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Seabirds are among themost threatened birds globally, with the loss or deterioration

of coastal breeding habitats posing a severe threat. Natural and anthropogenic

disturbances substantially influence coastal ecosystems through erosion and

vegetation loss, altering habitat for the wildlife species that depend on them. In

addition to these disturbances, oceanographic processesmay play an important role

in shaping the vegetation at breeding habitats; however, there is limited information

on how vegetative conditions for burrow nesting seabirds have changed over time,

andwhether these changes are related to specific oceanographic or climatic factors.

The Oregon Coast National Wildlife Refuge Complex, USA (NWRC) is home to a

diverse suite of 1.3 million nesting seabirds from 14 species, which provide valuable

ecological, economic, and cultural services, including nutrient transfer to terrestrial

habitats and ecotourism for local communities. Over the last 30 years, populations of

several burrow nesting seabird species including tufted puffin (Fratercula cirrhata)

and rhinoceros auklet (Cerorhinca monocerata), which breed on offshore islands,

have sharply declined along the Oregon Coast. To better understand the potential

factors driving these declines, we conducted a spatiotemporal analysis of an aspect

of burrow nesting seabird habitat, vegetation cover, within theOregonCoast NWRC.

Specifically, we quantified vegetative cover on 16 islands from 1992 to 2022 using a

combination of empirical data, historical aerial photography (1992–2005), and aerial

photography from the National Agriculture Imagery Program (2005–2022). Results

showed cyclical fluctuations in vegetation cover coast-wide, which were closely

related to large scale oceanographic oscillations. Specifically, vegetation cover was

negatively correlated with the winter Pacific Decadal Oscillation and positively

correlated with the spring El Nino Southern Oscillation. We did not directly

compare seabird population trends to vegetation trends; however, quantifying

these long-term changes in vegetation at breeding habitats can contribute to our

comprehensive understanding of the myriad factors influencing seabird population

dynamics and conservation.
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1 Introduction

Natural and anthropogenic disturbances substantially influence

coastal ecosystems through processes such as erosion and

vegetation loss, altering habitat for the wildlife species that

depend on them (Gracia et al., 2018; Reed et al., 2022). Seabirds

are among the most threatened birds globally (Dias et al., 2019),

with the loss or deterioration of coastal breeding habitats posing a

severe threat (Croxall et al., 2012). Climate change may exacerbate

these threats by intensifying habitat loss. For example, hotter air

temperatures can lead to higher evaporative demand, soil moisture

depletion, and vegetation die-off (Bramwell and Caujapé-Castells,

2011). At the same time, sea level rise and increased coastal

inundation from stronger, more frequent storms are expected to

increase erosion and wind-driven desiccation at vulnerable seabird

nesting sites (Croxall et al., 2012; Curtis et al., 2021; Young et al.,

2012). For burrow-nesting seabirds, decreased vegetation cover can

lead to depleted nesting materials, increased soil erosion, reduced

protection from predators, and lower chick survival during heavy

rainfall (Bried et al., 2009; Demongin et al., 2010). Vegetation cover

also offers protection against wind and solar radiation (Schaaf et al.,

2018). Quantifying the vegetative characteristics at breeding seabird

colonies, mapping areas of loss or gain, and linking them to long-

term climate conditions is therefore a critical conservation

research priority.

In addition to climate-mediated disturbance, a growing body of

literature recognizes the important role that oceanographic

processes play in influencing coastal vegetation (Black, 2009;

Galeano et al., 2017). Coastal upwelling in the California Current

Ecosystem (CCE) brings cold, nutrient-rich water to the surface,

altering coastal microclimates, fog formation, and moisture

availability in terrestrial habitats (Diffenbaugh et al., 2004; Xiu

et al., 2018). Thus, upwelling may indirectly influence plant

growth at seabird breeding sites. Large-scale oceanic-atmospheric

processes such as the Pacific Decadal Oscillation (PDO), North

Pacific Gyre Oscillation (NPGO), and El Niño Southern Oscillation

(ENSO) also influence the CCE’s regional conditions by modulating

humidity, air and ocean temperatures, and precipitation (Yeh et al.,

2015). Positive PDO phases are characterized by anomalously warm

sea-surface temperatures (SST), warm air temperatures, and dry

periods over the Pacific Northwest mainland of the U.S (Mantua

and Hare, 2002). Conversely, negative phases of the PDO are

associated with cool and wet conditions. Positive ENSO phases

(i.e., El Niño) are associated with anomalously warm SSTs, and

drier and warmer conditions in the Pacific Northwest in winter and

spring (Barnard et al., 2017; Chavez et al., 2002; McPhaden et al.,

2006), while negative ENSO phases (i.e., La Niña) bring cooler sea-

surface temperatures, increased winter precipitation, and more

frequent storms (Bertrand et al., 2020). The positive phase of

NPGO is characterized by the upwelling of cold, nutrient-rich

water, which can be associated with changes in wind stress (Di

Lorenzo et al., 2008), air temperature, and humidity (Park et al.,

2017; Song et al., 2023). Previous research has established that these

oceanic processes influence terrestrial vegetation growth; however,

the direction and magnitude of these relationships are species
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dependent and can vary regionally (Black, 2009; Black et al.,

2018), emphasizing the need for place-based research to

inform management.

The high productivity and biological diversity of the CCE supports

millions of resident and migratory seabirds along the Pacific flyway,

offering secure environments for breeding and roosting (Parrish et al.,

2007; Yen et al., 2006). The islands off the Oregon Coast exemplify

breeding habitat within the CCE that are at risk of vegetation loss. These

offshore islands are home to a diverse suite of 1.3 million nesting

seabirds from 14 species (Naughton et al., 2007), which provide valuable

ecological, economic, and cultural services, including nutrient transfer to

terrestrial habitats and ecotourism for local communities (Signa et al.,

2021). The Oregon Coast National Wildlife Refuge Complex (NWRC)

has documented declines for multiple burrowing seabird populations

and breeding colonies since 1988, including rhinoceros auklets

(Cerorhinca monocerata), Cassin’s auklets (Ptychoramphus aleuticus),

and fork-tailed storm petrels (Hydrobates furcatus) (Naughton et al.,

2007; USFWS, 2009). Populations of tufted puffin (Fratercula cirrhata)

have declined more than 90% over the past four decades—both along

the Oregon Coast and within the larger CCE—contributing to their

designation as a species of greatest conservation need in Oregon and

endangered in Washington State (Hart et al., 2018; U.S. Fish and

Wildlife Service, 2020). Although Leach’s storm petrels (Hydrobates

leucorhous) are among the most common breeding seabirds on the

Oregon Coast, infrequent surveys have made their population trends

unclear (Orben et al., 2019). Poor breeding site conditions are a potential

cause of decline for burrow-nesting seabirds; however, there is little

quantitative evidence to support this assumption, leaving the full extent

of breeding habitat’s influence on seabird populations unknown (U.S.

