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To quantify the climate-change impact on bees and guide conservation

planning, we employed ecological niche modeling (ENM) driven by three

representative concentration pathways (RCP 4.5, 6.0 and 8.5) and three

general circulation models (CCSM4, HadGEM2-AO and MIROC-ESM-CHEM).

Across all scenarios and GCMs, suitable climatic space for every bee species is

projected to contract, with the steepest declines in low-latitude regions. Range

contractions vary from 8% to 87%, with wide-ranging species exhibiting greater

resilience. Furthermore, Mean annual temperature (Bio1), annual precipitation

(Bio12) and elevation collectively explain the largest share of interspecific

distributional dynamics for each bee species. The median elevation of suitable

pollinator habitat is projected to rise by 35 to 450m. The suitable centroids of bee

species are expected to migrate 65 to 137 km south-eastwards, except for A.

florea. Model projections indicate a widespread decline in environmental

suitability for pollinators. Alarmingly, projected suitable occupied by habitat

protected areas is relatively low, implying limited conservation efficacy under

future climates. Accordingly, our findings provide a quantitative foundation for

stakeholders to maximize the ecological and economic value of pollinators and

develop smarter plant protection strategies in a warming world.
KEYWORDS

ecological niche modeling, maxent, general circulation models, pollinators, protected
natural areas, climate changes
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1 Introduction

Southeast Asia harbors exceptional biodiversity, driven by its

equatorial position, surface topography, climatic characteristics,

and ecosystems processes (Clements et al., 2006). The region’s

low latitude and hot-humid climate, together with its dense

human population, have forged a distinctive biota that attracts

global ecological research (Sodhi et al., 2004). Over the past forty

years, the global area cultivated with pollinator-dependent crops

has expanded steadily, amplifying the ecological and economic

consequences of pollinator decline (Aizen and Harder, 2009).

Latitudinal thermal gradients strongly shape the geographic

distribution of ectothermic insects, whose physiology and range

limits are tightly coupled to ambient temperature (Wallner, 1987).

Insect assemblages diverge markedly between montane and lowland

habitats, reflecting distinct biogeographic histories that interact

with elevational and latitudinal gradients (Koch et al., 2018).

Temperature governs insect colonization, distribution, abundance,

life-history traits and behavior, seasonal thermal regimes impose

additional constraints on population dynamics and dispersal

(Sinclair et al., 2003). Accelerating global warming now offers

further possibilities for plant-pollinator research at low

latitude regions.

Honey bees are keystone pollinators that underpin both wild-

plant reproduction and crop yields across agricultural landscapes

(Vanbergen and Initiative, 2013). Approximately 80% of

angiosperms depend on animal vectors for pollination, and

pollinators annually enhance both yield and quality of major

crops around the world (Ollerton et al., 2011). The insect-plant

mutualism that has evolved over geological time ranks among the

most critical biotic interactions in terrestrial ecosystems.

Nevertheless, regional and continental surveys reveal that honey

bee populations are declining and some species are losing value as

ecosystem providers because they are impending extinctions (Colla

and Packer, 2008; Severns and Moldenke, 2010; Bommarco et al.,

2012). Under low-emission climate scenarios for 2050, the habitat

suitability of bumble bee species in South America is projected to

contract by up to 67% (Martıńez-López et al., 2021). Model

projections further suggest that bee declines could disrupt coffee

pollination across tropical Latin America, as shifting climatic

envelopes reconfigure pollinator assemblages (Imbach et al.,

2017). As an important component of agrobiodiversity,

pollinating insects play a huge role in maintaining the

biodiversity and stability of agroecosystems. Sustaining

pollination service of ecosystems has become a core objective of

agroforestry management worldwide (Potts et al., 2016a). The

pollinator-friendly management measures implemented by some

European countries (e.g. UK’s Agriculture Environmental

Schedule) aim to regulate ecosystem pollinator communities and

safeguard pollinator service function of the ecosystem (Ovenden

et al., 1998).

Although we have begun to recognize the ecological value of

pollinators and take targeted conservation measures, global

pollinator populations continue to decline (Gallai et al., 2009).

Global climate change and anthropogenic pressures increasingly
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destabilize biodiversity and are now primary drivers of bee diversity

loss (Barman and Devadas, 2013; Giannini et al., 2020). Empirical

evidence indicates that rising temperatures and altered precipitation

regimes by climate change, can alter the plant-pollinator phenology

matches across elevational and latitudinal gradients (Parmesan,

2006; Kharin et al., 2013). Moreover, climate-driven range shifts

and centroid displacements diverge between plants and pollinators,

intensifying ecosystem instability (Zhang et al., 2015; Ogilvie et al.,

2017; Jakoby et al., 2019). Climate change disproportionately

imperils pollinator biodiversity, especially at low latitudes (Roslin

et al., 2017; Sheldon, 2019). Whereas most taxa exhibit peak

diversity in the tropics, but Apidae (including honey bees) show

reduced species richness near the equator (Orr et al., 2021). Low-

latitude honey bee populations are affected by predicted climate

change and their suitable habitat will shift upward along slope and

latitude (Pyke et al., 2016; Rahimi et al., 2021). The synergistic

effects of warming-driven range shifts and low tropical species

richness are poised to amplify risks to regional agroforestry

ecosystems. Although Imbach et al. (2017) and Martıńez-López

et al. (2021) examined climate-change impacts on low-latitude bee

species in Latin America and Central America, equivalent analyses

for Southeast Asia remain scarce (Imbach et al., 2017; Martıńez-

López et al., 2021). Although a few bee species may be climate-

resilient, Imbach et al. (2017) have to admit that most species and

the plants will be negatively affected under future climates (Imbach

et al., 2017).

Recent studies found that different honey bee species exhibit

convergent or divergent responses to climate change, and the

hypothesis explaining this phenomenon is related to the

evolutionary history and niche constraints of the species (Fründ

et al., 2013; Kerr et al., 2015). Species distributions emerge from

interactions between organisms and environmental factors (Wisz

et al., 2008; Dormann et al., 2018). Species can continue to exist

within a certain appropriate range, and the breadth and plasticity of

this environmental tolerance define a key dimension of the species’

ecological niche (Kearney and Porter, 2009; Broennimann et al.,

2012). Together, these principles provide a theoretical basis for

anticipating pollinator responses to ongoing climate change.

Ecological niche modelings (ENMs) are tools that use known

species distribution data and relevant environmental variables to

quantify the ecological requirements of species (Barve et al., 2011;

Zhu et al., 2013). These algorithm-based frameworks offer the

possibility to scientifically predict the actual and potential

distribution of species across times and spaces (Peterson and

Soberón, 2012). Consequently, ENMs are now integral to

conservation biology, providing information for species habitat

prediction, invasion risk assessment, climate-driven range shifts

and phylogeographic reconstruction (Beck, 2013; Adhikari et al.,

2019; Pili et al., 2020). In particular, ENM-based forecasts of

pollinator distribution and niche dynamics yield additional

insights into climate change and insect responses, which can help

to better understand the survival principles and potential of bee-like

pollinating insects in new habitats.

