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mechanisms of plateau mountain
ecosystems under seismic
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of the Ludian M6.5 earthquake
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Siyang Li1, Yufan Xu1 and Jing Liu3*

1Yunnan Earthquake Agency, Kunming, China, 2Faculty of Geography, Yunnan Normal University,
Kunming, China, 3Kunming Comprehensive Investigation Center of Natural Resources, China
Geological Survey, Kunming, China
Introduction: Plateau mountain ecosystems are highly sensitive to seismic

disturbances due to their complex topography and fragile ecological environment.

However, existing research still lacks a systematic understanding of the

spatiotemporal dynamics and underlying driving mechanisms of ecosystem

recovery in such regions following strong earthquakes. Thus, further in-depth

investigation is urgently needed.
Methods: This study employed the 2014 Ludian M6.5 earthquake in Yunnan,

China, as a case study. Using the Remote Sensing Ecological Index (RSEI) derived

from Landsat imagery, we quantitatively assessed ecological disturbance and

recovery over nearly a decade. The Geodetector model was applied to identify

key driving factors of ecological quality changes.

Results: (1) Disturbance effects: the earthquake caused a significant short-term

decline of 21.3% in the mean RSEI of the affected area, with the degree of

degradation intensifying alongside seismic intensity. (2) Recovery dynamics: the

ecosystem exhibited a three-stage nonlinear evolution pattern of “rapid recovery –

steady recovery – stable surpassing.” By 2021, approximately 91% of the region had

experienced ecological quality improvement, while 8.75% of the area still showed

degradation, mainly concentrated in zones with intensive human activities. (3)

Driving mechanisms: before the earthquake, the ecological pattern was primarily

governed by natural background factors such as climate and soil; after the

earthquake, aspect became the dominant factor reshaping the ecological pattern;

and during the recovery period, the driving mechanisms presented a composite

feature characterized by the persistent influence of the topography–climate system

combined with the progressively increasing role of human interventions.

Discussion: The findings revealed the complex interplay between seismic

disturbance, topographic constraints, and human activities in shaping

ecological recovery patterns in plateau mountain regions. The study provides a

theoretical basis and practical insights for post-disaster ecological restoration

and sustainable management in seismically active mountainous areas.
KEYWORDS

plateau mountain ecosystems, seismic ecological effects, recovery trajectory, driving
mechanism, Ludian earthquake
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1 Introduction

Earthquakes, being abrupt and intense geological disasters, not

only cause extensive casualties and property damage (Korup et al.,

2010) but also trigger secondary disasters such as landslides,

collapses, debris flows, and barrier lakes (Pan et al., 2021). These

cascading effects severely damage forests, grasslands, farmland, and

wildlife habitats, destabilizing biodiversity and ecosystem services

(Ouyang et al., 2008; Kang et al., 2021) and threatening regional

ecological security. Research has shown that ecosystem damage in

earthquake-affected areas often leads to long-term environmental

risks (Wang et al., 2008). However, due to the self-repairing

capacity of ecosystem structures, ecosystem functions can

gradually recover and stabilize over time (Marc et al., 2015;

Tanya et al., 2021). Therefore, systematically evaluating the

ecological impacts of earthquakes, quantitatively analyzing post-

disaster ecological succession and recovery processes (Zhang et al.,

2025), and constructing multidimensional frameworks to identify

driving factors are essential for the restoration of disaster areas and

ecological conservation.

Current research on the assessment of ecological environment

quality under earthquake disturbances focuses primarily on two

aspects: identification of changes in ecological quality and their

driving factors in affected regions. Regarding changes in ecological

quality, existing studies employ methods such as field surveys and

monitoring, ecological models, and remote sensing technologies.