Fish and Wildlife Service, 2020). Given recognized declines in burrow-

nesting seabirds, knowledge gaps regarding the driving factors, and

limited resources, local managers face uncertainty in prioritizing

conservation actions for maximum positive impact. Long-term

monitoring and spatial data collection are essential to track habitat

change over time, identify key environmental drivers, and inform

targeted management strategies that support seabird conservation.

Alongside factors such as climate variability, geographic features,

and socio-ecological conditions, vegetation cover is widely recognized

as a fundamental aspect of habitat suitability for burrow nesting

seabirds. Vegetation plays a key role in stabilizing soil required for

burrow structure (Shuford and Gardali, 2008). When vegetation is lost

or degraded, soil becomes vulnerable to leaching and erosion, especially

during winter storms, rendering sites unfavorable for birds (Norman,

1970; Cadiou et al., 2010). Burrowing seabirds in the CCE can be

broadly grouped into storm petrels (Hydrobates spp.) and alcids (e.g.,

tufted puffins and auklets) (USFWS, 2005). Storm petrels often breed

on densely vegetated islands, excavating earthen burrows in soil

beneath vegetation (Harris, 1974; MacKinnon, 1989; Pollard, 2008).

Burrow density in storm petrels has been shown to increase with

vegetation cover, while higher rates of burrow collapse are observed

where vegetation is reduced (Cadiou et al., 2010; Stokes et al., 2021).

Similarly, previous research has emphasized the importance of steep,

vegetated slopes for nesting alcids (Richardson, 1961; Boone, 1985;

Piatt et al., 1997), though tufted puffin are flexible to nest in rocky

crevices in the absence of vegetation (S. Stephensen, pers. comm).
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Although seabird burrowing density may vary among vegetation types

(e.g., herbaceous, grasses, woody) (Bancroft et al., 2005; Pearson et al.,

2009), the historical data available limited our analysis to vegetation

cover, rather than plant community composition.

In coastal island ecosystems, aerial photography and other

remotely sensed data sets offer more robust spatial documentation

over field data, particularly in areas that are physically inaccessible due

to steep, rugged terrain. Aerial photography provides a cost-effective,

non-invasive, and detailed method for assessing habitat change over

large spatial and temporal scales (Long and Skewes, 1994; Robbins,

1997; Verhoeven et al., 2013). However, although it is widely accessible

and affordable, aerial imagery is often limited by coarse spatial

resolution (e.g., 0.5–10 meters), making it challenging to analyze

smaller-scale habitat features. Incorporating ground truth data is

often necessary to capture detailed landcover change (Nagai et al.,

2020). Nevertheless, advances in image analysis techniques have

enhanced the utility of historical imagery (Morgan et al., 2010),

enabling long-term assessments of landcover change. Time-series

analyses provide insight into a landscape’s historical context and the

frequency and duration of mechanisms driving change (Gómez et al.,

2016; Käyhkö and Skånes, 2006). Thus, a combination of aerial

imagery and field observation to quantify landcover change over

time and understand underlying ecological processes can help

natural resource managers make informed decisions.

The goal of this research was to examine how an aspect of

burrow-nesting seabird breeding habitat, vegetation cover, has

changed on the Oregon Coast over time and whether these

changes are related to climatic and oceanographic factors.

Specifically, we quantified vegetation change using historical aerial

images (1992–2005), multispectral aerial imagery from the National

Agriculture Imagery Program (NAIP) (2005–2022), and

contemporary field-based habitat surveys. We then related

vegetation change to climatic and oceanographic factors

accounting for marine-driven processes, seasonal weather, and

coastal upwelling. Although the influence of large-scale

oceanographic fluctuations on seabirds through changes in

marine food web dynamics is well-documented (Gibson et al.,

2023; Schmidt et al., 2014), this is the first study to examine the

potential effects on Oregon’s island vegetation. We hypothesized

that vegetation cover decreased at seabird breeding sites over the

past 30 years due to an increase in the frequency and intensity of

heat extremes and an increase in storm surge events (Masson-

Delmotte et al., 2021). Precipitation directly alters soil water

availability, altering plant growth, especially during the spring

“green-up” phase (Piao et al., 2019), while hotter summer air

temperatures can contribute to vegetative stress and die-off

(Peterson et al., 2014). Thus, we expected low spring precipitation

and high summer temperatures to be the factors most strongly

correlated with decreased vegetation cover. In contrast, we

anticipated that marine-driven processes and coastal upwelling

would have an indirect and lesser effect on vegetation change.

Understanding these long-term shifts in seabird breeding habitat

—along with the climatic and oceanographic drivers that may

influence them—will inform habitat restoration efforts, invasive

species control, and other adaptive management strategies.
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2 Methods

2.1 Study area

The Oregon Islands National Wildlife Refuge is located off the

coast of Oregon, USA and includes 1,853 rocks, reefs, islands, and

headlands that stretch from Tillamook Head south to the California

border, totaling 240 hectares. North of Tillamook Head, the Three

Arch Rocks National Wildlife Refuge encompasses 6.1 hectares of

islands off the coast of Oceanside, Oregon, USA. The Oregon Islands

and Three Arch Rocks National Wildlife Refuges will hereafter be

referred to as the Oregon Coast National Wildlife Refuge Complex

(Oregon Coast NWRC). The Oregon Coast NWRC is a designated

Wilderness Area managed by the U.S. Fish and Wildlife Service.

The islands within the Oregon Coast NWRC support diverse plant

communities, including both native and invasive species. Dominant

native vegetation types include coastal prairie-grassland and riparian

shrub communities, such as native beachgrass grassland dominated by

American dunegrass (Leymus mollis), saltgrass (Distichlis spicata), and

Pacific reedgrass (Calamagrostis nutkaensis)/low shrub associations.

Other common assemblages include rush (Juncus breweri) stands,

mixed short shrub/herb/grass communities, and stonecrop

dominated areas (Bilderback and Bilderback, 2010). Due to logistical

constraints, comprehensive vegetation surveys have been limited;

however, the single conducted study reports between 27 and 47 plant

species per island (Bilderback and Bilderback, 2010). Invasive species

are common, with the most widespread being sea fig (Carpobrotus

chilensis), wild radish (Raphanus raphanistrum), New Zealand spinach

(Tetragonia tetragonioides), and tansy ragwort (Jacobaea vulgaris) (Ball

and Olthof, 2022).