In this study, we used ecological niche modeling (ENM) to

project the current and future potential distribution of five bee
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species. Based on our previous work, we have chosen two time

periods, 2050 and 2070, to represent the future. Meanwhile, three

representative concentration pathways (RCP 4.5, 6.0, and 8.5) and

three general circulation models (CCSM4, HadGEM2-AO, and

MIROC-ESM-CHEM) were chosen to capture scenario-

dependent variation in projected distributions (Kerr et al., 2015;

Rasmont et al., 2015). We adopted and tested the hypothesis that

climate change drives both elevational increases and centroid shifts

in species distribution ranges (Rotenberry and Balasubramaniam,

2020). We further hypothesized that species with larger ranges

exhibit greater adaptive capacity (Gaston, 2008). We also examined

the hypothesis that whether range size inversely correlates with

projected range loss under future climate change. To quantify

climate-change impacts on bees species, we constructed a clear

ENM framework to assess species distribution and suitability based

on current environmental variables. Based on this model, we used

different climate change scenarios as input conditions to predict the

future changes of bee species. From these projections, we analyzed

and evaluated species range, centroid displacement and species

responses to environmental change. In addition, we further

quantified the overlap between current and future ranges of bee

species and government-designated natural areas. Our findings will

have theoretical insights and practical guidance for the

management and conservation of these pollinators, and provide a

reference for climate response of pollinators and sustainable

agricultural development in low latitudes.
2 Materials and methods

2.1 Study region and species records

The study domain encompasses the equatorial belt and the

Southeast Asian, comprising China, India, Thailand, Laos, Vietnam,

Philippines, Cambodia, Bangladesh, Nepal, Singapore, Bhutan,

Indonesia, Papua New Guinea, Timor-Leste, Australia, Vanuatu,

Fiji, New Caledonia, and Solomon Islands (Figure 1). The region is

topographically complex, dissected by numerous rivers, and

dominated by tropical rainforest climate, tropical monsoon

climate and alpine climates (Wheeler and White, 2002; Vadrevu

et al., 2019). The five focal bee species involved are widespread

throughout the region, and largely ensure the stability of agro-

pastoral production and ecosystems in the region. The occurrence

data of the five honey bee species (i.e. Apis dorsata, Apis florea, Apis

laborosa, Apis andreniformis and Apis cerana) were obtained from

the Global Biodiversity Information Facility (GBIF) database

(GBIF, https://www.gbif.org/), China Academic Journal Network

Publishing Database (http://www.cnki.net/), El Colegio de la

Frontera Sur Database (http://www.ecosur.mx/) and Google

Scholar (https://www.google.com/) (Kumar and Stohlgren, 2009;

Kumar, 2012; Santana et al., 2019). We checked each occurrence

data for the five honeybee species, and eliminated occurrence

records with duplicate and unknown coordinates (Tang et al.,

2020; Yuan et al., 2020). For species distribution points with only

specific place name, Google Earth Pro (https://www.google.com/
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earth/versions/#earth-pro) was used to query precise coordinates

corresponding to the place name, and the outliers were discarded

(Li et al., 2020; Tang et al., 2021a; Zhao et al., 2021). In addition, the

geographic distribution records with excessively ambiguous labels

(e.g., ‘Thailand’) was likewise excluded (Tang et al., 2021b). The

actual ranges of some honeybee species may exceed the areas

delineated, and the study assumes that species distributed outside

the study area (e.g., at higher latitudes) are ecologically and

genetically distinct from the populations in the study area

(Martıńez-López et al., 2021; Wang et al., 2023). After these steps,

20,583 validated occurrences remained for the five bee species.

To mitigate oversampling bias, sampling deviation correction

was applied to calibrate the distribution of each species, but different

correction methods have certain limitations (Kramer-SChadt et al.,

2013). The limited number of distribution points were retained

within a certain distance according to the spatial screening method,

and systematic sampling was performed again according to the

principle of uniformity and randomness to ensure that the

geographic autocorrelation of the datapoints was minimized

(Tang et al., 2021a, 2021; Wen et al., 2024). Meanwhile, the

sampling results were compared with the sampling results of

cluster grouping and group modeling (Tang et al., 2021b). While

ensuring sufficient modeling data to the greatest extent, the

distribution points behave as a true reflection of the bee species

distribution during the modeling process (Boria et al., 2014). Using

these methods, the 5893 unique occurrences for five bee species

were remained to participate in modeling. Finally, the distribution

points of five bee species were exported as csv format and mapped

with ArcGIS 10.4.1 (Esri, Redlands, California) to visualize spatial

coverage (Figure 1). This map identified areas that were better

surveyed, guiding possible caveats in our models and highlighting

the interpretation of results.
2.2 Environmental variables

Environmental variables directly affect habitat suitability and

are central to forecasting climate responses of species (Hirzel and

Lay, 2008; Gogol-Prokurat, 2011). Twenty environmental data were

selected to predict habitat suitability of five bee species, including 19

bioclimatic variables and altitude variable (see Table 1). The

historical bioclimatic variables were downloaded from the

WorldClim database (http://www.worldclim.org) with a resolution

of 30′′, which were raster data generated by the kriging

interpolation method based on the observation data of

meteorological stations worldwide from 1970 to 2000 (Fick and

Hijmans, 2017; Poggio et al., 2018). The altitude raster with 30 arc

seconds was downloaded from the Geospatial Data Cloud (http://

www.gscloud.cn/). Future projections were generated for 2050 and

2070 using created nine combinations of three greenhouse gas

concentration scenario (RCP 4.5, 6.0 and RCP 8.5) and three

Global Climate Models (GCMs: CCSM4, HadGEM2-AO, and

MIROC-ESM-CHEM) (Gao et al., 2013; Martıńez-López et al.,

2021). RCPs is the abbreviation of representative concentration

pathways (Drouet et al., 2015; Gebre, 2015). According to the Fifth
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Assessment Report (AR5) released by Intergovernmental Panel on

Climate Change (IPCC), RCP4.5 and RCP 6.0 represent two

intermediate greenhouse emission scenarios and RCP8.5

represents the highest emission scenario (Drouet et al., 2015;