Among these, field surveys and monitoring, through on-site

sampling and analysis of soil, water quality, vegetation, and other

aspects in disaster areas, can obtain real and reliable ecological

environment quality monitoring data (Hirayama et al., 2020;

Hamada et al., 2024). providing a reliable basis for ecological

environment quality assessment. However, due to limitations in

sampling costs, human resources, and natural conditions, this

method has certain limitations in the spatial and temporal

continuity of data coverage (Yin et al., 2025). Nevertheless, the

obtained in-situ data remains an important validation benchmark

for other methods. Ecological modeling methods, such as ecosystem

process models (Duan et al., 2021; Cattani et al., 2023), landscape

ecological models (Luo et al., 2023; Tian et al., 2023), and eco-

hydrological models (Jakovljevic and Lozanov-Crvenkovic, 2015;

Chen et al., 2021), can provide large-scale and long-term

simulations of the dynamic changes in ecological environment

quality from a macro perspective, offering an important tool for

understanding the long-term evolution of ecosystems post-

earthquake. However, to construct operable ecological models, it

is usually necessary to simplify and make assumptions about

complex ecosystems, which may lead to discrepancies between

the modeled ecological changes and the actual situation. Despite

this, the method still holds unique advantages in revealing the

mechanisms of post-earthquake ecological evolution and predicting

long-term trends. In recent years, with the rapid development of

earth observation technologies, remote sensing monitoring, with its

advantages of high precision, efficiency, and large-scale coverage

(Yuan et al., 2021), has become an important means of obtaining
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long-term, high-precision ecological environment data, and is

widely used in ecological environment quality monitoring and

evaluation. Relevant studies, based on multi-temporal remote

sensing image data, have quantified the ecological environment’s

disturbance and recovery from earthquakes through the

construction of indices such as normalized vegetation Index

(Pandey et al., 2022), vegetation coverage (Nakata et al., 2023),

and net primary productivity (Duan et al., 2024). However, single

indices fail to capture the complexity and multidimensionality of

ecosystems (Li et al., 2025). To address these limitations, integrated

ecological evaluation indices have emerged (Xu, 2013). proposed

the Remote Sensing Ecological Index (RSEI), which synthesizes four

indicators—greenness, wetness, dryness, and heat—using principal

component analysis. This composite index overcomes the

constraints of single-index approaches by providing a more

comprehensive, cross-temporal, and cross-spatial assessment of

ecological quality. It enables rapid, accurate, and objective

assessment of ecological environment quality in disaster-affected

areas (Xu et al., 2019), effectively addressing the shortcomings of the

aforementioned methods. Consequently, the RSEI has become an

essent ia l tool for dynamic monitor ing of ecologica l

environment quality.

Research on the driving factors of ecological quality typically

employs methods such as correlation analysis, regression models,

and Geodetector (Wang et al., 2024a). Studies have highlighted that

natural factors exert a greater impact on ecological quality variation

than anthropogenic and disaster-related factors. Among these,

climate variability (e.g., precipitation and temperature) and

topographic features (e.g., elevation, slope) (Liu et al., 2023, Liu

et al., 2024; Yang et al., 2023; He et al., 2025) are recognized as

primary drivers of ecological change in earthquake-affected areas.

In recent years, significant progress has been made in the

assessment of ecological environment quality and its driving

mechanisms in earthquake-stricken areas, providing a scientific

basis for post-disaster ecological restoration and protection.

However, existing studies remain largely focused on typical

earthquake cases (e.g., the Wenchuan Earthquake in China

(Yunus et al., 2020), the Chi-Chi Earthquake in Taiwan (Chou

et al., 2009), the Kumamoto Earthquake in Japan (Saito et al., 2022),

and the Gorkha Earthquake in Nepal (Maerki et al., 2021)). In

contrast, much less attention has been paid to the seismically active

regions of the Yunnan–Guizhou Plateau, particularly the plateau–

mountain earthquake disaster areas represented by the Ludian

earthquake in Yunnan. At present, the impacts of earthquakes on

the ecological environment of the Ludian region and its ecological

recovery processes remain unclear, necessitating in-depth research.

