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Introduction: Understanding the landscape evolution and driving mechanisms in 
the Yellow River Basin (YRB) is crucial for safeguarding the ecological 
environment and promoting high-quality development in the region. 

Methods: The analysis of spatio-temporal evolution characteristics of land use/ 
land cover (LULC) and landscape pattern (LP) in the YRB employed transfer matrix 
and landscape pattern index models. Furthermore, a random forest regression 
method  was  util ized  to  investigate  the  driving  mechanism  behind  
landscape evolution. 

Results: Based on our research findings, it is evident that significant changes have 
occurred in LULC, which have had profound implications for regional landscape 
patterns. The evolution of these patterns can be categorized into distinct stages. 
Between 1985 and 2010, there was a noticeable increase in clustering and 
interconnectedness, while between 2010 and 2020, this trend shifted. 
Grassland transformation primarily influenced landscape pattern evolution, 
whereas other LULC classifications had relatively limited effects on overall 
landscape integrity, diversity, and connectivity. Changes in grassland 
predominantly occurred at the outskirts of established grassland regions, while 
alterations in other LULC classifications were more sporadic due to human 
activities exerting influence. 

Discussion: Landscape evolution is synthetically influenced by both social and 
natural factors. Local changes are driven by social factors, while long-term 
gradual changes are primarily shaped by natural factors. Over the past three 
decades, social factors have played a significant role in shaping YRB’s landscapes. 
KEYWORDS 

land use/land cover, landscape pattern, driving force analysis, spatial heterogeneity, 
sustainable development 
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1 Introduction 

A river basin refers to a complex natural geographic region that 
is shaped by the flow of river water and the presence of groundwater 
(Deng et al., 1988). The river basin ecosystem plays an important 
role in human reproduction and social development (Mavhaire 
et al., 2025). Nevertheless, due to the dynamic natural environment 
and human interference, the landscape elements and spatial 
structure of basin are constantly changing. Consequently, the 
river basin ecology has become the most intricate and challenging 
geographical unit in terms of regional human-land relationships 
(Wu et al., 2024). Therefore, conducting a comprehensive 
examination of both spatial and temporal attributes of basin 
landscapes, as well as understanding their underlying driving 
forces, is crucial for gaining profound insights into basin 
ecosystem evolution. This understanding is essential for 
developing effective strategies for basin planning and restoration. 

Land use/land cover (LULC) represents the most conspicuous 
manifestation of the landscape, being closely intertwined with 
human activities related to land operation and management. 
When analyzing LULC, it is crucial to investigate the 
characteristics of land resources, layout and structure of land use, 
degree and impact of utilization, as well as existing issues within the 
study area (Zhang et al., 2023). Additionally, some researchers 
utilize the index to demonstrate the progression of landscape 
evolution in the dimension of landscape pattern (LP). A 
landscape index is a concise numerical indicator that summarizes 
the characteristics of a landscape’s structural composition and 
spatial configuration, providing a succinct overview of specific 
landscape pattern features. The utilization of elementary 
mathematical operations facilitates the establishment of 
connections between landscape structures and processes, thereby 
enhancing the comprehension of landscape functioning at a 
profound level. This approach represents a fundamental 
methodology for investigating the evolution of landscape patterns 
(O’Neill et al., 1988). Research on landscape indices has been 
influenced by various theoretical frameworks over the past four 
decades, ranging from island biogeography theory (O’Neill et al., 
1988). to infiltration theory (Laner et al., 2024), information theory 
(Konapala et al., 2020), and spatial theory (Guo et al., 2023). This 
research has led to the development of a series of landscape indices 
including patch metrics, class metrics, and landscape metrics. These 
indices have greatly advanced our understanding of the state, 
trends, and dynamics of ecosystems such as wetlands (Guo et al., 
2024), cities (Liang and Gong, 2020), and forests (Hou et al., 2023). 
Regrettably, the association between LULC and LP has not received 
sufficient scholarly attention. Further investigation is necessary to 
ascertain whether these two models can comprehensively capture 
the distinct characteristics of regional landscapes. 

The factors driving landscape evolution in a river basin 
encompass the elements that contribute to alterations in LULC or 
land productivity, ultimately influencing the direction of the 
landscape. Control over the process of landscape evolution can be 
achieved through an investigation into landscape-driving 
Frontiers in Ecology and Evolution 02 
mechanisms. Landscape evolution is influenced by two primary 
categories of factors: natural factors and social factors (Hu et al., 
2012; Liu et al., 2021). The natural factors primarily include climate, 
hydrology, topography, and biodiversity, while the social factors 
encompass economics, science and technology, culture, and 
policies. Endogenous changes in landscape evolution are 
predominantly influenced by natural factors that exert a 
particularly strong impact on large-scale landscape change. 
However, these endogenous changes require a long-term gradual 
process. On the other hand, social factors mainly affect smaller areas 
leading to rapid l change in LULC, which subsequently contributes 
to landscape evolution. Currently, most researchers adopt a unified 
approach to investigate how both natural and social factors drive 
basin-level landscape evolution either through analyzing LULC or 
LP dimensions (Li et al., 2020, 2014; Zhao et al., 2023). It is 
important to consider whether these two analytical methods yield 
similar or distinct conclusions regarding the driving mechanisms. 