Martı ́nez-López et al., 2021). The different climate change

projections represented by the RCPs take full account of future

atmospheric greenhouse gas concentrations, policy factors, and

land use change (Meinshausen et al., 2011). For each RCP

scenario, different GCMs present different aspects of future

climate change because they consider different parameters (Ahn

et al., 2021). It is accepted that these models are similar in variables

used to develop them, but the models also differ in processes and

inflows (Zhang et al., 2016). For example, HADGEM2-AO was
Frontiers in Ecology and Evolution 04
established and developed mainly considering troposphere and

aerosols, while MIROC-ESM-CHEM was developed based on

nutrients from phytoplankton and zooplankton in the ocean

(Collins et al., 2011; Gent et al., 2011; Watanabe et al., 2011; Baek

et al., 2013). Based on this, the specificity of each model and the

differences between models were captured and extended to predict

the species distribution under different climatic conditions. We

established a uniform standard framework to select the

environmental variables used to model the potential distribution

of each species. First, twenty environmental variables were selected

for each honeybee species to build the model. Secondly, the

multicollinearity of variables will lead to over-fitting of the model

and reduce the accuracy of prediction results, so Pearson correlation
FIGURE 1

Comprehensive sampling points for five bee species and natural protected areas based on the Protected Planet website (https://www.protectedplanet.net).
(a) Distribution of bee species sampling points. (b) Distribution of protected areas.
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coefficient method was used to calculate the correlation of the

paired variables (Padalia et al., 2014; Tang et al., 2019). If the

correlation coefficient of two variables is greater than 0.8, it means

that the two variables can be substituted for each other (Wang et al.,

2010; Khanum et al., 2013). On the basis of fully considering the

ecological significance of variables, the less ecologically informative

member should be removed (Li et al., 2020). Third, to determine

which variables to retain in the final model, we prioritized the

variable contributions obtained by the model under default

parameters and the studies related to the survival and niche of

honey bee species (Tang et al., 2021b).
2.3 ENM processing

2.3.1 Biotic and abiotic framework
We estimated the current and future distribution of each bee

species using an ENM method established based on abiotic

environmental conditions (A) and selected study area (M)

(Martıńez-López et al., 2021). Abiotic environmental conditions

were determined according to the uniform standard framework,

and the variables selected for each honeybee species are shown in

Table 1. The study-area boundaries were further refined using
Frontiers in Ecology and Evolution 05
known species distribution and expert knowledge (Soberón and

Peterson, 2005). The chosen RCPs and GCMs at different time

periods provide the possibility to show range dynamics of each bee

species within the study domain.

2.3.2 ENM construction and optimization
We used MaxEnt, a Java-based algorithm founded on maximum

entropy theory, to construct ENMs (Phillips et al., 2006, 2017). As a

machine learning algorithm, MaxEnt is often used to predict species

suitable distributions from occurrence records and bioclimatic

variables and assess the potential habitat distribution (Yi et al., 2016).

To maximize predictive performance and determine the optimal

parameter settings for each model, we use R to optimize the Feature

combination (FC) and regularization multiplier (RM) (Morales et al.,

2017). Feature combination (FC) makes MaxEnt model use complex

mathematical relationships to predict the response of bee species

distribution to bioclimatic factors. Regularization multiplier (RM) as

amodel constraint can optimize the response curve of themodel. These

two parameters are very important for the prediction results of the

model, and they are determined by calling the ENMeval packet in the R

software (Muscarella et al., 2014). The model includes five features: L,

Q, H, P and T, which represent linear, quadratic, hinge, product, and

threshold, respectively. In order to determine the best combination of
TABLE 1 Bioclimatic variables in this study.

Variables Description A. dorsata A. florea A. laborosa A. andreniformis A. cerana

Bio1 Annual Mean Temperature (°C) Y Y Y Y Y

Bio2 Mean Diurnal Range (°C) Y Y Y

Bio3 Isothermality (Bio2/Bio7) (×100) Y Y

Bio4
Temperature Seasonality (standard deviation×100)
(Coefficient of Variation)

Bio5 Max Temperature of Warmest Month (°C) Y Y Y Y Y

Bio6 Min Temperature of Coldest Month (°C)

Bio7 Temperature Annual Range (Bio5-Bio6) (°C) Y Y Y Y Y

Bio8 Mean Temperature of Wettest Quarter (°C) Y Y

Bio9 Mean Temperature of Driest Quarter (°C) Y

Bio10 Mean Temperature of Warmest Quarter (°C)

Bio11 Mean Temperature of Coldest Quarter (°C)

Bio12 Annual Precipitation (mm) Y Y Y Y Y

Bio13 Precipitation of Wettest Month (mm) Y

Bio14 Precipitation of Driest Month (mm) Y Y Y

Bio15 Precipitation Seasonality (Coefficient of Variation) Y Y Y Y

Bio16 Precipitation of Wettest Quarter (mm) Y

Bio17 Precipitation of Driest Quarter (mm)

Bio18 Precipitation of Warmest Quarter (mm) Y Y Y Y Y

Bio19 Precipitation of Coldest Quarter (mm) Y

Elev Elevation (m) Y Y Y Y Y
Y indicates the selected variables for predicting distribution changes in each bee species.
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FC and RM, RM was varied from 0.5 to 4 (increments 0.5), and the

characteristic combinations are L, LQ, H, LQH, LQHP, LQHPT

(Velasco and González-Salazar, 2019). ENMeval packet evaluated all

48 parameter combinations. The Akaike Information Criteria (AICc)

reflects the fit and complexity of the model, and the model with the

smallest AICc value should be given priority (Romero-Alvarez et al.,

2017). The maximum sensitivity plus specificity (MSS) and 10

percentile training presence (10 P) are used to evaluate overfitting,

and the AUC value is used to evaluate the accuracy of the model (Ling

et al., 2003; Radosavljevic and Anderson, 2014).

2.3.3 ENM parameter setting and evaluation
MaxEnt is used to predict species suitable distributions based on

species occurrences and associated bioclimatic variables (Phillips

and Dudıḱ, 2008; Phillips et al., 2017). Final ENMs constructed by

MaxEnt algorithm were built under identical protocols for all

species. Occurrence points for each bee species, together with

corresponding bioclimatic variables, were imported into the ENM

model, and then occurrence points were randomly apportioned into

training set (75%) and the test set (25%) to calibrate the model and

evaluate predictive accuracy (Sobek-Swant et al., 2012; Tang et al.,

2021b). The maximum number of iterations was set to 500, and 20

cross-validation replicates were generated for each species. The

method that maximizes the sum of sensitivity and specificity was

adopted to determine the classification threshold of potential

suitable areas (Freeman and Moisen, 2008). Meanwhile, the

normal distribution theory and expert experience method have

also been fully used for reference and consideration (Bowler, 2014;

Merow et al., 2016). We use ArcGIS 10.4.1 software to reclassify the

predicted suitable habitats for each species. P≥0.75 is a highly

suitable area, 0.55≤P<0.75 is a moderately suitable area,

0.25≤P<0.55 is a low suitable area, and P<0.25 is a unsuitable

area. The areas under the receiver operating characteristic curves is

a widely used standard for evaluating species distribution models

(Wang et al., 2007). AUC ranges from 0 to 1, with higher values

indicating greater model accuracy (Townsend Peterson et al., 2007).