Moreover, the Ludian disaster area is located on the northeastern

edge of the Yunnan-Guizhou Plateau, characterized by steep and

deeply incised mid-mountain topography, with particularly

significant terrain fragmentation and local slopes (Wang et al.,

2016). The lithology is dominated by easily weathered carbonate

rocks which have weak erosion resistance, and this, combined with

concentrated heavy rainfall from the subtropical monsoon climate

(Hu et al., 2007), further exacerbates the risk of secondary disasters
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such as landslides and debris flows after earthquakes. These unique

natural conditions and disaster contexts may lead to a significantly

different response pattern of the ecosystem to seismic disturbances

in this region compared to other earthquake-affected areas.

However, systematic and targeted research on the post-

earthquake response mechanisms of ecosystems in such special

regions is still lacking.

Therefore, this study takes the 2014 Ludian Earthquake (Mw

6.5) as a case study. Leveraging the Google Earth Engine (GEE)

platform, the RSEI was constructed to quantify the impacts of the

earthquake on Ludian’s ecological environment and analyze the

dynamics of ecological recovery over nearly a decade. Geodetector

was used to identify key factors driving spatial variations in

ecological quality and reveal their underlying mechanisms. The

findings aim to provide theoretical support and practical guidance

for ecological monitoring and restoration in plateau mountain

earthquake-affected areas. particularly the plateau–mountain
Frontiers in Ecology and Evolution 03
earthquake disaster areas represented by the Ludian earthquake

in Yunnan.
2 Materials and methods

2.1 Study area

Ludian County (26°59′–27°32′ N, 103°09′–103°40′ E) is located
in northeastern Yunnan Province and is administratively part of

Zhaotong City (Figure 1), covering approximately 1,484 km². The

region is characterized by a complex topography, with higher

elevations in the eastern and western sectors forming a frame

around a relatively flat central basin. Over 80% of the area consists

of mountainous terrain. The county has a low-latitude mountain

monsoon climate, characterized by minimal seasonal temperature

variations and distinct vertical climatic zonation. The annual mean
FIGURE 1

Location of the study area.
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temperature is 12.1°C, and the average annual precipitation reaches

923.5 mm, defining it as a typical plateau mountain ecosystem.

On August 3, 2014, an Mw 6.5 earthquake occurred in Ludian

County (27.1°N, 103.3°E). The event, associated with the northeast-

striking Xiaoyuhe–Zhaotong Fault system, was characterized by

strike-slip faulting mechanisms. The maximum intensity reached

IX on the China Seismic Intensity Scale, with the VI+ intensity zone

covering approximately 10,350 km². The combined effects of steep

mountainous terrain and concurrent summer monsoon rains

triggered widespread secondary disasters, including catastrophic

landslides, rockfalls, and debris flows, leading to severe ecosystem

degradation and long-term environmental instability.
2.2 Data sources and preparation

The data used in this study were categorized into three

main types:

1. Remote Sensing Data.

The imagery used in this study was obtained from the Google

Earth Engine (GEE) platform (https://earthengine.google.com/).

During the image selection process, strict criteria were applied to

control cloud cover and ensure seasonal consistency. However, for

the years 2016, 2018, and 2020, all available Landsat images over the

study area were severely affected by extensive cloud contamination.

After comprehensive screening, no cloud-free or low-cloud scenes

meeting the quality requirements were available, and thus these

years were excluded from the analysis. Consequently, six periods of

Landsat 8 OLI/TIRS imagery were selected, including pre-

earthquake (2013), immediate post-earthquake (2014), and

recovery phases (2015, 2017, 2019, and 2021), with a spatial

resolution of 30 m, to ensure data quality and the reliability of

time-series analysis. For the selected years, imagery from October to

December was processed systematically, including cloud masking,

median compositing, study area clipping, and water body removal.

2. Administrative Boundary Data.

The vector boundary of Ludian County was obtained from the

Yunnan Province Geographic Information Public Service Platform

(https://yunnan.tianditu.gov.cn/index).

3. Influencing Factor Data.

① Natural Factors:

Seismic Intensity: Data sourced from the Yunnan Earthquake

Agency (https://www.yndzj.gov.cn) divided the area into four

intensity levels: VI, VII, VIII, and IX.

Soil Type: Classified based on the FAO-96 system from the

World Soil Database (https://www.fao.org/soils-portal) at a spatial

resolution of 1 km.