Within the refuge, 47 offshore islands were historically (1979–1988)

occupied by tufted puffin, many of which were also occupied by other

burrow-nesters such as rhinoceros auklets, Cassin’s auklet, fork-tailed

storm petrels, and Leach’s storm petrels (Naughton et al., 2007).

Because we were interested in assessing vegetation trends, we

excluded islands that lacked vegetation. Vegetation presence was

determined by assessing high-resolution aerial imagery from U.S. Fish

and Wildlife Service helicopter surveys (2012–2021). This reduced the

set to 31 islands. To ensure geographic representation, islands were

classified as “northern” (located north of 44° latitude) or “southern”

(south of 44° latitude). This distinction reflects previously-documented

differences in seabird species community composition and abundance

between the north and south coast regions (Naughton et al., 2007). We

first selected the seven islands that were easily accessible in the field to

include in the study. From the remaining islands, we randomly selected

sites to achieve a balanced sample of eight northern and eight southern

islands. The extent of our study was comprised of these 16 historically

occupied, vegetated islands across the Oregon Coast NWRC.
2.2 Retrieval and pre-processing of remote
sensing data

The first task for assessing vegetation change at burrow-nesting

seabird habitats was to acquire and process data frommultiple sources
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for a single, unified analysis (Supplementary Figure S1). We obtained

NAIP orthoimagery with a spatial resolution of 0.6-1.0 m ground

sample distance from U.S. Geological Survey Earth Explorer (https://

earthexplorer.usgs.gov/). The images from 2005, 2009, 2011, 2012,

2014, 2016, 2020, and 2022 were acquired during the agricultural

growing season (June–August; leaf-on) (Supplementary Table S2).

The 2018 image, from the Oregon Statewide Imagery Program

(OSIP), was derived at 0.305 m resolution from the Oregon Spatial

Data Library (https://spatialdata.oregonexplorer.info). All 16

islands were included in the spatial extent of NAIP and OSIP,

with at least three-band—blue (B; 450-510nm), green (G; 530–590

nm), and red (R; 640–670 nm)—imagery. NAIP and OSIP imagery

acquired after 2009 are four-band, including near infrared (NIR;

750-2500nm); however, we excluded the NIR band from this

classification to maintain consistency with historical imagery,

which only contains RGB bands. The data were georeferenced

prior to distribution, obtained with minimal cloud cover, and

geometrically and radiometrically corrected by the data vendor

prior to delivery to minimize differences between acquisition dates.

Due to this preparation, we omitted additional geometric or

radiometric normalization. We downloaded data in MrSID™

(.sid) format, allowing significant file compression with minimal

to no degradation in image quality. For each available year, the full

NAIP county mosaics were downloaded for all seven Oregon Coast

counties: Clatsop, Tillamook, Lincoln, Lane, Douglas, Coos,

and Curry.

We downloaded individual historical aerial images from the

Earth Explorer database for all 16 sites as.tif files (Supplementary

Table S2). Historical images were acquired by the U.S. Bureau of

Land Management (BLM) from 1992 to 2002 at 1000 dpi resolution

with a scale of 1:12,000, and photos were selected based on the

available imagery acquired during the summer season (May–

August). We deliberately selected photos acquired during the

summer to identify areas with deciduous vegetation during the

time of year when burrow-nesting seabirds are selecting and

utilizing breeding habitat. Therefore, phenological differences

between seasons were minimized when making comparisons with

NAIP and OSIP imagery. Each historical image was georeferenced

manually in ERDAS Imagine® 2023 (version 16.8, Hexagon

Geospatial, Norcross, GA, USA). This allowed us to geocode each

photo with a map projection so that it could be displayed with other

spatial data, and ensured overlap of islands across years. We used an

image-to-image registration process (Everitt et al., 2008), with all

years geometrically corrected to the OSIP 2018 scene due to its high

spatial resolution (0.305 m).

All images were imported into ArcGIS Pro (Version 3.1.2, Esri

Inc., 2023) and projected to the spatial reference coordinate system

EPSG: 2993, NAD 1983 (HARN) Oregon Lambert Conformal

Conic (Intl. m.). To facilitate comparison between years, images

were resampled to a spatial resolution equivalent to that of the

image with the lowest spatial resolution (1 m by 1 m per pixel). We

hand-digitized the land-water boundary along each island. To

account for changing tides, and therefore changing boundaries,

we compared photographs from all years at each site to identify the

photograph with the highest tides. The selected photograph served
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as the base map for digitizing the island boundary, thereby

excluding water from the analysis. We decided that the loss of

minor sections of the island boundary, often submerged by tides,

was negligible, as burrow-nesting seabird habitats were not situated

within the low-elevation rocky intertidal zone. Finally, NAIP, OSIP,

and historical images were clipped to the polygon boundaries of

each island using the “Extract by Mask” tool (Figure 1). We ensured

each image had precisely the same number of pixels across years by

using the “Snap Raster” option within the tool. All tool and

computer setting specifications were kept consistent throughout

the process.
2.3 Field study: ground collection of
vegetation data

We conducted field sampling efforts from July 20, 2022 to

August 12, 2022 to ground truth at sites on the Oregon Coast

NWRC. Field sampled ground truth data were later used in

combination with pseudo sampled points to train and validate

landcover classification models (methods described in detail below).

Field data on islands were collected for the four dominant landcover

classes: photosynthetic vegetation, senesced vegetation, rock, and

bare ground. We characterized rock as exposed, immobile bedrock,

while bare ground referred to unvegetated, loose soil. Ground-level

habitat data were collected on the following seven islands: Goat

Island, Hunters Island, Whaleshead Cove (West Rock), Saddle

Rock, North Crook Point Rock, Chief’s Island, and Gull Rock

(Figure 2, Supplementary Table S1). We selected this subset of

islands within the study area because they were the only ones safely

accessible. Sampling frequency was dependent on the weather,

wind, and ocean conditions to safely travel to sites by boat or

by foot.

