.1016/j.biocon.2020.108830
https://doi.org/10.1016/j.pocean.2014.01.004
https://doi.org/10.1016/j.pocean.2014.01.004
https://doi.org/10.1111/ele.12481
https://doi.org/10.1038/nature09268
https://doi.org/10.3354/meps11411
https://doi.org/10.3354/meps11411
https://doi.org/10.1098/rspb.2000.1212
https://doi.org/10.1038/s41598-021-94615-5
https://doi.org/10.3354/meps007013
https://doi.org/10.1016/j.cub.2010.08.041
https://doi.org/10.2307/1383287
https://doi.org/10.2307/1383287
https://doi.org/10.1111/j.1461-0248.2005.00808.x
https://doi.org/10.1111/j.1461-0248.2005.00808.x
https://doi.org/10.14288/1.0354312
https://doi.org/10.1017/S0025315423000887
https://doi.org/10.1111/1365-2656.12097
https://doi.org/10.1098/rspb.2018.0553
https://doi.org/10.1098/rspb.2018.0553
https://doi.org/10.1111/j.1461-0248.2005.00842.x
https://doi.org/10.1007/s13280-015-0665-5
https://doi.org/10.1007/s12237-015-9984-9
https://doi.org/10.3354/meps11353
https://doi.org/10.2307/1309989
https://doi.org/10.1007/s00442-016-3753-8
https://doi.org/10.1007/s00442-016-3753-8
https://doi.org/10.1073/pnas.1113286109
https://doi.org/10.1073/pnas.0806649105
https://doi.org/10.1111/j.1461-0248.2010.01443.x
https://doi.org/10.1038/s41598-020-63650-z
https://doi.org/10.1038/s41598-020-63650-z
https://doi.org/10.1093/plankt/fbae044
https://doi.org/10.1002/ece3.4963
https://doi.org/10.1890/13-2147.1
https://doi.org/10.3354/meps173215
https://doi.org/10.3354/meps173215
https://doi.org/10.1007/BF00399225
https://doi.org/10.1002/ecs2.4932
https://doi.org/10.1006/jmsc.2000.0712
https://doi.org/10.1006/jmsc.2000.0712
https://doi.org/10.1126/science.1212928
https://doi.org/10.1029/2010GL043556
https://doi.org/10.1371/journal.pone.0095273
https://doi.org/10.1073/pnas.0701100104
https://doi.org/10.1890/06-0880
https://doi.org/10.1126/science.adl2362
https://doi.org/10.3354/meps07501
https://doi.org/10.1016/j.pocean.2006.02.007
https://doi.org/10.1002/ecy.3303
https://doi.org/10.1357/002224006778715720
https://doi.org/10.3354/meps09770
https://doi.org/10.1093/icesjms/fsae183
https://doi.org/10.3389/fevo.2025.1587171
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Surma et al. 10.3389/fevo.2025.1587171 
Donadi, S., Austin, Å.N., Bergström, U., Eriksson, B. K., Hansen, J. P., Jacobson, P., 
et al. (2017). A cross-scale trophic cascade from large predatory fish to algae in coastal 
ecosystems. Proc. R. Soc B 284, 20170045. doi: 10.1098/rspb.2017.0045 

Donadi, S., Olin, A., Casini, M., Eklöf, J., Erlandsson, M., Fredriksson, R., et al. 
(2024). Reduced predation and competition from herring may have contributed to the 
increase of three-spined stickleback in the Baltic Sea. ICES J. Mar. Sci. 82, fsae168. 
doi: 10.1093/icesjms/fsae168 
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