Topographic Data: Derived from ASTER Gdem V2 provided by

the USGS (https://glovis.usgs.gov) at a spatial resolution of 30 m,

from which slope and aspect data were extracted.

Meteorological Data: Daily precipitation and mean temperature

data were sourced from the Resource and Environment Data Cloud

Platform (https://www.resdc.cn). Using data from stations within

and around the study area, Kriging interpolation generated 30 m

resolution meteorological grids.
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② Anthropogenic Factors:

Road Data: Sourced from the OpenStreetMap dataset (https://

www.openstreetmap.org) and converted into 30 m resolution raster

maps using Euclidean distance analysis in ArcGIS.

Population density data: Obtained from the WorldPop project

(https://www.worldpop.org/), with a spatial resolution of 100 m.

All datasets were standardized and resampled to a uniform 30 m

resolution to ensure spatial consistency. The framework diagram of

this study is shown in Figure 2.
2.3 Research method

2.3.1 Computation of RSEI
The RSEI integrates four component indices—wetness(WET),

greenness(NDVI), heat(LST), and dryness(NDBSI)—through

principal component analysis to dynamically monitor regional

ecological quality. The indicators were calculated as follows:

1. Wetness Index (WET).

The WET was derived using the tasseled cap transformation to

capture soil and vegetation moisture.

WET = b1rblue + b2rgreen + b3rred + b4rNIR + b5rSWIR1

+ b6rSWIR2 (1)

Where: rblue, rgreen, rred, rNIR, rSWIR1, rSWIR2 represent

the reflectance of the blue, green, red, near-infrared, shortwave

infrared 1, and shortwave infrared 2 bands of Landsat 8 imagery,

respectively. b1, b2, b3, b4, b5, b6 correspond to the respective

bands in OLI/TIRS imagery, with values of 0.1511, 0.1973, 0.3283,

0.3407, -0.7117, and -0.4559, respectively.

(2) Greenness Index(NDVI).

The greenness index was represented by the normalized

difference vegetation index (NDVI), which reflects vegetation

growth and coverage.

NDVI = (rNIR − rred)=(rNIR + rred) (2)

Where: rNIR, rred represent the reflectance of the near-

infrared and red bands of Landsat 8 imagery, respectively.

(3) Heat Index(LST).

The heat index was derived from land surface temperature

(LST), indicating heat exchange and balance within the terrestrial

environment.

LST = K2=In½K1=B(TS)� + 1 − 273 (3)

Where: K1 and K2 are calibration parameters, and B(TS)

represents the radiance of a blackbody at temperature T in the

thermal infrared band.

(4) Dryness Index(NDBSI).

The dryness index was calculated as the average of the

normalized difference built-up and soil index (NDBSI) and soil

index (SI), representing land degradation and urbanization.

NDBSI = (SI + IBI)=2 (4)
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SI =
(rSWIR1 + rred) − (rNIR + rblue)
(rSWIR1 + rred) + (rNIR + rblue)

(5)

IBI =
2rSWIR1

(rSWIR1+rNIR) − ½ rNIR
(rNIR+rred +

rgreen
rgreen+rSWIR1�

2rSWIR1
(rSWIR1+rNIR) + ½ rNIR

rNIR+rred +
rgreen

rgreen+rSWIR1�
(6)

Where: SI is the Soil Index. IBI is the Built-up Index. rgreen,
rred, rNIR, and rSWIR1 respectively represent the reflectance of

the green, red, near-infrared, and shortwave infrared 1 bands of

Landsat 8 imagery. The calculation of the four component indices is

shown in Equations 1–6.

2.3.2 Construction of the RSEI model
1. Standardization of Component Indicators.

To avoid calculation errors caused by the inconsistent

dimensions of the four indicators, standardization was performed

before calculating the Remote Sensing Ecological Index. The

calculation formula is as follows:

NIi = (Ii − Imin)=(Imax − Imin) (7)

Where: NIi represents the standardized indicator value. Ii is the

value of the corresponding indicator at the ith pixel. Imax and Imin are

the maximum and minimum values of the indicator, respectively.