Although AUC remains the dominant metric for evaluating

ecological niche models, it can yield misleading assessments and

should be interpreted with circumspection (Lobo et al., 2008).

Therefore, we also performed partial AUC analysis in NicheA,

and partial-AUC values >1 indicates better model performance

(Costa et al., 2010).
2.4 Prediction results analysis

From the ENM projections under current climate scenario, we

quantified the contribution rate of each environmental variable

involved in the modeling (Tang et al., 2021a). Based on ENM

projections, we further analyzed the prediction results for 2050 and

2070 under different RCP conditions. We first quantified the suitable

habitat for the five honey bee species. Following reclassification, only

pixels scored as highly or moderately suitable were retained for

subsequent area calculations. We quantified the distribution

difference between present and projected future distributions to
Frontiers in Ecology and Evolution 06
estimate climate-driven habitat losses for each honey bee species in

2050 and 2070 (Martıńez-López et al., 2021). In addition, it is

assumed that the presence of at least one honeybee species within a

given area will basically guarantee the local agricultural and forestry

production (Tscharntke et al., 2005; Ssymank et al., 2008).

Consequently, we considered the five bee species as a whole in

order to determine the distribution of pollinators in the study area.

We overlapped the suitable distribution of the five species under same

RCP and model at same time periods, and consider high, moderate

and low suitable distribution are given decreasing priority. Any

predicted site classified as highly suitable for at least one of the five

bee species was designated as highly suitable area overall. Any

predicted site simultaneously encompassed by highly and

moderately suitable area were assigned the highest suitability class.

Conversely, concordant unsuitability across all five species at a given

site indicates a complete loss of honey bee services under projected

climate change.

Climate warming typically drives upslope shifts in species’

altitudinal distribution (Gottfried et al., 1999; Chen et al., 2011).

To account for the elevation changes under different RCP

conditions, we quantified mean elevation of suitable habitat for

the five bee species under each RCP for 2050 and 2070. Under

different RCP at current and future, We randomly sampled 10,000

points within the suitable distribution areas offive honey bee species

by GCM (Martıńez-López et al., 2021). It should be noted again that

the randomly sampled suitable distribution here also include only

highly and moderately suitable areas. We then extracted the altitude

information of the sampling points by ArcGIS 10.4.1 software

(Zhou et al., 2010). Based on elevation data obtained of each

species, we calculated the mean elevation of the five species in

their current and future distribution areas.

We measured the direction and distance of centroid shifts for

each bee species under each RCP-time combination by ArcGIS

10.4.1 (Tang et al., 2021b). Meanwhile, we estimated the

geographical extent and area of the nature reserves within

the study domain. To assess reserve effectiveness, we calculated

the proportional overlap between nature reserves and species

distribution under each climate scenario (Martıńez-López et al.,

2021). These results provide us with the minimum and maximum

area losses of suitable distribution for bee species. To evaluate the

overlap rate between nature reserves and species distribution under

climate change, we considered five bee species as a whole, and

therefore the suitable areas were overlapped to determine the final

species distribution areas (only include highly and moderately

suitable areas). The shapefiles of protected natural areas can be

obtained from Protected Planet (https://www.protectedplanet.net),

which has the most comprehensive information of protected

natural areas for each country in the study area.
2.5 Correlation analyses and environmental
suitability change

To assess the relationship between species distribution range

and their ability to cope with climate change, we used Pearson
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correlation coefficients to analyze the relationship between the

current distribution and the mean projected change in the future

distribution under each climate scenario (Martıńez-López et al.,

2021). Additionally, we separately evaluated the environmental

suitability of each bee species’ distribution records under each

RCP condition (Teixeira et al., 2014). Prior to correlation

analysis, we normalized current and future suitable distribution of

each species using the following formula.

Standardized CSD or FSD = (
x − �x
s

)

CSD means current suitable distribution and FSD means future

suitable distribution.

where x is the current suitable distribution (CSD) or future

suitable distribution (FSD) of a species. �x is the mean of all the

species’ CSD or FSD. s is the standard deviation of the CSD or FSD

of all species. The standardized procedure effectively avoids the

influence of geographical range size on the analysis results when

comparing current distribution reductions of each bee species. The

resulting dimensionless value, that is the standardized CSD/FSD,

was used to test the relationship between mean change of all

standardized FSDs and standardized CSD (Martıńez-López et al.,

2021). For FSDs, we separated the correlation analysis into two time

frames (2050 and 2070), and each frame encompassed nine GCM-

RCP combinations. To evaluate climate-driven changes in

environmental suitability, we extracted the suitability values and

FSDs for every occurrence point of each bee species under each

GCM-RCP combination. We then calculated the differences

between CSD and FSD under climate effects, and determined the

suitability changes for each species under different combinations of

models and scenarios. Finally, we visualized the suitability changes

for each species through box plots.
3 Result

3.1 Evaluation of the accuracy and
contribution of variables

The current and future suitable distributions of the five bee species

are predicted by the optimized ENM based on GCM-RCP

combinations. The training and test AUC values exceeded 0.90 for

all combinations of climate scenarios, and the highest AUC can reach

0.98. These values significantly exceed the random distribution and

have little difference, indicating that the prediction results have high

quality performance. Partial AUC analysis also supports this

conclusion. With the maximum sensitivity plus specificity, 95.2% of

species distribution points can be accurately predicted, and 91.4% of

species unsampled or non-distributed areas can be accurately

predicted. With the 10 percentile training presence, 93.4% of species

distribution points can be accurately predicted, and 89.6% of species

unsampled or non-distributed areas can be accurately predicted.

Across all bee species, Bio1, Bio5, Bio7, Bio12, Bio18 and

elevation consistently explained the predicted current distribution

(Table 2). Bio1, Bio12 and elevation emerged as the primary

determinants of suitability across all bee species, with the
Frontiers in Ecology and Evolution 07
cumulative contribution of the three variables reaching a

maximum to 54.9% for A. andreniformis and a minimum to

43.8% for A. cerana.
3.2 Sampling effort, current and future
suitable distribution

Occurrence records for the five honey bee species involved in the

modeling exhibit marked spatial heterogeneity across the study

region (Figure 1). Occurrence records are markedly clustered on

the Korean Peninsula, China’s eastern seaboard, China-Indochina

Peninsula and Malay Peninsula, indicating that the above areas were

well surveyed. Conversely, the number and density of occurrence

records decreased across much of the Malay Archipelago.