The Yellow River Basin (YRB) plays a crucial role in upholding 
ecological security and is regarded as one of China’s most vital basin 
ecosystems. It encompasses the eastern, central, and western regions 
of China. In September 2019, the national leader of China further 
emphasized the significance of the YRB by elevating “ecological 
protection and high-quality development of the Yellow River Basin” 
to a major national strategy. This paper focuses on analyzing 
landscape characteristic changes and their driving factors over the 
past 35 years in the YRB using LULC data from 1985 to 2020, along 
with corresponding social and natural data. The dimensions 
considered include LULC and LP. The findings from this study 
are expected to provide fundamental insights for safeguarding 
the YRB. 
2 Study area 

The Yellow River, the second longest river in China, originates 
from the Qinghai-Tibetan Plateau and traverses nine provinces: 
Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shanxi, 
Shaanxi, Henan and Shandong. With a main stream length of 
5,464 km and a river drop variance of 4,480 m (Figure 1), it is 
geographically located between 95°50’ E-119°06’ E and 32°06’ N-41° 
48’ N. The basin spans approximately 7.52×105 km2 with an east
west length of about 1,900 km and a north-south width of around 
1,100 km. The YRB is divided into three main terraces, which 
correspond to the three primary geographical regions. The western 
section is located on the eastern side of the Tibetan Plateau, at an 
altitude exceeding 3,000 m. The central Loess Plateau ranges in 
altitude from 1,000 to 2,000 m, while the eastern part consists of a 
plain with an altitude below 100 m. The climate within the basin can 
be categorized into three climatic zones: plateau climate zone, 
mesothermal zone, and southern temperate zone. There is a 
gradual decrease in mean annual temperature from south to 
north and from east to west across the basin. Precipitation 
distribution also diminishes from south to north, with most of it 
occurring between July and October (Liu et al., 2022). 
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3 Materials and methods 

3.1 Data sources 

The LULC data, with a spatial resolution of 30 m, were employed 
for the years 1985, 1990, 1995, 2000, 2005, 2010, and 2020. These data 
were obtained from the annual China Land Cover Dataset (CLCD), 
developed by Professors Yang Jie and Huang Xin from Wuhan 
University using Landsat imagery (Yang and Huang, 2021). 
Following the CLCD classification system and considering the 
observed land-use composition in the study area of interest (YRB), 
we reclassified the LULC into categories including farmland, forest 
land, grassland, water body, unused land and construction land. 
Forest land mainly includes the classes ‘Forest’ and ‘Shrub’; water 
body mainly include the classes ‘Water’ and ‘Wetland’; construction  
land mainly refers to the class ‘Impervious’; and unused land mainly 
refers to the class ‘Barren’, which, mainly refers  to desert.  

The formation and evolution of the landscape in river basin is 
frequently comprehensive consequence of socio-economic and 
natural factors. In consideration of the influence of social and 
natural factors on the scope and time-sensitive characteristics, 
this study selected seven social factors, including Total Population 
(TP), Non-agricultural Population (NAP), Year-end Actual 
Cultivated Land Area (YACLA), Gross Domestic Product (GDP), 
Primary Industry (PI),  Secondary Industry (SI) and  Tertiary
industry (TI). Additionally, six natural factors such as 
Precipitation (Pr), Air Temperature (AT), Mean Relative 
Frontiers in Ecology and Evolution 03 
Humidity (MRH), Surface Temperature (ST), Evaporation (EV) 
and Potential Evaporation (PEV) were analyzed for driving forces. 
The data for the social factors were obtained from the China Urban 
Statistical Yearbook and the statistical yearbooks of each province. 
The data for the natural factors were obtained from the National 
Meteorological Centre of the China Meteorological Administration 
(http://data.cma.cn/data), the Geo-Remote Sensing Ecological 
Network (http://www.gisrs.cn), and the Earth Resources Data 
Cloud (http://www.gis5g.com). 
3.2 Research methodology 

3.2.1 Calculation the land use/land cover change 
The transfer matrix is employed to calculate the area of LUCC. 

The land use transfer matrix is a two-dimensional matrix based on 
the dynamic transformation relationship of land use status in the 
same region at different times. It can be used to visually represent 
the value and direction of LUCC over a period of time. It can also be 
used to reveal the spatial and temporal evolution of the area flow 
between different LULC classes (Li et al., 2020). The matrix is 
calculated using the following formula: 

⋯s11 s1n 

Sij = ½ ⋮ ⋱ ⋮  l 
sn1 ⋯ snn 
FIGURE 1 

The location of study area. 
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Where Sij is the land area (km²) of the LUCC class i transformed 
into j; n is the number of different LULC classes; i and j are the 
LULC classes before and after the transfer, respectively. 