2. Calculation of the RSEI.

RSEI = f (WET ,NDVI, LST ,NDBSI) (8)
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Where: WET represents wetness. NDVI represents greenness.

LST represents heat. NDBSI represents dryness. The methods for

standardization and RSEI calculation are detailed in Equation 7

and 8.

After calculating the RSEI results, following existing studies (Du

et al., 2025), the RSEI values were normalized to the [0, 1] range.

Using the equal-interval method, the ecological environment

quality of the Ludian area during the pre-seismic, post-seismic,

and recovery periods was classified into five levels: poor (0 ≤ RSEI<

0.2), fair (0.2 ≤ RSEI< 0.4), moderate (0.4 ≤ RSEI< 0.6), good (0.6 ≤

RSEI< 0.8), and excellent (0.8 ≤ RSEI ≤ 1.0).

2.3.3 Trend analysis
The Theil-Sen slope estimation combined with the Mann-

Kendall significance test can effectively evaluate the significance of

trend changes, offering strong resistance to biases caused by

outliers. In this study, the Sen + Mann-Kendall significance trend

test method is employed to estimate the ecological environmental

quality trends in Ludian before the earthquake, after the earthquake,

and during the recovery period.

b = Median
RSEIj − RSEIi

j − i

� �
(9)

Where: b represents the median slope. RSEIj and RSEIi are the

RSEI values for year j and year i, respectively. b < 0 indicates a trend

of ecological environmental quality degradation, while b > 0
FIGURE 2

Framework of the study.
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indicates a trend of improvement in ecological environmental

quality. The trend analysis method in Equation 9.

The Mann-Kendall method is used to test the significance of the

trends, with the trend characteristics summarized in the Table 1.

2.3.4 Geodetector
Geodetector serves as a key tool for identifying the driving

forces behind the spatial differentiation of dependent variables

(Wang and Hu, 2012; Wang et al., 2010; Wang and Xu, 2017).

Based on existing research (Zhou et al., 2024; Xia et al., 2025) and a

comprehensive consideration of the primary factors influencing

ecological environment quality as well as data availability, this study

selected the following 10 factors as independent variables:

Earthquake intensity, Slope, Soil type, Dem, Temperature, Aspect,

Precipitation, Population Density, Distance to town, Distance to

road. The RSEI values before the earthquake, after the earthquake,

and during the recovery period were used as dependent variables.

The factor detection and interaction detection modules were

employed to explore the influencing factors of the spatial

differentiation of ecological quality recovery in Ludian. The

calculation formulas are as follows.

Factor detector: This detects the spatial differentiation of the

dependent variable and clarifies the extent to which different

driving factors explain the spatial differentiation of RSEI,

measured by the q-value:

q = 1 −o
L
h=1Nhs

2
h   

s2
h

= 1 −
SSW
SST

(10)

Where: h = 1,…, L represents the stratification of RSEI or

different driving factors. Nh and N denote the number of pixels in

each classification of the respective data and the total number of

pixels, respectively. s 2
h and s² represent the variance of RSEI for

pixels in each classification of the respective data and the overall

variance of RSEI for all pixels in the entire region. SSW and SST

indicate the sum of variances for each classification of the data and

the total variance of the entire region, respectively. A higher q-value

suggests that the driving factor has a greater contribution to

explaining the spatial heterogeneity of RSEI. The calculation of

the q-statistic is given by Equation 10.
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Interaction Detection: Evaluates the explanatory power of two

distinct driving factors acting simultaneously on an object regarding

its spatial heterogeneity. The types of interactions are categorized as

follows (Table 2).
3 Results

3.1 Applicability test of the RSEI model

Principal component analysis was performed on the four RSEI

indicators for Ludian during the pre-earthquake, post-earthquake,

and recovery periods. The results showed that the first principal

component (PC1) contributed between 60.41% and 74.64% across

all years, with an average contribution rate exceeding 67% (Table 3).

PC1 effectively captured the primary characteristics of each

indicator and accurately reflected the regional ecological quality.