We conducted ground-based habitat sampling along line

transects. We established transects starting from the corner of the

island nearest our ascent, placing them parallel to the islands’

length, and used a 1 m x 1 m polyvinyl chloride pipe quadrat to

sample along the transect. Island sizes ranged from approximately

0.8 to 7.7 hectares. On smaller islands (less than 1.9 hectares in size),

quadrats were positioned at 5-meter intervals along the line

transect. For larger islands (greater than 1.9 hectares), quadrats

were spaced every 10 meters to increase habitat coverage. Rising

tides limited our available window for data collection. In some

cases, our team had approximately one hour to scale the steep sides

of the island, set up equipment, collect data, and descend the island

before the route to the boat became submerged. Due to these

logistical challenges, the total number of quadrat samples ranged

from 20 to 50 per island.

The following data were collected in each quadrat sample:

height of tallest vegetation (cm), slope, location, elevation, and

percent cover of dominant landcover classes. We visually

estimated the percentage of ground covered by each landcover

type within a quadrat. For photosynthetic and senesced

vegetation, all parts of the plant contributed to the percentage of

landcover, including stems and foliage. Slope was measured using a
frontiersin.org
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clinometer at the center of the quadrat, as close to the bare ground

as possible. At the center of each quadrat sample, we recorded

location and elevation using a real time kinematic global positioning

system (RTK GPS) to obtain high resolution topography data with

vertical accuracy within ± 2 cm. Benchmarks for the RTK GPS were

taken at established on-shore benchmark stations nearest to the

islands before and after surveys were completed to ensure vertical

accuracy within ±3 cm.
2.4 Supervised classification procedure

Random forest (RF) algorithm is a widely used classifier which uses

training data to create a collection of classification trees and derive

predictions based on the mean response of the constructed trees

(Breiman, 2001). Previous studies have reported that RF classifiers

were fast, successfully handled multicollinearity, performed well with

multi-source datasets, outperformed other classification methods when

applied to fine-scale imagery, and produced highly accurate results

(Belgiu and Drăgut,̧ 2016; Correll et al., 2019).

All pre-processed photos were imported into the Google Earth

Engine platform as GeoTIFF assets and underwent an image
Frontiers in Ecology and Evolution 05
analysis classification procedure using the RF algorithm within

Google Earth Engine (Gorelick et al., 2017). We created pseudo-

sampling points (i.e., points derived from photos) for each of the

land cover categories, sampling from every photo. We used the

general guideline that the sample size for each class should be

approximately 10 to 30 times the number of bands (Qiu et al., 2019;

Van Niel et al., 2005). An additional landcover class was added to

the original list to account for areas in the imagery covered by

shadow. Pixels were categorized into land cover classes through

visual interpretation, manually assigning each category a numerical

value (1–5) for classification (Bwangoy et al., 2010; Phan et al., 2020;

Sousa et al., 2020). We separated photosynthetic from senescent

vegetation due to their distinct spectral signatures. Photosynthetic

vegetation represents actively photosynthesizing plant matter,

reflecting higher values in the green band, whereas senescent,

dried vegetation shows higher red reflectance. Separating these

classes in a fractional cover analysis can often reduce spectral

noise and decrease misclassification (Xie et al., 2008; Guerschman

et al., 2009). We created an independent sample dataset for each

photo due to the diversity in spatial and temporal images. For the

2022 photos, we combined the pseudo-sampled points with
FIGURE 1

(Top row) Aerial photos at Goat Island, after pre-processing steps were completed. Photograph from 2002 was derived from historical BLM imagery,
2011 and 2022 were retrieved from NAIP, and the 2018 scene was retrieved from OSIP. (Bottom row) Results of random forest classification
procedure on aerial photos of Goat Island in 2002, 2011, 2018, and 2022.
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ground-truth data collected in the field in 2022 for each island. Red,

green, and blue spectral values were extracted for all points.

The combined dataset, including both pseudo sampled and

ground truth points, was randomly partitioned, allocating 20% of

the points into a “testing data” group and 80% of the points into a

“training data” group. The training group was input into the RF

classifier to define the most efficient set of rules in the classification

trees. The RF classifier was trained using 100 classification trees

(ntree = 100) based on the recommendations of previous studies

(Cánovas-Garcıá et al., 2017; Ghimire et al., 2012; Phan et al., 2020).

Once the RF model was trained, we used it to classify the remaining

pixels in the photo. Pixels classified as “Shadow” were merged from

all years to create one combined shadow mask for each island. The

shadow mask was then applied to each photo of the island to
Frontiers in Ecology and Evolution 06
standardize the analytical area (Figure 1). We calculated the

measures of classification accuracy for each image: overall

classification accuracy, Kappa coefficient of agreement, and user’s

and producer’s accuracy. User’s and producer’s accuracy provided

further insights into the reliability of how well the RF model

performed. User’s accuracy measures the probability that a pixel

classified as a specific landcover type actually belongs to that class in

reality. Producer’s accuracy indicates the proportion of correct

predictions made by the model using the training data. Therefore,

user’s accuracy provides information on the reliability of the model

for classifying new areas, and producer’s accuracy provides insight

into how well a landcover class has been classified. Overall accuracy

quantifies the ability of the model to correctly classify a pixel,

regardless of class. The Kappa coefficient of agreement measures
FIGURE 2

Distribution of northern and southern study sites within the Oregon Coast National Wildlife Refuge Complex. The points denote the locations of
individual study sites. Triangles represent a subset of study sites sampled in the field during Summer 2022.
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model performance, considering the agreement occurring by

chance of using random classifier (Cohen, 1960).

The percentage cover for each landcover class was calculated by

dividing the number of pixels in a given class by the total number of

pixels in the image. These steps were repeated for each year of

available imagery for each island. Finally, we calculated the

measures of classification accuracy—producer’s accuracy, user’s

accuracy, overall accuracy, and the kappa statistic—for the entire

image set of 136 photos. This allowed us to determine the range,

mean and standard deviation of the different measures of accuracy.
2.5 Dynamic factor analysis

We used a dynamic factor analysis (DFA) to characterize coast-

wide vegetation trends for the 30-year time series using the

Multivariate Autoregressive State-Space (“MARSS”) package

(Holmes et al., 2024) in R statistical software (Version 4.3.2,

R Core Team, 2023). DFA is a dimension reduction method that

models multivariate time series data, aiming to estimate underlying

common patterns, and allows scientists to make inferences about

ecological trends that are not directly observable (Holmes et al.,

2012; Ward et al., 2022; Zuur et al., 2003). A notable advantage of

this approach is that DFA is robust for data sets that have missing

observations and that include observations from multiple sources

(Aguilera et al., 2016; Durbin and Koopman, 2012).