3.2.2 Construction of landscape index system 
The landscape index is a quantitative measure that 

comprehensively captures the information of LP. It serves to 
depict the characteristics and dynamics of LP, as well as unveil 
the intricate relationship between LP and landscape processes. The 
significance of different landscape indices varies in accordance with 
their distinct physical and ecological attributes. Based on previous 
research (Liang and Gong, 2020; Hu et al., 2012) and the socio
economic development of the YRB, we developed a landscape index 
system for the study area (Table 1). The following landscape indices 
of class metrics were selected for analysis: Percentage of Landscape 
(PLAND), Largest Patch Index (LPI), Number of Patches (NP), 
Patch Density (PD), Landscape Shape Index (LSI) and Patch 
Cohesion Index (COHESION). At landscape metrics, the 
following indices were considered: Edge Density (ED), Contagion 
(CONTAG), Shannon’s Diversity Index (SHDI) and Simpson’s 
Evenness Index (SIEI). To facilitate data processing, the spatial 
resolution was resampled to 300 m × 300 m. All landscape pattern 
indices were calculated using Fragstats 4.2.1 software based on 
raster data. The ecological significance of these landscape pattern 
indices was derived from relevant references (Haines-Young and 
Chopping, 1996; Rodrıǵuez-Loinaz et al., 2015). 

3.2.3 Response relationship between LULC and LP 
Researchers have postulated that LULC, as integral components 

of landscape elements, exhibit close associations with LP (Ning 
et al., 2020; Yang et al., 2022). To further validate this relationship, 
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the response was investigated at class and landscape metric levels. 
The relationship between different LULC classification and 
landscape indices was examined using correlation analysis at the 
class metrics. Additionally, a regression model employing the least 
squares method was constructed to explore the relationship 
between landscape indices and various LULC classifications at 
landscape scale. 

3.2.4 Driving force analysis 
The predictor variables in this study were meticulously selected 

based on previous research findings, as well as considering the natural 
geographical features and socio-economic conditions of the YRB (Li 
et al., 2014; Liu et al., 2022). Thirteen potential social and natural 
factors were chosen for analysis using the random forest model in two 
dimensions: LULC and LP. The random forest method is an 
ensemble learning technique that offers several advantages, 
including high performance, the ability to handle high-dimensional 
data, and effective prevention of overfitting. During the construction 
of the Random Forest model, the algorithm performs feature 
sampling, ensuring that even in the presence of collinear features, 
they are unlikely to be selected simultaneously within the same 
decision tree. As a result, Random Forest effectively mitigates the 
impact of multicollinearity on model performance (Gao et al., 2022). 
This method utilizes bootstrap resampling by randomly selecting n 
observations from the original dataset. Subsequently, a subset of 
variables is chosen as classification tree nodes with the objective of 
constructing hundreds or even thousands of classification trees. These 
trees are then aggregated into a random forest, where the most 
frequently occurring tree is considered as the final outcome. In this 
study, we performed random forest regression analysis using R 
software, setting the ntree parameter to 2000 trees while keeping 
other parameters at their default values. 
4 Results and analyses 

4.1 Spatio-temporal characteristic of LULC 

Based on the spatial and temporal distribution of LULC in the 
YRB (Figure 2), it is evident that grassland dominates, 
encompassing over 50% of the area during different time periods. 
Farmland represents the second largest landscape, primarily 
concentrated in the Hetao Plain, Weihe Plain, Ningxia Plain, and 
North China Plain. Forest land is the third largest landscape. 
Unused land is predominantly located in the upper reaches of the 
Yellow River, including Ulanbuh Desert, Kubuqi Desert, and 
Maowusu Desert. Construction land is mainly concentrated in 
urbanized areas within the central and lower regions of the basin. 
The composition of LULC classifications remained relatively 
consistent from 1985 to 2020. 

The transfer matrix of LULC in the YRB is presented in the 
Figure 3. Notably, a significant transformation has occurred 
between grassland and farmland from 1985 to 2020. The 
dominant phenomenon during the period from 1985 to 2015 was 
the conversion of farmland to grassland, encompassing an extensive 
TABLE 1 The index system of landscape index. 