The loadings for NDVI and WET were consistently positive on

PC1, indicating their positive influence on ecological quality.

Conversely, the loadings of NDBSI and LST were negative,

highlighting their adverse effects. These findings validate the

applicability and reliability of the RSEI model in the study area.
3.2 Temporal and spatial evolution
characteristics of ecological quality

3.2.1 Time distribution characteristics
On a regional scale (Figure 3A), the Ludian Earthquake caused

significant ecological damage. The mean RSEI value decreased from

0.560 before the earthquake to 0.441 afterward, a relative decline of

21.3%, indicating severe disruption to the ecosystem. The

subsequent recovery process exhibited distinct phases: (1) Rapid

Recovery Phase (2015–2017): The RSEI increased from 0.457 to

0.515, with an annual growth rate of 3.9%. (2) Stable Recovery

Phase (2017–2019): The RSEI reached 0.563, recovering to pre-

earthquake levels (0.560), with an annual growth rate of 2.3%. (3)

Stable Transcendence Phase (2019–2021): The RSEI further

increased to 0.588, exceeding pre-earthquake levels by 5%.

In different seismic intensity zones (Figure 3B), the pre-

earthquake RSEI values were relatively high across all zones (IX

zone: 0.538, VIII zone: 0.597, VII zone: 0.563, VI zone: 0.546),

indicating favorable ecological conditions. Post-earthquake, the

RSEI values declined significantly (IX zone: 0.371, VIII zone:

0.449, VII zone: 0.468, VI zone: 0.422), with the IX zone

experiencing the largest decline (31.0%) and the VII zone the

smallest (16.9%), reflecting that higher-intensity zones suffered

more severe ecological damage.

During the recovery period, the RSEI values generally increased,

though the rate of recovery gradually slowed. By 2021, all zones

except the IX zone (0.523) had exceeded their pre-earthquake levels,

with values reaching 0.609 in the VIII zone, 0.610 in the VII zone,

and 0.570 in the VI zone. The VIII and VII zones showed the most

significant recovery, surpassing pre-earthquake levels by 8.3% and

2.0%, respectively. This indicates that after seven years of
TABLE 1 Trend test categories.

b Z Trend characteristics

b > 0

Z > 2.58 Very significantly increase

1.96< Z ≤ 2.58 Significantly increase

1.65< Z ≤ 1.96 Slightly significantly increase

b = 0

Z ≤ 1.65 No significant increase

Z = 0 No change

Z ≤ 1.65 No significant decrease

b< 0

1.65< Z ≤ 1.96 Slightly significantly decrease

1.96< Z ≤ 2.58 Significantly decrease

Z > 2.58 Very significantly decrease
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restoration, the ecological environment in most areas had not only

recovered but also improved beyond its pre-earthquake state.

Although the IX zone had not fully returned to its pre-earthquake

level (remaining 2.8% lower), its RSEI value had rebounded by

41.0% from the post-earthquake minimum, demonstrating strong

recovery potential.

3.2.2 Spatial distribution characteristics
Based on existing research (Du et al., 2025), the RSEI was

normalized to the range [0, 1], and the equal interval method was

used to classify the ecological environmental quality of the Ludian

area from 2013 to 2021 into five grades: poor (RSEI value 0–0.2), fair

(0.2–0.4), moderate (0.4–0.6), good (0.6–0.8), and excellent (0.8–1.0).

As shown in Table 4, Pre-earthquake, the region was dominated

by moderate (919.7 km²) and good (605.63 km²) quality levels, with

a limited area of excellent quality (15.76 km²), indicating favorable

ecological conditions but restricted high-quality zones. Post-

earthquake, the ecological quality deteriorated significantly, with

areas of poor and fair quality increasing to 37.01 km² and 656.04

km², respectively, while moderate, good, and excellent areas

declined sharply.