The distribution ranges of the five bee species are first considered

as a whole. By 2050, the highly suitable distributions of the pollinator

are projected to concentrate in the Yangtze River basin in China, all of

Japan except Hokkaido, the western side of the Western Ghats, the

southern edge of the Qinghai-Tibet Plateau, the Irrawaddy River

basin, the northeastern plateau of Thailand, the Truong Son Ra

region, all of Cambodia and the Philippines, and the islands of

Kalimantan, Sulawesi, and Sumatra (Figure 2). The moderately

suitable distributions are spread outward with the highly suitable

distributions as the center. By 2070, the highly suitable distribution

will expand slightly along the southern edge of the Tibetan Plateau,

and the suitable habitats in other places will contract markedly

(Figure 3). Notably, almost all highly suitable areas in the China-

Indochina Peninsula and the Malay Archipelago will nearly vanish.

Climate warming is expected to significantly contract climatically

suitable habitat for pollinators across the study region, and the highly

suitable habitat will show an obvious fragmented distribution.

ENMs estimate that the current suitable distribution (CSD) of the

five studied species range from 0.7342×106 km2 (A. laborosa) to

4.3853 ×106 km2 (A. cerana) (Figure 4). Based on current distribution

area, expert experience and the Labougle (1990), all five species

studied are common species (corresponds to rare species). By 2050,

all GCM-RCP combinations indicates continued range contraction of

the future suitable distribution for pollinators. The loss of honey bee

species distribution ranged from 7% (A. floreafor, RCP 6.0, GCM

HadGEM2-AO) to 72% (A. laborosa, RCP 8.5, GCM MIROC-ESM-

CHEM) (Figure 4). By 2070, the pollinator distribution ranges are

projected to contract markedly across all GCM-RCP combinations.

The loss of distribution ranged from 14% (A. florea, RCP 4.5, GCM

CCSM4) to 87% (A. laborosa, RCP 8.5, GCM MIROC-ESM-

CHEM) (Figure 4).
3.3 Altitude change, geographic centroid
change, and protected natural areas

Projections indicate that the median elevation of suitable habitat

for all five bee species will continue to shift upslope by 2050 and 2070

(Figure 5). By 2050, mean elevation variation ranged from 35m (A.

florea, RCP 4.5) to 360m (A. andreniformis, RCP 8.5) at. By 2070, the

effect of climate change on the pollinators elevation change will become
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TABLE 2 Contribution rate of variables to current distribution prediction.

Variable contribution rate of Variable contribution rate of Variable contribution rate of
A. laborosa (%)

Variable contribution rate of
A. andreniformis (%)

Variable contribution rate of
A. cerana (%)

rate Variables Contribution rate Variables Contribution rate Variables Contribution rate

Bio1 19.3 Bio1 17.9 Bio1 14.3

Bio2 14.2 Bio5 10.3 Bio2 7.6

Bio5 9.6 Bio7 14.5 Bio5 10.4

Bio7 15.0 Bio8 9.7 Bio7 12.2

Bio12 17.5 Bio12 22.6 Bio8 3.7

Bio14 5.2 Bio15 7.5 Bio12 16.2

Bio15 2.1 Bio18 3.1 Bio13 4.2

Bio18 3.4 — — Bio14 5.1

— — — — Bio15 5.7

— — — — Bio18 2.5

— — — — Bio19 4.8

Elevation 13.7 Elevation 14.4 Elevation 13.3
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more pronounced. By 2070, mean elevation variation ranged from 75m

(A. dorsata, RCP 4.5) to 450m (A. laborosa, RCP 8.5). As pollinator

habitats shift to higher elevations, most species are projected to

experience progressively greater habitat loss under RCP8.5, peaking

by 2070. Meanwhile, species whose climatically suitable ranges lie at

higher elevations are more significantly affected by climate change.

Centroid analyses reveal that the centroid of all five bee species

changed significantly under climate change, primarily in distance and

direction (Figure 6). The suitable distribution ofA. dorsata, A. laborosa,

A. andreniformis and A. cerana will shift southeastward by 2050 and to

continue in the same direction by 2070. Conversely, A. florea exhibits a

north-eastward displacement. Across all species, the geographic

centroids of suitable ranges are projected to shift 65–137 km by 2050

and 2070. Overall, RCP8.5 scenario exerts the strongest influence on

geographic-centroid shifts across all species by 2050 and 2070.
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We overlapped the suitable distributions of all bee species (only

include highly and moderately suitable areas) into one whole.

Currently, 17% of the total suitable habitat falls within protected

natural areas (Figure 7). By 2050, as habitat contracts, 20% (range

18%-22%) of the remaining suitable area is protected by the nature

reserve. By 2070, this proportion rises modestly only 28% (range

24%-32%).
3.4 Correlation analyses and environmental
suitability change for bee species

A species’ resilience to climate change scales with its geographic

range size. Correlation analyses revealed strong positive

relationships between CSD and mean FSD change in 2050
FIGURE 2

Projected suitable distribution for 2050 (2041–2060 average) for five bee species.
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(r = 0.76, df = 16, p < 0.01) and in 2070 (r = 0.86, df = 17, p < 0.01)

(Figure 8). The correlation between CSD and mean FSD change will

be stronger by 2070, and pollinators will be more strongly affected

by global warming. Our models predict that honey bee species with

smallest current suitable ranges will be more negatively impacted by

projected climate change in the future. This negative impact will be

more pronounced by 2070 as warming accelerates. Overall, climate

change will diminish pollinators availability across their

suitable habitats.

Environmental suitability is projected to decline for all species

across every GCM-RCP combination by 2050 and 2070 (Figure 9).

Species with smaller ranges face proportionally larger suitability

losses over the coming decades. Comparing the median losses of all

GCMs, median losses under RCP 8.5 exceed those under RCP 4.5

and 6.0 for both 2050 and 2070.
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4 Discussion

4.1 Performance of the ENMs approach

Ecological niche modelings (ENMs) can accurately predict and

analyze the suitable habitat range of species, and reveal the

relationship between climate variables and species presence (De

Marco et al., 2008; Evans et al., 2015). As the most commonly used

species-climate analysis method, ENMs also capture large-scale

species distribution information, which provides richer

environmental context for establishing a systematic and

comprehensive relationship between species and the environment

(Elith and Leathwick, 2009; Zhu et al., 2013). Therefore, ENMs are

currently the most widely accepted and well-fitted models for

species distribution prediction. The International Union for
FIGURE 3

Projected suitable distribution for 2070 (2061–2080 average) for five bee species.
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FIGURE 4

Range of current suitable habitat loss for five bee species in 2050 and 2070. The percentage of loss is presented as the minimum and maximum
obtained across all RCPs and models.
FIGURE 5

Altitude change from current suitable distribution (CSD) to future suitable distribution (FSD). Each circle represents the average altitude for suitable
distribution.
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Conservation of Nature (IUCN) has begun to apply the model to

species invasion, endangered species conservation and climate-

change responses (Cassini, 2011).