We employed DFA to identify and characterize the underlying

patterns in vegetation cover on the focal islands along the Oregon

Coast over a 30-year period (1992-2022). Our analysis consisted of

two separate DFA procedures, both examining coast-wide

vegetation patterns using data from all 16 islands. The first DFA

procedure focused on the percent cover of photosynthetic

vegetation. In this analysis, each observation represented the

percentage of photosynthetic vegetation cover on a specific island

at a given time step, with all 16 islands contributing to the coast-

wide assessment. The second DFA procedure examined the percent

cover of total vegetation, combining both photosynthetic and

senesced vegetation. Similar to the first procedure, each

observation in this analysis represented the percentage of total

vegetation cover on a specific island at a given time step, using all 16

islands to capture coast-wide trends. For DFA models, we used a

diagonal and equal error structure and tested one hidden trend

(Holmes et al., 2012).

We separated photosynthetic from total vegetation in our analyses

to better characterize vegetation patterns and their relationships with

climate drivers. Photosynthetic vegetation reflects green biomass that

maintains dense root networks, contributes directly to soil stability,

and serves as an indicator of soil moisture (Xu and Zhou, 2011; Peng

et al., 2024; Lann et al., 2024). In contrast, senesced vegetation that

persists for extended periods may signal plant stress and limited

moisture availability, offering reduced soil stabilization and increased

vulnerability to erosion (Cutler et al., 2023; Yang et al., 2023;

Antonietta et al., 2024). Soil moisture and compaction can influence

Leach’s Storm Petrel burrow site selection, stability, and excavation

(Hoeg and Shutler, 2023).While drier, less compact soils may be easier
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to excavate, excessively dry soils are prone to collapse or poor

drainage, especially during storms. By distinguishing these

vegetation components, we aimed to evaluate whether climate

drivers differentially influenced photosynthetic and total vegetation

cover, providing more nuanced insights, and identifying areas at risk

of long-term vegetative loss.

The DFA framework models observed data as latent trends,

which are represented as a random walk with associated error (Zuur

et al., 2003). It consists of a process model and an observation

model, where observations are combinations of hidden trends and

factor loadings. The factor loadings matrix quantifies each latent

trend’s influence on the observed time series (Holmes et al., 2014;

Zuur et al., 2003). The larger the positive loading, the more closely

the latent trend is represented by an observed time series, and factor

loadings ≥ |0.2| are generally considered strong (Tam et al., 2013).

Observation and process error terms assume a multivariate normal

distribution with a mean of zero. A Kalman filter estimates hidden

trends and computes the likelihood of the data given the parameter

estimates. Estimated trends, factor loadings, and fitted values are

unitless (Zuur et al., 2003). To meet model assumptions, response

variables were standardized with a mean of zero and variance of

one. We assessed model precision by calculating the standard errors

and the root mean squared error (RMSE) across samples, while

model bias was estimated as the mean difference between observed

and predicted values.
2.6 Environmental predictors

In the dynamic CCE, marine and terrestrial processes are

interconnected through atmospheric pathways. For instance,

variability in marine sea-surface temperature and water vapor can

influence atmospheric humidity, affecting moisture availability for

terrestrial vegetation (Lewis et al., 2003; Reimer et al., 2015). We

were therefore interested in multiple marine-driven processes that

could potentially impact coastal vegetation cover, including the

winter NPGO, winter PDO, and spring Multivariate ENSO Index

(MEI). Precipitation and temperature regimes in coastal island

vegetation communities can alter a plant population’s abundance,

growth, survival, and reproduction, thus altering overall plant cover

(Dicken et al., 1961; Barbour et al., 1985; Garner et al., 2015;

EcoAdapt, 2021). Specifically, spring precipitation and summer

temperature were expected to influence coastal vegetation cover

(Hatfield and Prueger, 2015; Mote and Salathe Jr., 2010). Coastal

upwelling in the CCE brings cold, nutrient-rich water to the surface,

altering coastal microclimates, including fog regimes and moisture

availability in terrestrial habitats (Dye et al., 2024; Samelson et al.,

2021), which may influence plant growth. Accordingly, we included

two coastal upwelling indices as predictor variables: the summer

Coastal Upwelling Transport Index (CUTI) and winter Biological

Effective Upwelling Transport Index (BEUTI) (Supplementary

Table S8).

To examine the relative influence of climatic and oceanographic

conditions on vegetation trends, we fitted models with predictor

variables that were expected to influence total and photosynthetic
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vegetation cover over a 30-year period. We included predictor

variables in the candidate models to test the relation of vegetation

to 1) marine-drive processes, 2) seasonal weather, and 3) coastal

upwelling. Although variables can be incorporated directly in the

DFA, the variable effects are applied to the observation rather than

the process model. As an alternative, we used generalized linear

mixed modeling regression with a template model builder

(“glmmTMB”) to examine the relationship between the vegetation

trends and environmental predictors (Brooks et al., 2017). We

incorporated a first-order autoregressive (AR1) error structure to

account for temporal autocorrelation.

The response variables—the raw percent cover of photosynthetic

and total vegetation over a 30-year period (1992–2022) at seabird

breeding sites—were logit transformed prior to analysis to normalize

the data and account for the bounded nature of proportions when

modeling with Gaussian distributions in GLMMs. Environmental

predictor data were retrieved from various sources (Supplementary

Table S3) and standardized so that parameters corresponded to a one

standard deviation change in the predictor variables. Pearson

correlations were run on all pairs of predictor variables prior to

modeling and only uncorrelated predictor variables (r2 < 0.70) with

the strongest hypothesized ecological relevance were included in the

candidate models (Supplementary Table S8).

We used an information-theoretic approach (Burnham and

Anderson, 2002), to evaluate the relative plausibility of

generalized linear mixed models relating variables to vegetation

trends. We used “site” as our random effect, with an AR1 temporal

correlation structure to account for non-independence of repeated

measurements at the same sites over time. We constructed

candidate models with predictors representing different

hypotheses and evaluated model fit by calculating Akaike’s

Information Critera (AIC; Akaike, 1998) with the small-sample

bias adjustment (AICc; Hurvich and Tsai, 1989). Akaike weights

(Burnham and Anderson, 2002) were used to compare models, with

the best-fitting model having the highest weight. We assessed the

relative reliability of models by calculating 90% confidence intervals

and standard errors of parameter estimates.
3 Results

3.1 Supervised classification

For the RF analysis, we classified NAIP and historical imagery

for 16 islands, resulting in an image set of 136 photos

(Supplementary Tables S4–S6). Overall accuracy ranged from

76.4% to 100%, with a mean of 89.7%, and the Kappa coefficient

of agreement ranged from 0.647 to 1.0, with a mean of 0.85

(Supplementary Table S4). The mean producer accuracy across

the image set was 89.7% and the mean user accuracy was 90.4%. The

close alignment between these two metrics indicates a well-balanced

classifier, correctly identifying each class (producer accuracy) while

maintaining reliability of class predictions (user accuracy). On

average, photosynthetic vegetation was classified with the highest

accuracy, with a mean producer accuracy of 89.7% and a user’s
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accuracy of 90.4% (Supplementary Table S5). Rock was classified

with the next highest accuracy across the image set, followed by bare

ground (Supplementary Table S5). The lowest classification

accuracy was observed in senesced vegetation, with a producer

accuracy of 76.8%, and a user accuracy of 81.9%, indicating the

classifier had the most difficulty in differentiating senesced

vegetation from the other classes.