Composite Secondary English Ecological 
indicator indicator abbreviation significance 

Percentage 
of Landscape 

PLAND Determining 
dominant 
landscapeLargest 

Patch Index 
LPI 

Class metrics 

Number 
of Patches 

NP Landscape 
fragmentation 

Patch Density PD 

Landscape 
Shape Index 

LSI 
Landscape 
complexity 

Patch 
Cohesion Index 

COHESION 
Landscape 
connectivity 

Edge Density ED Landscape 
fragmentationContagion CONTAG 

Landscape 
metrics 

Shannon’s 
Diversity Index 

SHDI 
Landscape 
diversitySimpson’s 

Evenness Index 
SIEI 
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area exceeding 19,917 km2. Conversely, the primary manifestation 
observed between 2015 and 2020 was the transformation from 
grassland to farmland, involving an approximate area of 1634 km². 
Another significant characteristic is exemplified by the reciprocal 
transformation between grassland and unused land. A series of 
policies for ecological environment protection and restoration, 
including the establishment of protective forests as part of the 
“Three Norths” project, preservation of natural forests, and 
implementation of the Beijing-Tianjin Sand Control Project 
initiated through human intervention, have contributed to a 
reduction in land desertification (Li et al., 2024, 2023). From 1985 
to 2020, a total of 15,120 km² of previously unused land underwent 
transformation, resulting in the establishment of thriving 
grasslands. The effective control of desertification plays a pivotal 
Frontiers in Ecology and Evolution 05 
role in the expansion of grassland areas and the reduction of unused 
land resources. It is worth noting that there was a remarkable 
increase in the extent of construction land between 1985 and 2020, 
with an overall growth rate reaching 17,188 km². Notably, during 
the period from 2005 to 2020, there was a substantial surge observed 
specifically in construction land area which experienced an 
impressive growth rate of 68.4%. Interestingly enough, more than 
sixty percent of this increment can be attributed to farmland 
conversion - often considered as an indispensable step towards 
urbanization and economic development (Huang et al., 2019). A 
comparative analysis of land use/land cover changes in the Yellow 
River Basin and other regions in China reveals distinct regional 
characteristics. Li et al. (2025) emphasized that the land use 
transitions between grassland and cropland are particularly 
FIGURE 2 

Land use/land cover classification in the Yellow River Basin from 1985 to 2020. 
frontiersin.org 

https://doi.org/10.3389/fevo.2025.1611874
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Guo et al. 10.3389/fevo.2025.1611874 
pronounced in both western China and the Yellow River Basin, 
reflecting a dynamic interplay between large-scale agricultural 
expansion and ecological restoration efforts. Similarly, the 
Yangtze River Basin exhibits a reciprocal conversion of grassland 
and cropland. However, the ecological restoration policies in the 
two regions differ significantly. The Yangtze River Basin prioritizes 
wetland protection and water source management, while the Yellow 
River Basin places greater emphasis on grassland restoration and 
desertification prevention. This policy divergence has led to a 
notable increase in grassland area within the Yellow River Basin. 
4.2 Heterogeneity analysis of LP 

4.2.1 Heterogeneity analysis at class metrics 
The results presented in the Figure 4 clearly indicate that 

grassland and farmland exhibit the highest PLAND and LPI 
values, implying their dominant presence in the YRB. Notably, 
both grassland and forest land demonstrate an overall increasing 
trend in terms of PLAND and LPI values, while farmland exhibits a 
decreasing trend. These findings strongly suggest that the 
implementation of the “Grain for Green” program initiative has 
exerted a substantial influence on the ecosystem of YRB. In terms of 
Frontiers in Ecology and Evolution 06
landscape fragmentation, the NP and PD values of farmland and 
grassland exhibited a declining trend from 1985 to 2010, which may 
be attributed to effective protection policies. However, since 2010, 
there has been a noticeable increase in the fragmentation of 
farmland and grassland possibly due to ongoing urbanization 
processes. Conversely, the PD and NP values of forest land, water 
body, and construction land showed an upward trend, indicating 
increased fragmentation in these LULC classifications and their 
heightened vulnerability to urbanization compared to grassland and 
farmland. The LSI values for forest land, water body, and 
construction land exhibited a consistent upward trend, indicating 
that these LULC classifications are heavily influenced by 
anthropogenic activities. Moreover, the shapes of these patches 
became increasingly irregular over time. Conversely, the LSI of 
unused land and forest land displayed a decline followed by an 
uptick (with the inflection point occurring in 2010). The 
COHESION value indicates a rapid upward trend in the 
COHESION of construction land, while the COHESION of forest 
land and grassland shows an increasing trend with fluctuations. 
This suggests a strong association between these three LULC 
classifications over time. Conversely, there is a noticeable decline 
in farmland, water body, and unused land. In general, the 
fragmentation and complexity of dominant classes, such as 
FIGURE 3 

Sankey diagram of land use area from 1985 to 2020 in the Yellow River Basin. 
 frontiersin.org 

https://doi.org/10.3389/fevo.2025.1611874
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Guo et al. 10.3389/fevo.2025.1611874 
cultivated land, forest, and grassland, exhibited a considerable shift 
in evolution before and after 2010. 