To predict the impacts of global climate change on low-latitude

pollinator distributions, we constructed ecological niche models

under current and future climatic conditions. The modelled ranges

and climate envelopes of all five bee species closely match their

currently documented distributions within the study region

(Hepburn et al., 2005; Radloff et al., 2010; Nagir et al., 2016;

Raffiudin et al., 2020). It is worth noting that climate is not the

only decisive factor affecting the process of species distribution

dynamics (Root et al., 2003; Davis et al., 2010). Intrinsic adaptive

capacity, habitat disturbance, reproductive traits, land-use change,

pesticide exposure, pathogen pressure and anthropogenic activities

will affect the survival and distribution of the species (Otto et al.,

2016; Potts et al., 2016b; Heneberg and Bogusch, 2020). These

factors, as important external pressures, limit the suitable

distribution of pollinators and may potentially aggravate species

declines under climate warming. Meanwhile, the construction of the
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niche models also must be carefully calibrated to approximate each

species’ fundamental niche (Owens et al., 2013). Nonetheless,

climate is the most important factors that determine the survival

and reproduction of species, profoundly shaping the geographic

distribution and ecological functions of pollinators (Hegland et al.,

2009; Uden et al., 2015). We quantified the climatic niche of five bee

species using nineteen environmental variables, and evaluated

model accuracy with AUC values from both training and test

datasets. We believe that our models provide sufficiently accurate

estimates of species distributions. Accuracy analyses also confirmed

the robust performance of our SDMs.
4.2 Climatic space for pollinator species

Environmental factors are closely related to the geographic

distribution of insects (Lobo, 2016). The study area, centered on

Southeast Asia at low latitudes, is strongly influenced by maritime

climate regimes. The unique temperature-precipitation patterns
FIGURE 6

Centroid change analysis for five bee species in the study area. Each circle represents the centroid of suitable distribution in current and future
(2050 and 2070). (a) The centroid shift of Apis dorsata. (b) The centroid shift of Apis florea. (c). The centroid shift of Apis laborosa. (d) The centroid
shift of Apis andreniformis. (e) The centroid shift of Apis cerana.
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and geography conditions provide essential environmental

information for the survival and distribution of pollinators in the

region (Abrahamczyk et al., 2011; Bartomeus et al., 2011). Among

the many climatic factors that affect the suitable distribution, only a

few exert dominant control over insect ranges (Stiling, 1988). Under

current climates, Bio1 (annual mean temperature) and Bio12
Frontiers in Ecology and Evolution 13
(annual precipitation) primarily constrain suitable distributions

for all five pollinators, with the lowest cumulative contribution of

both exceeding 43%. Reproduction is the basic life activity of insects

to maintain population, and temperature is an important

influencing factors (Régnière et al., 2012). Annual average

temperature can characterize the thermal requirements for each
FIGURE 7

Current and future (minimum and maximum) proportion of suitable distribution within protected natural areas for five bee species.
FIGURE 8

Correlation analysis for 2050 and 2070 mean change (future compared to current suitable distribution) and standardized current suitable distribution
(CSD) for five bee species in the study area.
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pollinator, and temperature deviation from the optimum impair

insect reproduction and physiology (Janowitz and Fischer, 2011).

Elevated temperatures impair neural function and affect the short-

term memory of bees, which in turn will affect their performance as

adults (Jones et al., 2005). In addition, temperature anomalies

further destabilize the balance of the population (Savage et al.,

2004). Investigation of the correlation between weather conditions

and winter mortality of bee species in Austria revealed that warmer

and drier weather conditions in the preceding year were associated

with elevated winter mortality of bee species (Switanek et al., 2017).

To reduce the negative effects of increased temperatures, most

species shift upslope to higher elevations where temperatures are

more suitable. Altitudinal surveys of the species abundance for bee

populations on the Kilimanjaro region also reveal temperature as

the primary driver of bee abundance at higher elevations (Classen

et al., 2015). Elevation-associated changes in temperature,

precipitation, vapor pressure and wind speed reduce both

abundance and beta-diversity (Perillo et al., 2017). However, there

are interspecific differences in climate change adaptation. Honey

bee species inhabiting harsh environments generally exhibit greater

tolerance to climate variability and extremes than those in normal

climatic conditions (Abou-Shaara et al., 2012). Global warming is

an important challenge to pollinators, especially those at low

latitudes. The pollination process requires honey bees to fly a

certain distance, and the sustained muscle activity raises their

body temperature well above ambient (Heinrich and Buchmann,

1986). Bees will stop foraging and pollination in hot environments

when their body temperature approaches their critical thermal limit

(Willmer and Stone, 2004). Global warming will inevitably reduce

the pollination efficiency of most honey bee species, so artificial

selection of heat-tolerant bees may be an important way to address

the climate challenge (Abou-Shaara, 2016). In conclusion,

temperature constrains pollinator diversity by restricting the

resource acquisition of ectothermic pollinators under global change.
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In addition to temperature, precipitation and ambient humidity

also profoundly influence insect physiology and population ecology

(Barton and Ives, 2014). Our model indicated that annual

precipitation is another key factor limiting suitable distribution of

each bee species. Environmental moisture primarily influences the

water balance of insects, thereby regulating the growth and

development of pollinators (Benoit, 2010; Jactel et al., 2012).

The nationwide study of pollinators across Ethiopia found that

the precipitation of the driest quarter and the precipitation of the

warmest quarter are the best contributors to bee distribution, and

fluctuations in precipitation affect the pollination services as well as

the ecological and economic roles of honey bee species in the

country (Abrha, 2018). As with temperature, altered precipitation

patterns in the current and preceding years can alter bee abundance,

and plant-resource abundance is likewise affected (Moeller et al.,

2012). Both excessively high and extremely low soil-moisture levels

greatly reduce the hatching success of honey bee eggs (Dupraw,

1961). Future climatic change will cause irregular shifts of the

rainfall belt in equatorial regions, further exacerbating the uneven

distribution of water resources (Mamalakis et al., 2021). The

survival of honey bee species affected by rainfall will eventually

shape the structure of the community. In addition to altering

species communities, future changes in rainfall patterns will also

influence key physiological and morphological traits of individual

insects. Body size increased over time, more so at drier sites (Suni

and Dela Cruz, 2021). At the same time, the increase in body weight

reduces water loss but, in turn, limits their flight range (Peterson

et al., 2006). Pollinators must make developmental decisions

without complete information about future conditions, and this

uncertainty affects the structure of populations (Forrest et al., 2019).