The percentage of photosynthetic vegetation across islands and

through time ranged from 0% to 66% (Figure 3, Supplementary

Figure S2). Six out of the 16 islands recorded their highest levels of

photosynthetic vegetation in 2012, all on the South Coast. Goat

Island had the highest percentage at 66% in 2012, followed by North

Crook Point Rock with 59% in 2012, and Whaleshead West with

54% in 1997. The range of senesced vegetation across islands was

0% to 39% percent. Bare soil ranged from 0% to 26%, with Blast

Rock having the highest percentage of bare soil. Exposed rock

ranged from 19% to 100%. Gull Rock, comprised mainly of exposed

rock, consistently had the least vegetation, with a range of 0% to 4%

over the 30-year study period.
3.2 Dynamic factor analysis

Our analysis revealed that both photosynthetic and total

vegetation trends exhibited cyclical fluctuations with periods of

approximately 10–14 years on a coast-wide scale. Both trends

illustrated declines from 2012 to 2018, and moderately steep

declines from 1997 to 2005 (Figure 4). Additionally, both

vegetation trends displayed similar peaks in 1997 and 2012. While

photosynthetic vegetation was characterized by a more jagged

trendline, indicating short-term fluctuations, compared to the

smoother, gradual slopes of the total vegetation trend, these

differences were subtle and showed overlapping standard errors. In

the results of the photosynthetic vegetation DFA, factor loadings were

moderate to strongly positive for 14 of the 16 islands, indicating that

vegetation trends on most individual islands were consistent and

closely aligned with the coast-wide trend (Figure 4). However, two

islands—Haystack Rock (Tillamook) and Finley Rock—exhibited

negative loadings on the trend. For the total vegetation DFA, 12 of

the 16 islands displayed positive but weak loadings, signifying the

vegetation dynamics of each island aligned modestly with the coast-

wide trend. Finley Rock, Shag Rock, Haystack Rock (Clatsop), and

Island Rock were the negative outliers, although their loadings were

moderate to weak (–0.37, –0.01, –0.03, and –0.10, respectively). The

mean error indicated the DFA models were relatively unbiased, with

a mean error of 0.034 for total vegetation, andmean error of 0.049 for

photosynthetic vegetation. The total vegetation trend appeared to be

more precise than for photosynthetic vegetation, with RMSE values of

0.487 and 1.101, respectively.
3.3 Environmental predictors

We assessed the correlation between coast-wide averages of

climatic and marine conditions (precipitation, temperature, PDO,
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NPGO, CUTI, BEUTI, and MEI) and the percent cover of

photosynthetic and total vegetation (i.e., the trend output from

the DFA). Seasonal variables extracted for the Oregon Coast

represented a wide range of values over the 30-year period

(Supplementary Table S7). An examination of the residuals from

the global model indicated that it adequately fit the data and had no
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obvious outliers. Consequently, we assumed that the model fit was

adequate for all candidate models.

The most plausible generalized linear mixed effects model for

total vegetation retained Winter NPGO, Winter PDO, and Spring

MEI (Table 1). Within the best fit model, Winter PDO appeared to

have the greatest influence and was negatively related to the percent
FIGURE 3

Stacked bar chart displaying landcover percentages at 16 seabird breeding sites from 1992 to 2022. Each bar represents the proportional distribution
of landcover types, including photosynthetic vegetation, senesced vegetation, bare ground, and rock.
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cover of total vegetation (Table 2). Spring MEI and Winter NPGO

were weakly correlated to the percent cover of total vegetation;

however, the confidence intervals contained zero, so the precise

nature of the relationship could not be determined.

The results from the generalized linear mixed effects model of

photosynthetic vegetation showed that the most plausible model

contained Winter NPGO, Winter PDO, and Spring MEI (Table 1).

Within the best fit model, a significant negative correlation was found

between Winter PDO and the percent cover of photosynthetic

vegetation (Table 2, Figure 5). In contrast, there was a significant

positive correlation between Spring MEI and the percent cover of

photosynthetic vegetation. For the remaining predictor, Winter
Frontiers in Ecology and Evolution 10
NPGO, confidence intervals contained zero, so the evidence was not

precise and inconclusive.
4 Discussion

This study suggests that large scale oceanographic oscillations

influence seabird breeding habitats by linking ocean conditions to

terrestrial vegetation change. While it is well established that

seabirds are affected by large-scale oceanographic fluctuations due

to changes in marine food web dynamics (Edwards and Richardson,

2004; Gaston et al., 2009; Gibson et al., 2023; Schmidt et al., 2014),
FIGURE 4

(a) Standardized photosynthetic and total vegetation trends at seabird breeding habitat for the Oregon Coast from 1992 to 2022. Lines indicate the
estimated states, and dashed lines indicate the standard errors from Dynamic Factor Analysis. (b, c) Factor loadings for the estimated coast-wide
vegetation trends at seabird breeding sites, representing the strength to which each island is represented by the trends. Factor loadings are unitless.
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the effects of these oscillations on vegetation at breeding habitats

within Oregon islands have not previously been explored. Our study

presents evidence of cyclical vegetation change at seabird colonies

along the Oregon Coast from 1992 to 2022. Specifically, we found

that long-term trends in vegetation cover correlated with large-scale

oceanographic oscillations. The best-fit models for photosynthetic

and total vegetation retained Winter PDO, Winter NPGO, and

Spring MEI. Vegetation cover was negatively correlated with

Winter PDO, and positively correlated with Winter NPGO and

Spring MEI, though the confidence intervals for Winter NPGO

overlapped zero, making the strength of that relationship uncertain.

These findings highlight the importance of considering both

oceanic and terrestrial conditions when assessing the effects of

natural disturbance on seabirds.