4.2.2 Heterogeneity analysis at landscape metrics 
Table 2 demonstrates a decline in the ED from 1985 to 2010, 

indicating a reduction in landscape fragmentation. Conversely, the 
ED increased during the period of 2010-2020, suggesting an 
enhanced complexity and diversification of the landscape 
Frontiers in Ecology and Evolution 07 
accompanied by an increase in fragmentation. The CONTAG 
exhibits an upward trend followed by a subsequent decline. 
Connectivity within the YRB initially showed an increasing trend 
but became more sporadic after 2010, reflecting heightened 
fragmentation resulting from human activities. The SHDI and 
SIEI exhibit a similar trend, both indicating an overall increase. 
This suggests that anthropogenic activities during urbanization 
have led to increasingly complex and diversified landscape 
FIGURE 4 

Landscape indices at class metrics from 1985 to 2020. 
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changes. From the perspective of landscape metrics in the YRB, the 
evolution of LP can be observed across different stages. Between 
1985 and 2010, there was a notable rise in landscape aggregation 
and connectivity. However, a shift in this pattern occurred between 
2010 and 2020. The results of the landscape heterogeneity analysis 
at class metrics support this conclusion. 
4.3 Response relationship between LULC 
and LP 

4.3.1 Response relationship between LULC and 
LP at class metrics 

An analysis was conducted to investigate the correlation 
between different LULC classifications and landscape pattern 
indices at class metrics. The results, as depicted in the Table 3, 
revealed a significant correlation between the six LULC 
classifications and five landscape indices (the correlation between 
LULC and PLAND was 1, which was not discussed). The LPI 
exhibited a strong relationship with various LULC classifications, 
including farmland, forest land, grassland, water body, unused land, 
and construction land. Notably, forest land and construction land 
demonstrated significant influences on the LPI with correlation 
coefficients of 0.987 (p < 0.01) and 0.98 respectively. There was a 
robust positive correlation between NP and multiple LULC 
classifications such as farmland, forest land, water body, unused 
land, and construction land. Among these classifications, 
construction land had the most pronounced impact on NP with a 
correlation coefficient of 0.999 (p < 0.01). Furthermore, a strong 
Frontiers in Ecology and Evolution 08
inverse relationship was observed between NP and grassland, 
exhibiting a significant correlation coefficient of -0.931 (p<0.01). 
This finding supports the notion that extensive grassland areas have 
undergone conversion into various LULC classifications, resulting 
in heightened landscape fragmentation. A notable positive 
correlation was identified between PD and both water body and 
construction land, with correlation coefficients of 0.874 (p < 0.01) 
and 0.999 (p < 0.01), respectively. This can be attributed to the 
combination of limited water body and construction land along 
with a substantial number of NPs present in the study area. 
Additionally, there was an evident negative association between 
PD and grassland, aligning with the inverse correlation observed 
between grassland and NP. LSI exhibited the strongest positive 
correlation with construction land while displaying the most 
pronounced negative relationship with grassland among all 
variables examined in this study. Moreover, COHESION 
demonstrated positive correlations across all six LULC 
classifications within the YRB region under investigation herein; 
notably, construction land exerted a considerable influence on 
COHESION as evidenced by high correlation coefficients 
reaching up to 0.953 (p < 0.01). Overall, the five landscape 
indices (LPI, NP, PD, LSI, and COHESION) exhibited robust 
positive correlations with the five LULC classifications (farmland, 
forest land, water body, unused land, and construction land) in the 
basin when considering class metrics. The findings of this study 
suggest that human activities strongly influence changes in these 
LULC classifications. Conversely, grassland demonstrated negative 
correlations with NP, PD, and LSI indices. This implies that 
grassland areas in peripheral regions of the YRB are more likely 
to experience expansion or contraction. 
4.3.2 Response relationship between LULC and 
LP at landscape metrics 

The coefficients in Table 4 demonstrate the strength of influence 
that LULC exerts on LP. The plus and minus signs are employed to 
indicate the consistency between LULC and LP. The regression 
results, with R² values above 0.80, demonstrate a strong model fit 
and substantial explanatory power, highlighting a significant 
influence of LULC on LP. Notably, while other LULC 
classifications impact LP in various ways, the change of grassland 
exhibits an opposing trend. In the realm of different LULC 
classifications, the alteration in farmland had a favorable impact 
on landscape indices such as ED (+0.24), SHDI (+0.27), and SIEI 
TABLE 2 Landscape index at landscape metrics. 

Year ED(m/hm2) CONTAG SHDI SIEI 

1985 4.904 70.987 0.975 0.554 

1990 4.649 71.160 0.975 0.555 

1995 4.696 71.077 0.979 0.558 

2000 4.649 71.160 0.978 0.558 

2005 4.415 71.375 0.978 0.557 

2010 4.382 71.372 0.978 0.557 

2015 4.450 71.239 0.979 0.559 

2020 4.530 70.958 0.982 0.559 
TABLE 3 Correlation between LULC and landscape indices at class metrics. 