Precipitation may be an important driver of trait shifts in tropical

bees, shifts that arise from differential climatic tolerances and

thereby motivate investigations of natural selection on color and

body size.
FIGURE 9

Box plot analysis of habitat suitability change for RCP models in 2050 and 2070.
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4.3 Distribution of occurrence points and
future suitable distribution changes

Climate change will affect the relationship among human

activities, the abiotic environment and organisms, and may

further aggravate the loss of pollinator species (Settele et al.,

2016). Based on the optimized ENM, we predicted the suitable

areas for low-latitude pollinators and analyzed distribution patterns

in relation to the key limiting factors. Drawing on multiple

databases, we conducted a detailed and comprehensive statistical

analysis for each honey bee species in the study region. Therefore, it

is reasonable to conclude that the sampling of species distribution

points is adequate. Nevertheless, we are still uncertain whether the

five bee species studied are transferable across space and time

(Martıńez-López et al., 2021). This is mainly because the existing

distribution point data can provide additional information on the

distribution of the species across temporal and spatial scales.

Pollinators are widely distributed in the study area, but regions

such as Myanmar, Sumatra, Kalimantan and New Guinea islands

remain properly and adequately surveyed. We should also be

cautious about prediction results in areas characterized by low

point density and limited sampling.

Based on an combined analysis of different RCP scenarios and

models, we found that the suitable distribution of all honey bee

species in the study area will decrease under climate change. The

hypothesis that climate change will reduce the suitable range of bee

species has been supported by previous studies (Soroye et al., 2020).

In a study of regional crops and pollinators, climate change

significantly reduced the suitable range of ten Brazilian bee

species, particularly Melipona bicolor and Melipona scutellaris

(Giannini et al., 2012). It is worth noting that the negative impact

of climate change on honey bee populations is inevitable even in

climatically suitable sites (Faleiro et al., 2018). Meanwhile, the

contraction of suitable pollinator habitat also exhibits clear

spatiotemporal patterns. Correlation analysis showed that the loss

of pollinator habitat in 2070 was more significantly correlated with

the size of the current distribution area than in 2050. Compared to

species with large suitable ranges, those with smaller current ranges

experience a greater climate-induced reduction in range size.

Similar conclusions have also been confirmed in studies of

bumble bee species in Mesoamerica (Martıńez-López et al., 2021).

In addition, environmental suitability for all species is projected to

decline, with analyses for 2050 and 2070 indicating that RCP 8.5

could cause the greatest reduction. In the Pacific Northwest,

environmental suitability for bumble bees is expected to decline

markedly, with that of Bombus. vandykei projected to fall by 63% by

2050 (Koch et al., 2019). The pollinator responses to climate change

examined in this study align with projected global range losses of

other honey bee species (Le Conte and Navajas, 2008; Willmer,

2014; Pyke et al., 2016).

Our ENMs predicted that the loss of the suitable habitat for low-

latitude pollinators will be concentrated in the equatorial region,

especially on islands belonging to Indonesia and in the southern

regions of Southeast Asia. The spatial mismatch between pollinators

and plants caused by habitat loss will disrupt the symbiotic
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relationship within the ecosystem (Gorostiague et al., 2018). By

2070, only the higher latitudes within the study area are expected to

remain highly suitable areas for pollinators. During recent climate

warming, many insect species have shifted their ranges to higher

latitudes and altitudes (Hill et al., 2011). In addition, Chapman et al.

(2012) suggested that poleward migration of insects can promote

population increases, highlighting their strong capacity to respond

to environmental change (Chapman et al., 2012). Not only are low-

latitude insect pollinators affected by climate change, but marine

biodiversity near the equator has also declined significantly, with

some populations now at risk of extinction (Beaugrand et al., 2015;

Davies et al., 2017). Meanwhile, marine organisms tended to

migrate poleward, whereas honeybee species showed no

comparable shift (Molinos et al., 2016). Centroid migration trends

among the five honey bee species could be influenced by variable

winds and ocean currents in the study area, but further validation is

needed (Jha, 2015). Moreover, the loss of suitable area was mainly

concentrated at the edge of suitable range, while the core habitat

persisted. Numerous studies have supported this hypothesis, but

controversies remain over the underlying causes (Brown, 1984;

Martıńez-Meyer et al., 2013; Lee-Yaw et al., 2018). Supplementing

our models with field investigations at the edge of suitable habitats

may clarify this controversial phenomenon of range loss in

these species.

Changes in altitude and environmental suitability revealed that

future climate change will shift the suitable distribution of insect

pollinators to higher elevations. Environmental suitability for all

species will decrease in the future. In particular, the most significant

decrease in environmental suitability was observed under the

RCP8.5 scenario. Many studies have found that most honey bee

species shift their altitudinal ranges under climate warming, thereby

moving their habitat centroids (Hoiss et al., 2012; Inouye, 2020;

Nooten and Rehan, 2020). Insects often migrate to higher elevations

to track more suitable habitats (Adedoja et al., 2018). However, this

upward shift also results in a loss of suitable habitat for pollinators

at higher altitudes. Against the background of marked warming at

lower latitudes, pollinators with lower tolerance for warmer or

cooler climates are unable to shift toward higher latitudes (Kerr

et al., 2015). In addition, the east-west mountains of the continent

often block northward movement for pollinators. Kerr et al. (2015)

found that the mean elevation of bumble bees’ suitable distribution

in Europe rose by 300 m because of the Alps (Kerr et al., 2015). It is

worth noting that many studies have shown that vegetation will

continue shifting poleward and upslope under climate change

(Ashton et al., 2009; Hagedorn et al., 2019). Vegetation shifts at

low latitudes may be a key driver of range loss in insects. Although

higher altitudes still provide some plant resources for pollinators,

plant species richness there is significantly lower than at lower

altitudes (Lawton et al., 1987; Becker et al., 2005). Our results

suggest that the highly suitable habitat for pollinators is mainly

concentrated in the Himalayan region and is projected to shift

upslope by up to 500 m in the future. This warrants further

investigation, as the upslope shift observed across all bee species

may result from their populations being influenced by the east–

west-oriented Himalayan mountain range.
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4.4 Role of protected natural areas for
bees under climate change

Protected terrestrial areas are widespread worldwide and play a

key role in protecting endangered species and fragile ecosystems

under climate change (Deguise and Kerr, 2006). However, protected

areas have often been selected not to protect specific species, but to

meet other criteria (Dunn, 2003). For example, Jiuzhaigou Valley in

Sichuan and Yushan National Park in Taiwan were both established

to protect natural landscapes (Wang et al., 2018). The Wudalianchi

Nature Reserve in Heilongjiang Province was established to protect

unique geological landforms (Huang et al., 2018). The protected

terrestrial areas within our study region are relatively small, spatially

fragmented, and poorly connected. Meanwhile, some of these

protected areas are themselves at risk from climate change

(Hoffmann et al., 2019; Elsen et al., 2020). According to our

results, the proportion of suitable pollinator habitat that falls

within protected areas remains extremely limited under both

current and future scenarios. Therefore, protected-area

establishment alone may be insufficient to conserve pollinator

diversity and habitat.