During the recovery period, ecological quality showed sustained

improvement. By 2021, poor quality areas decreased to 1.22 km²,

and fair quality areas shrank to 89.3 km². Meanwhile, good and

excellent quality areas increased to 676.66 km² and 77.3 km²,

respectively, surpassing pre-earthquake levels. These results

highlight the effectiveness of restoration measures in promoting

ecological quality, with the area of excellent quality increasing

nearly fivefold compared to pre-earthquake conditions.
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Spatially (Figure 4), the ecological environment quality of

Ludian was relatively good before the earthquake, with the RSEI

generally exhibiting a spatial pattern of higher values predominated

in the western regions, contrasting with lower values in eastern

areas. Specifically, high RSEI areas were mainly concentrated in the

western parts of the VI–VIII intensity zones, while low RSEI areas

were primarily distributed in the northeastern and southeastern

parts of the VI zone, as well as the central-southern parts of the VII

and IX zones.

After the earthquake, the ecological environment quality

deteriorated sharply, particularly in the central-northern part of

the IX zone and the northeastern part of the VIII zone, where RSEI

values decreased significantly, indicating severe ecological damage.

Meanwhile, RSEI values in the northeastern and southeastern parts

of the VI zone and the southeastern part of the VII zone also

showed a notable decline.

During the recovery period, the overall ecological environment

quality of Ludian improved, with RSEI values gradually increasing in

most areas of the VI–VIII zones, reflecting progressive ecological

restoration. However, the recovery process lagged in severely damaged

regions such as the central-northern part of the IX zone, where

significant ecological degradation persisted. These findings suggest

that while ecological restoration efforts have been effective, regional

disparities remain, particularly in high-intensity zones, which still

require focused attention and sustained investment to achieve

comprehensive ecological recovery and sustainable development.

The ecological quality levels in different seismic intensity zones

were classified (Figure 5). Before the earthquake, most zones were

dominated by moderate and good quality levels. In the VII zone, the

area of moderate quality reached 387.37 km², reflecting relatively

good overall ecological conditions. After the earthquake, ecological

quality in all intensity zones deteriorated sharply, with a notable

increase in the area classified as poor quality. In the IX zone, the

poor quality area increased from 0.18 km² to 7 km², while the

proportions of fair and moderate quality areas also expanded. In the

VIII zone, the area classified as fair quality rose from 8.63 km² to

84.67 km², with the most severe degradation observed in the high-

intensity zones.

During the recovery period, ecological quality gradually

improved. Poor quality areas steadily decreased, with the IX zone

reducing to 0.46 km² by 2021 and the VI zone decreasing from 1.14
TABLE 2 Types of interactions.

Judgment basis Type of interaction

q(X1∩X2)< min (q(X1), q(X2)) Nonlinear weakening

min (q(X1), q(X2))< q(X1∩X2)< max
(q(X1), q(X2))

Single-factor nonlinear weakening

q(X1∩X2) > max (q(X1), q(X2)) Dual-factor enhancement

q(X1∩X2) = q(X1) + q(X2) Independentrelationship

q(X1∩X2) > q(X1) + q(X2) Nonlinear enhancement
TABLE 3 Statistical loadings and PC1 contributions of various indicators in the study area during pre-earthquake, post-earthquake, and recovery
periods.

Year
The load values of each index for PC1

Eigenvalue Contribution rate(%)
NDVI WET NDBSI LST

2013 0.460 0.312 -0.001 -0.831 0.009 60.41

2014 0.268 0.421 -0.024 -0.866 0.022 68.83

2015 0.399 0.439 -0.019 -0.804 0.014 68.51

2017 0.388 0.492 -0.124 -0.769 0.013 63.47

2019 0.295 0.435 -0.169 -0.834 0.019 74.64

2021 0.343 0.489 -0.029 -0.801 0.018 67.45
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km² to 0.25 km². At the same time, areas of good and excellent

quality increased significantly. In the VII zone, the good quality area

grew from 82.97 km² in 2015 to 315.33 km² in 2021, while in the

VIII zone, the excellent quality area expanded from 0.83 km² to

19.04 km². The recovery rates varied significantly across intensity

zones. Low-intensity zones (e.g., VI zone) recovered faster, with a

steady increase in the proportion of excellent quality areas, whereas

high-intensity zones (e.g., IX zone) experienced slower recovery,

requiring a longer restoration period.