One of the goals of this study was to examine how vegetation

cover at seabird breeding sites in Oregon changed from 1992 to 2022.

The RF classification procedure captured spatiotemporal variability

in vegetation within and among the 16 islands. These variations may

be influenced by differences in vegetation communities and

topography (Bilderback and Bilderback, 2010), varying degrees of

soil erosion (Ball and Olthof, 2022), and differences in the abundance

of roosting seabirds, all of which may affect vegetation cover. This

information can help practitioners prioritize conservation actions,

such as planting soil-stabilizing native species or implementing

artificial seabird burrows, particularly on islands vulnerable to

vegetation loss. Prior to this study, evidence of historical vegetation

change on the Oregon Coast was largely anecdotal. By quantifying

past and present vegetation trends, this time series analysis provides a

baseline for refuge managers to assess where, how, and when

vegetation has changed—comparisons that will become increasingly

valuable as climate conditions intensify.

On a coast-wide scale, the DFA revealed 10- to 14-year cyclical

fluctuations in photosynthetic and total vegetation cover, with

positive factor loadings for most of the 16 sites, indicating this

trend effectively captured the underlying pattern across the islands.

Although this 30-year study represents only a snapshot of longer-

term patterns, the vegetation fluctuations observed here align with
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Stein et al. (2021), who identified significant 14- to 19-year

oscillatory patterns in plant water stress for Pacific Northwest

coastal vegetation over a 137-year period. This periodicity closely

aligns with PDO phases, demonstrating long-term connections

between land and sea. Burrow-nesting seabirds on the Oregon

islands, such as storm petrel and alcids, have lifespans of 20 to 30

years (Morse and Buchheister, 1977; Hipfner et al., 2019), meaning

these vegetation fluctuations may occur one to three times in an

individual bird’s lifetime. While linking vegetation change at

breeding colonies to seabird survival is beyond the scope of this

study, further research would benefit from exploring how long-term

vegetation patterns influence multi-generational seabird survival.

Both coast-wide vegetation trends declined sharply after 2012,

reaching their lowest points in 2018. This finding aligns with local

biologists’ observations of significant vegetation declines during this

period. Notably, this decline coincided with the most intense marine

heatwave (MHW) ever recorded in the northeast Pacific Ocean, which

occurred from January 2014 to August 2016 (Bond et al., 2015; Di

Lorenzo and Mantua, 2016; Gentemann et al., 2017). MHWs in the

northeast Pacific Ocean are associated with high atmospheric

pressure, reduced cloud cover, and suppressed surface wind speeds,

which create hot, dry conditions (Di Lorenzo and Mantua, 2016;

Holbrook et al., 2020), likely contributing to vegetation stress. These

marine-terrestrial links between vegetation and SST are well supported

in the literature (Arjasakusuma et al., 2020; Kim et al., 2021; Pereira

et al., 2017; Yan et al., 2018). Similar relationships have been

documented over longer time scales; Palmer et al. (2023) found that

warm SSTs were associated with warm, dry conditions in the Pacific

Northwest during the early Holocene, while cooler SSTs in the middle

Holocene coincided with wetter conditions and increased vegetative

biomass. Given the expected intensification of MHWs with ongoing

climate change (Di Lorenzo and Mantua, 2016; Frölicher et al., 2018;

Roop et al., 2020), further research is needed to investigate the links

between extreme ocean warming events and vegetation loss along the

Oregon Coast.

The second part of our study examined the relative influence of

climatic variables on vegetation trends over a 30-year period.
TABLE 1 Predictor variables, number of parameters (K), log-likelihood (LogL), AICc, DAICc, and Akaike weights (w) for the set of candidate models (i)
for predicting total and photosynthetic vegetation trends on the Oregon Coast islands.

Candidate model K LogL AICc DAICc wi % maximum wi

Photosynthetic ~ Winter NPGO + Winter PDO + Spring MEI 3 -162.4 339.78 0.000 0.88 100

Photosynthetic ~ Spring precipitation + Summer temperature + Winter NPGO +
Winter PDO + Spring MEI + Winter BEUTI + Summer CUTI

7 -159.8 343.82 4.05 0.12 13

Photosynthetic ~ Summer CUTI + Winter BEUTI 2 -169.7 352.14 12.37 0.00 0

Photosynthetic ~ Spring precipitation + Summer temperature 2 -172.4 357.43 17.65 0.00 0

Total ~ Winter NPGO + Winter PDO + Spring MEI 3 -118.6 252.12 0.000 0.756 100

Total ~ Spring precipitation + Summer temperature + Winter NPGO + Winter
PDO + Spring MEI + Winter BEUTI + Summer CUTI

7 -115.8 255.80 3.68 0.12 16

Total ~ Summer CUTI + Winter BEUTI 2 -121.7 256.03 3.90 0.11 14

Total ~ Spring precipitation + Summer temperature 2 -124.2 260.98 8.86 0.01 1
Akaike weights are interpreted as relative plausibility of candidate models.
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Our results indicated that winter PDO was strongly and inversely

related to total and photosynthetic vegetation cover, with increased

vegetation during cool, wet PDO phases and decreased vegetation in

warm, dry PDO phases. These findings align with the existing literature

on PDO-vegetation dynamics, though effects vary regionally

(Berkelhammer, 2019; Guan et al., 2012; Stein et al., 2021; Trouet

and Taylor, 2010; Wharton et al., 2009). For example, northern CCE

chronologies show a positive correlation between tree growth and

PDO, while southern chronologies show a negative correlation (Black,

2009). Similarly, low-elevation Pacific Northwest forests experience

increased vegetation growth during cool PDO phases (Stein et al.,

2021). PDO directly influences precipitation, wind patterns,

temperature, and SSTs, which in turn affect marine fog formation,

cloud cover, convective storms, and atmospheric humidity

(Berkelhammer, 2019; Persson et al., 2005; Reimer et al., 2015). Stein

et al. (2021) found that prolonged plant water stress coincided with

PDO-associated shifts in humidity and evapotranspiration, suggesting

that cool and wet PDO phases may promote vegetation growth.

However, further research is needed to clarify the mechanisms

driving PDO-vegetation interactions across different systems.

Our study also found a positive relationship between the warm

spring ENSO phase and increased photosynthetic vegetation,
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consistent with Woodward et al. (2008), who reported greater

terrestrial vegetation productivity in the Pacific Northwest during

warm ENSO phases. Additionally, warm ENSO phases have been

associated with an earlier growing season, leading to earlier leaf

emergence and increased spring “green up” (Black et al., 2000;

Woodward et al., 2008). Longer growing seasons during El Niño

years increase net primary production (Dannenberg et al., 2015),

which may explain the observed increase in photosynthetic vegetation.