Overall, the proportion of suitable pollinator habitat within

protected areas is projected to increase, but this does not guarantee

effective protection for bee species. If protected areas remain

unchanged, the suitable habitat of pollinators will suffer

substantial losses under climate warming (Martıńez-López et al.,

2021). This explains why the proportion of suitable habitat within

protected areas is increasing. Although climate change is already so

detrimental to pollinators, it is unrealistic to assume that protected

areas will remain unchanged. Studies on the negative impacts of

climate change on protected areas and forests are frequently

reported (Hannah et al., 2007; Seidl et al., 2017). In addition to

climatic factors, deforestation, land use change and pesticide abuse

all pose significant challenges to vegetation within protected areas

(Ashley et al., 2006). Even though certain species can retain

ecological functions within protected areas, these areas are often

not major agricultural production zones, limiting pollinators’

contribution to agriculture (Mcdonald and Boucher, 2011).

Furthermore, our analysis shows that environmental suitability

for pollinators is projected to decline in the future. In this

context, it remains uncertain whether protected areas will

continue to serve as refuges for pollinators.

Predictions indicate that the highly suitable habitat of honey bee

species will be significantly fragmented in the future. While the

conservation role of protected areas for species needs further study,

establishing new nature reserves may enhance pollinator

conservation (Martıńez-López et al., 2021). In particular, the

Himalayan region will become an important habitat for

pollinators in the future. Although our projections suggest the

Himalayan region is an important area, environmental problems

such as habitat fragmentation, air pollution, and deforestation are

becoming more pronounced in the region today (Chakraborty et al.,

2017; Dhungel et al., 2018). A recent study showed that

environmental changes in the Himalayan region have led to

significant biomass loss, likely driven by global climate change
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and intensifying agricultural activities in the region (Chakraborty

et al., 2018). However, the significant increase in the average

vegetation index during the growing season may indicate

improved food availability for pollinators in a warming climate

(Shrestha et al., 2012). For the fragmented suitable habitat patches

of pollinators in plains and low mountain areas, establishing nature

reserves may not be the most effective strategy. For example, the

Mekong Plain is the most densely populated area in Southeast Asia,

and establishing nature reserves there would exacerbate human–

land conflicts, thereby affecting agricultural production (Kontgis

et al., 2019). In conclusion, protecting important species under

climate change should avoid pure in-situ protection and adopt

integrated landscape management strategies, a task that requires the

active participation and efforts of land stakeholders. Furthermore,

timely environmental education activities may benefit conservation

efforts (González-Fernández et al., 2018). The floristic inventories

allow us to determine which plants bees pollinate and from which

plants they collect pollen and nectar. Conversely, we can grow plant

species needed by bees in protected areas to support bee survival.

Finally, the floristic inventories in the study area fill an obvious

geographical gap in our sampling and lay the foundation for more

scientifically and rationally predicting species distributions.
5 Conclusion

Ecological niche models (ENMs) can evaluate species

distribution dynamics of under different climate scenarios and

models based on known occurrence points and associated

environmental variables. These models play an increasingly

important role in the study of the distribution of species in

response to climate change. Nevertheless, many factors pose

significant challenges for establishing reliable ecological niche

models for species, including spatial sampling bias, geographical

limitations, habitat specialization, RCP and GCM assumptions, and

model algorithms. In this study, we attempted to address these

biases and problems affecting distribution predictions from

ecological niche models, and to scientifically predict the response

of pollinators to climate change in low-latitude regions. In addition,

we recommend environmental education activities and floristic

inventories to support more reliable near-term predictions.

Our analysis found that future climate change will lead to a

sustained decline in the suitable distribution of pollinators, and for

those bee species with smaller ranges, their suitable ranges decline

even more sharply. Bio1, Bio12 and altitude are the most important

variables affecting the dynamics of suitable distribution for each

honey bee species, and the combined contribution rate of these

three variables exceeds 40%. Under climate change, the average

altitude shift for pollinators ranges from 35 to 450 meters, and

highly suitable areas are clearly fragmented and concentrated at

higher elevations, especially in the Himalayas. Except for A. florea,

the geographic centroid of all bee species shifted to the southeast,

with distances varying from 65 to 137 km. Our model predicts that

future climate change will reduce the environmental suitability of

pollinators in the study area. At the same time, protected areas are
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too fragmented and cover a small fraction of suitable pollinator

habitat, limiting their effectiveness for bee conservation. These

studies are expected to inform conservation efforts by

governments and local organizations to enhance the conservation

and sustainable use of insect pollinator resources in low latitudes.
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González-Fernández, A., Manjarrez, J., Garcıá-Vázquez, U., D’addario, M., and
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Ecological niche structure and rangewide abundance patterns of species. Biol. Lett. 9,
20120637. doi: 10.1098/rsbl.2012.0637

Mcdonald, R. I., and Boucher, T. M. (2011). Global development and the future of
the protected area strategy. Biol. Conserv. 144, 383–392. doi: 10.1016/
j.biocon.2010.09.016

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M., Lamarque, J. F.,
et al. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to
2300. Climatic Change 109, 213. doi: 10.1007/s10584-011-0156-z

Merow, C., Allen, J. M., Aiello-Lammens, M., and Silander, J. J. A. (2016). Improving
niche and range estimates with Maxent and point process models by integrating
spatially explicit information. Global Ecol. Biogeography 25, 1022–1036. doi: 10.1111/
geb.12453

Moeller, D. A., Geber, M. A., Eckhart, V. M., and Tiffin, P. (2012). Reduced pollinator
service and elevated pollen limitation at the geographic range limit of an annual plant.
Ecology 93, 1036–1048. doi: 10.1890/11-1462.1

Molinos, J. G., Halpern, B. S., Schoeman, D. S., Brown, C. J., Kiessling, W., Moore, P.
J., et al. (2016). Climate velocity and the future global redistribution of marine
biodiversity. Nat. Climate Change 6, 83–88. doi: 10.1038/nclimate2769

Morales, N. S., Fernández, I. C., and Baca-González, V. (2017). MaxEnt’s parameter
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