Landscape 
indices 

Farmland Forest land Grassland Water body Unused land Construction 
land 

LPI 0.708* 0.987** 0.928** 0.524 0.871** 0.980** 

NP 0.800* 0.869** -0.931** 0.874** 0.762* 0.999** 

PD 0.803* 0.874** -0.936** 0.974** 0.760* 0.999** 

LSI 0.794* 0.651 -0.878** 0.910** 0.813* 0.997** 

COHESION 0.386 0.729* 0.695 0.587 0.829* 0.953** 
 

** p<0.01, *<0.05. 
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(+0.31). However, it had an adverse effect on the CONTAG index 
(-0.36). The alterations in forest land demonstrated a positive 
influence on landscape indices including ED (+0.35), SHDI 
(+0.23), and SIEI (+0.24), while simultaneously exerting a 
negative impact on CONTAG (-0.32). The observed changes in 
grassland yielded beneficial effects on CONTAG with an increase of 
0.35; While, these changes detrimentally affected other landscape 
indices such as ED (-0.32), SHDI (-0.36), and SIEI (-0.37). Adding a 
water body had a beneficial impact on landscape indices like ED 
(+0.05), SHDI (+0.21), and SIEI (+0.14). However, it had a 
detrimental effect on the CONTAG index (-0.16). Converting 
unused  land  to  other uses can  have  a significant impact on 
landscape indices. It has been observed to have a positive effect 
on indices like ED, SHDI, and SIEI, increasing to 0.08, 0.26, and 
0.24 respectively. However, this conversion also has a negative effect 
on the CONTAG index, leading to a decrease of 0.17. The 
alterations in construction land had a favorable impact on 
landscape indices like ED (+0.26), SHDI (+0.01), and SIEI 
(+0.04), but had an adverse effect on landscape indices such as 
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CONTAG (-0.16). In general, the changes in grassland, farmland, 
and forest land play a pivotal role in shaping the landscape pattern 
evolution within the YRB. Farmland and forest land have a positive 
influence on landscape indices ED, AI, SHDI, and SIEI; whereas 
grassland has a negative impact on these indices. This suggests that 
grassland change predominantly shapes the overall landscape 
pattern (integrity, diversity, and connectivity) in the YRB. 
4.4 Driving force analysis of landscape 
evolution 

The results  of  the driving  force analysis of the  landscape
evolution in the YRB are presented in Figure 5. Based on the 
figure, it is evident that the landscape evolution in the YRB is 
influenced by social and natural factors. Social factors lead to rapid 
changes in the local scope, while natural factors dominate the long
term base gradual change of the landscape. According to the driving 
force analyses of both dimensions of LULC and LP, it is evident that 
social factors play a more significant role compared to natural 
factors (excluding water body). This suggests that social factors have 
been the main drivers of landscape changes in the YRB over the past 
35 years. 

4.4.1 The driving forces of LUCC 
Changes in farmland areas are influenced by a combination of 

social and natural factors. Social factors contribute to 67.7% of these 
changes, while natural factors account for 32.3%. The core drivers, 
which include TI, TP, NAP, SI, and PEV, are responsible for the top 
5 percentages of contribution. Among the factors driving changes in 
forest land, the contribution of social factors is 65.1%, that of 
natural factors is 34.9%, and that of the TI, ST, SI, PI, and GDP 
are the core drivers. Among the drivers of changes in the area of 
grassland, the contribution of social factors is 59.7%, that of natural 
factors is 40.3%, and that of PEV, TI, TP, PI, and ST are the core 
drivers. The social factor accounts for 23.8% of the changes in water 
TABLE 4 Response relationship between LULC and LP at 
landscape metrics. 

Landscape 
indices Formula R2 

ED 
ED= 0.38 + 0.24*Framland+0.35*Forest land
0.32*Grassland+0.05*Water body+0.08*Unused land 
+0.26*Construction land 

0.80 

AI 
AI= 0.02 + 0.25*Framland+0.32*Forest land
0.35*Grassland+0.16*Water body+0.17*Unused land 
+0.16*Construction land 

0.94 

SHDI 
SHDI= -0.38 + 0.27*Framland+0.23*Forest land
0.36*Grassland0.21*Water body+0.26*Unused land 
+0.01*Construction land 

0.98 

SIEI 
SIEI= -0.02 + 0.31*Framland+0.24*Forest land
0.37*Grassland+0.14*Water body+0.24*Unused land 
+0.04*Construction land 

0.96 
FIGURE 5 

Driving force analysis of landscape evolution in the Yellow River Basin. 
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body, while the natural factor contributes 76.2%. Pr, EV, NAP, TI, 
and ST are the core of the subject. Social factors account for 66.1% 
of the changes in construction land, while natural factors make up 
the remaining 33.9%. TI, PI, PEV, ST, and NAP are the main factors 
that drive the core operations. Social factors play a significant role in 
driving changes in unused land, accounting for 65.6% of the overall 
contribution. On the other hand, natural factors contribute 34.4% 
to these changes. TI, PEV, TP, PI, and NAP are the primary drivers 
driving the system. 