We found contrasting relationships between vegetation trends

and warm phases of ENSO and PDO, likely due to their temporal

scales and geographic influence. PDO operates on decadal

timescales and has stronger effects in the north Pacific (Mantua

and Hare, 2002), whereas ENSO cycles typically occur every 2–7

years and primarily impact equatorial regions (McPhaden et al.,

2006). Our findings show that warm ENSO phases are positively

correlated with photosynthetic vegetation but not total vegetation

cover, suggesting short-term effects. Warm ENSO phases may

enhance photosynthetic vegetation in the short term, whereas

sustained warm PDO phases may lead to long-term vegetative

stress and die-off. Separating photosynthetic and total vegetation

in this analysis allowed us to assess whether climate drivers

influenced actively growing vegetation differently from total
TABLE 2 Results for the best fit generalized linear mixed model of total and photosynthetic vegetation.

Parameter Estimate (standard error) Upper 90% CI Lower 90% CI

Photosynthetic ~ Intercept -1.555 (0.282) -1.090 -2.020

Photosynthetic ~ Winter NPGO 0.109 (0.072) 0.227 -0.009

Photosynthetic ~ Winter PDO -0.408 (0.094) -0.254 -0.562

Photosynthetic ~ Spring MEI 0.305 (0.102) 0.473 0.137

Total ~ Intercept -0.827 (0.311) -0.315 -1.339

Total ~ Winter NPGO 0.042 (0.048) 0.121 -0.038

Total ~ Winter PDO -0.198 (0.065) -0.305 -0.091

Total ~ Spring MEI 0.101 (0.071) 0.218 -0.017
FIGURE 5

For seabird breeding sites along the Oregon Coast, total and photosynthetic vegetation trends were negatively correlated with the Pacific Decadal
Oscillation (PDO). Trends and environmental variables were standardized prior to analysis.
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cover, offering insight into short-term versus longer-term

vegetation persistence.

Contrary to expectations, average spring precipitation was not

significantly correlated with vegetation trends. In the moisture-rich,

fog-dense, maritime environment of the Pacific Northwest,

vegetation growth may be more influenced by fog, humidity, and

wind (Chen et al., 2016; Dong et al., 2019). This suggests that, in

coastal environments, indirect moisture mechanisms play a larger

role in shaping vegetation dynamics than precipitation levels alone.

It is worth noting that considerable variation exists among plant

growth habits; herbaceous plants may be more sensitive to year-to-

year fluctuations in environmental conditions than longer-lived

shrubs (Compagnoni et al., 2021).

While this study focused on vegetation cover due to limitations

in the resolution of historical imagery, it is important to recognize

that not all vegetation confers the same ecological value for burrow-

nesting seabirds. Plant communities, not just cover, influence

habitat suitability, with preferences varying among bird species.

Auklets, for instance, tend to nest in higher densities in native grass-

dominated areas, closer to water and avoid habitats dominated by

trees and shrubs (Osborne, 1973; Shuford and Gardali, 2008;

Pearson et al., 2009). Storm petrels have also shown preferences

for specific plant communities, including grasses and coastal brush

fields over woody forested areas (Harris, 1974; d’Entremont et al.,

2020; Stokes et al., 2021). Some researchers hypothesize that native

perennial grasses, with their rhizomatous root structure, provide

greater soil stability than invasive annuals, reducing the risk of

burrow collapse (Osborne, 1973; Bancroft et al., 2005; Shuford and

Gardali, 2008). Thus, while vegetation cover is a useful coarse

indicator, it does not fully reflect habitat suitability among islands

if the composition is shifting away from preferred plant species.

Further research using species-specific classification could help

identify which habitat characteristics are preferred among bird

species, most resilient to fluctuations, and contribute to soil

stabilization for burrow nesting seabirds.

Beyond its implications for seabird habitat in Oregon, this study

provides valuable insights for offshore island management. National

Wildlife Refuges throughout the Pacific Northwest are managed to

protect habitat for burrow-nesting seabirds such as tufted puffins,

rhinoceros auklets, Cassin’s auklets, Leach’s storm petrels, and fork-

tailed storm petrels. Managers across the CCE face challenges

similar to those in Oregon, including steep, rocky, and often

inaccessible terrain on oceanic islands (Mills et al., 2005). This

study demonstrates a cost-effective and practical method for

evaluating long-term habitat change by integrating field data and

aerial imagery. The RF classification of 136 images proved highly

accurate for categorizing island land cover types; however, it is

important to acknowledge the inherent uncertainty introduced by

using historical and NAIP imagery in the RF analysis. Although we

restricted our analysis to photographs taken during the summer

months, minor temporal differences in image acquisition across

years (e.g., May versus July) can lead to discrepancies in vegetation

cover calculations. Additionally, variations in weather conditions,

acquisition angles, and time of day can affect the spectral signatures

of the photos, potentially impacting analytical accuracy. Future
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studies could improve classification accuracy by using imagery

collected under consistent temporal and weather conditions

whenever possible. While spatiotemporal changes in vegetation

cover may indicate shifts in habitat characteristics, we

acknowledge this study does not directly test whether those

changes translate to differences in habitat suitability or seabird

population performance. Future research is needed to directly

establish specific relationships between vegetation composition

and seabird breeding success. Nevertheless, the methods described

here have the potential to substantially enhance the remote

monitoring and management efforts for seabird colonies, offering

benefits applicable to sensitive habitats in the Pacific Region

and beyond.

While habitat management is a powerful conservation tool, a

comprehensive understanding of the myriad factors influencing

seabird population dynamics is necessary to effectively protect

seabirds and their critical habitats. This study provides

foundational habitat information, but vegetation in terrestrial

habitat is just one component of the complex system impacting

seabird survival. Prior research has shown that prey quality in the

CCE declines during specific PDO and ENSO phases, leading to

reduced seabird productivity (Ainley and Hyrenbach, 2010;

Hipfner et al., 2020). If these oscillations also degrade

vegetation in breeding habitat during the same periods, their

negative effects on seabirds may be compounded. Additional

research is needed to develop a more complete understanding

of the interactions between breeding habitat, terrestrial and

marine climatic conditions, and human-related disturbances.

Future studies integrating these factors will allow managers to

better assess the dynamics shaping seabird survival and

reproduction in the CCE.
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