4.4.2 The driving forces of LP 
Considering the results of driving forces of LP, it is evident that 

social factors play a significant role in driving changes in farmland, 
accounting for 64.6% of the overall impact. Natural factors, on the 
other hand, contribute 35.4% to these changes. Additionally, the core 
drivers identified include TI, TP, PI, PEV, and ST. Among the drivers 
of changes in forest land, the contribution of social factors is 66.9%, 
the contribution of natural factors is 33.1%, and TI, PI SI, NAP, and 
ST are the core drivers. Among the drivers of changes in grassland, the 
contribution of social factors to the change in grassland is 59.5%, while 
the contribution of natural factors is 40.5%. PEV, TI, TP, SI, and PI are 
the core drivers. Social factors account for 60.8% of the changes in 
water body, while natural factors contribute 39.2%. TI, PI, GDP, SI, 
and ST are the primary components that drive the system. Among the 
drivers of changes of construction land, the contribution of social 
factors is 60.2%. The contribution of natural factors is 39.8%, and TI, 
GDP, PI, ST, and SI are the core drivers. Social factors account for 
59.1% of the drivers of changes in unused land, while natural factors 
contribute 40.9%. TI, MRH, ST, SI, and PEV are the key variables 
driving the project. The results of landscape metrics analysis indicate 
that social factors contribute 67.2% to the driving factors of landscape 
evolution in the YRB, with natural factors accounting for 32.8%. The 
core driving factors are YACLA, TP, MRH, Pr and PEV. 
5 Discussion 

5.1 Response relationship between LULC 
and LP in the YRB 

Some researchers argue that landscape pattern changes are 
primarily influenced by LUCC. Researchers have developed 
various quantitative models to assess the impact of LUCC on LP 
(Ning et al., 2020; Yang et al., 2022). However, these studies have 
not focused on the landscape ecological significance indicated by 
this quantitative relationship. This paper analyzes the response 
relationship between each LULC class and the fragmentation, 
complexity, and connectivity of landscapes through correlation 
analysis, revealing potential locations for LUCC. By employing 
regression modeling, we were able to determine how different 
LULC classes influence the direction and intensity of landscape 
evolution at landscape metrics. This analysis unveils the impact of 
various LUCC classes on the overall trend of landscape evolution in 
the YRB. 
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5.2 Driving mechanisms of landscape 
evolution in the YRB 

The landscape evolution of the YRB is a complex outcome 
resulting from a multitude of natural and societal factors, as 
evidenced by the primary indicators derived from the dimensions of 
LULC and LP. The contribution of social factors surpasses that of 
natural factors significantly. Long-term landscape changes are 
consistently influenced by natural forces. The natural environment 
of the basin is influenced by the process of climate change, resulting in 
alterations to  LULC as well as LP within the basin. Through statistical 
analysis of AT and ST data from 1985 to 2020, it was observed that the 
AT increased at a rate of 0.043°C per year. Similarly, the ST exhibited 
an increase at a rate of 0.056°C per year. These findings indicate an 
overall warming trend in the regional climate. Additionally, the Pr in 
the basin has exhibited a decrease of 4.35 mm/year over the past three 
decades. This decline in rainfall, combined with the observed rise in 
temperature, will lead to a reduction in soil moisture content, a 
lowering of the water table, and an impairment of runoff regulation 
capacity. These alterations will have significant implications for the 
ecological equilibrium and landscape dynamics of the basin, 
potentially resulting in heightened intricacy and fragmentation 
(Wen et al., 2023; Huang et al., 2017). The analysis of driving forces 
revealed that the overall contribution of climate factors to the 
evolution of landscape patterns is relatively limited. Climate factors 
play a crucial role in restoring the ecological environment in basins 
and achieving high-quality development. However, it should be noted 
that climate factors are not the sole determinant of landscape pattern 
evolution. Other factors also influence basin landscape evolution. 
Social factors significantly contribute to rapid transformations in 
basin landscapes and shape their subsequent directions of change. 
When examining the influences on LULC, as well as LP, it becomes 
evident that social factors exert a much greater influence compared to 
natural factors. This indicates that social factors have a stronger 
impact on landscape evolution than natural ones, making them 
dynamic driving forces for such changes. Between 1985 and 2020, 
the population of the YRB witnessed substantial growth. The TP 
increased from 148.18 million to 218.73 million, with the NAP 
experiencing an even more significant rise from 34.95 million to 
136.41 million. This notable increase in the number of NAP residents 
and the resulting transformation in the composition of the TP will 
necessitate additional land reclamation measures to sustain urban 
growth, ultimately leading to potential landscape fragmentation. 

When considering secondary indicators, there exists a certain 
degree of variation in the factors driving landscape changes within the 
YRB, as observed through LULC and LP. For instance, the core 
driving factors contributing to changes in forest land classification 
include TI, ST, SI, PI, and GDP. The core drivers of forest landscape 
pattern  changes  were  mainly  TI,  PI,  SI, NAP, and  ST. Notably, these  
core drivers overlap, as both forest land classification change and 
landscape pattern change were influenced by common factors, namely 
TI, PI, SI, and ST. This suggests that certain factors play a critical role 
in the evolution of forest land landscapes across different landscape 
types. The interrelationships among these factors further indicate a 
frontiersin.org 

https://doi.org/10.3389/fevo.2025.1611874
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Guo et al. 10.3389/fevo.2025.1611874 
complex dynamic in landscape transformations, where 
environmental, social, and economic variables interplay. However, 
differences in these elements also point to variations in the ecological 
significance of the models. Similar findings were observed for the 
other LULC classifications as well. This indicates that LULC and LP 
reflect both shared and divergent processes in landscape evolution, 
and by examining the core drivers and their interrelations, we can gain 
a deeper understanding of the underlying mechanisms driving 
landscape changes. Furthermore, when comparing these findings 
with studies from other regions, we observe that while some core 
drivers such as TI and PI are consistent with other research (e.g., 
[Author, Year]), the influence of factors like GDP and NAP may differ, 
highlighting the region-specific nature of landscape evolution. 
6 Conclusion 

The present study investigates the spatio-temporal dynamics of 
LULC and LP in the YRB from 1985 to 2020. Moreover, it explores 
the underlying drivers that have contributed to these transformations. 
Additionally, it elucidates the intricate interrelationships between 
LULC and LP within the basin. Based on the research findings: 
Fron
(1) The LULC in the YRB have undergone significant changes 
over the past 35 years. From 1985 to 2020, there has been a 
notable increase in the extent of grassland (2.21%), forest 
land (19.18%), water body (9.50%), and construction land 
(173.52%). Particularly, the area covered by grassland 
exhibited the most substantial expansion, reaching 
12,536.55 km². Conversely, farmland and unused land 
experienced significant declines with reductions of 12.43% 
and 34.32%, respectively. The reduction in farmland 
accounted for an area of 17,059.40 km² while that of 
unused land amounted to 32,367.26 km². 

(2) The landscape pattern evolution in the YRB is characterized 
by distinct stages. A significant change occurred between 
1985 and 2010, marked by an increase in landscape 
aggregation and connectivity. Conversely, between 2010 
and 2020, a noticeable shift towards fragmentation and 
reduced connectivity was observed. Concurrently, the NP 
and PD values associated with dominant landscape classes 
such as farmland and grassland exhibited a declining trend 
from 1985 to 2010 but showed an increasing trend 
thereafter. This was the primary driving force behind the 
landscape pattern evolution in the YRB. 

(3) The landscape evolution of the YRB has been primarily 
shaped by grassland changes, with other land LULC classes 
exerting  a  relatively  minor  influence  on  overall  
composition, diversity, and connectivity. The transition of 
grassland is predominantly observed in the periphery of 
existing grassland areas, while the evolution of other LULC 
classes is subject to a greater degree of human influence and 
exhibits a more stochastic pattern. 

(4) The landscape evolution in the YRB is a result of both social 
and natural factors. Social factors have led to rapid 
tiers in Ecology and Evolution 11 
alterations in local landscapes, while natural factors have 
played a more significant role in shaping long-term basal 
gradient of landscape. Through an analysis of driving forces 
related to LULC and LP, it is evident that social factors have 
been major contributors to the landscape changes observed 
in the YRB over the past three decades. 
In summary, this study explores the spatio-temporal dynamics of 
LULC and LP in the Yellow River Basin from 1985 to 2020, providing 
valuable insights into the driving forces behind these changes. However, it 
has certain limitations. The data used in the analysis has limitations in 
terms of temporal and spatial resolution, which may affect the 
generalizability of the results. Additionally, the research focuses solely 
on the Yellow River Basin, and the findings might not be directly 
applicable to other regions with different socio-economic and 
environmental conditions. Moreover, this study mainly relies on 
historical data and does not provide predictions for future LULC and 
LP changes. Future research could address these limitations by 
incorporating higher-resolution data and employing advanced modeling 
techniques, such as deep learning and remote sensing technologies, to 
refine the understanding of LULC and LP relationships. Expanding the 
study to other river basins or regions would also offer broader insights into 
landscape evolution. Furthermore, future studies should consider 
predicting future trends, using both social and natural factors, to better 
inform land use planning and ecosystem management. 
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