Overall, the earthquake caused short-term ecological

degradation, but long-term restoration measures effectively

improved ecological quality. However, areas with higher damage

levels exhibited longer recovery cycles.
3.3 Spatiotemporal trends in ecological
quality variation

Using MATLAB, the Theil-Sen median trend analysis combined

with the Mann-Kendall test was employed to evaluate changes in the
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ecological quality of Ludian before and after the earthquake. The

results (Figure 6) showed that the overall ecological quality in the

study area improved, with approximately 1,353 km² (91% of the total

area) experiencing varying degrees of enhancement, indicating

significant success in post-earthquake ecological protection and

restoration efforts. Areas showing Very significantly increase and

Significantly increase accounted for 0.71% and 2.97% of the total

area, respectively. Areas showing Slightly significantly increase or No

significant increase accounted for 7.39% and 80.03% of the total area,

respectively. In contrast, about 130 km² (8.75% of the total area)

experienced varying degrees of ecological degradation: Areas showing

Very significantly decrease and Significantly decrease accounted for

only 0.01% and 0.02% of the total area, respectively. Areas showing

Slightly significantly decrease or No significant decrease accounted for

0.04% and 8.69% of the total area, respectively.

Spatially, areas with improved ecological quality were widely

distributed, with notable improvements in the northwest of the VI

zone, the central and southeastern parts of the VII zone, and the

VIII zone. Degraded areas were primarily concentrated in the

southeastern VI zone, southern VII zone, and northern VIII zone.
TABLE 4 Statistical values of ecol-environment quality level in the pre-earthquake period, post-earthquake period and recovery periods.

Level

Year

2013 2014 2015 2017 2019 2021

Area(km²) Area(km²) Area(km²) Area(km²) Area(km²) Area(km²)

Poor 1.51 37.01 12.42 4.28 4.79 1.22

Fair 134.80 656.04 545.02 246.92 185.51 89.30

Moderate 919.70 796.08 936.40 1053.74 863.24 856.07

Good 605.63 200.83 204.35 389.71 574.99 676.66

Excellent 15.76 10.64 2.29 5.90 72.07 77.30
FIGURE 3

The average RSEI value of Ludian (A). The average RSEI values in different seismic intensity zones of Ludian (B).
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3.4 Drivers detection of ecological
environment quality

3.4.1 Single-factor detection analysis
Based on relevant research and the geographical characteristics of

Ludian, this study explored the mechanisms by which anthropogenic

and natural factors influence ecological environment quality.

The factor detection results (Table 5) showed that all variables were

statistically significant at the 1% level (p< 0.01), indicating that each

factor had a significant impact on the spatial differentiation of ecological

quality recovery in Ludian, though with varying degrees of influence.

Before the earthquake, spatial differentiation of ecological

quality was mainly governed by natural background conditions

such as temperature (q = 0.150) and soil type (q = 0.114), with the

overall pattern relatively stable and balanced.

After the earthquake, seismic disturbance dramatically altered

the ecological driving patterns, with aspect (q = 0.227) showing a

sharp increase in explanatory power and becoming the absolute

dominant factor, underscoring the role of secondary geological

disasters in reshaping ecological patterns.

During the recovery period, aspect (q = 0.182–0.330) continued

to exert a fundamental controlling effect. By 2021, the q-values of
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population density, distance to town, and distance to road all

reached their highest levels throughout the study period. These

results suggest that over time, the influence of human activities on

the spatial differentiation of ecological quality persists and becomes

increasingly significant.

3.4.2 Interaction detection analysis
The interaction detector was employed to explore the

interactive relationships between different influencing factors and

the spatial differentiation of RSEI. The results (Figures 7A–C)

showed that the interactions among all ten factors exhibited a

nonlinear enhancement pattern, indicating that the spatial

differentiation of ecological environment quality in Ludian was

the outcome of a coupled and reinforced effect of multiple factors.

Before the earthquake, ecological quality in Ludian was

primarily governed by natural background factors such as

temperature, and the overall strength of factor interactions was

relatively low, with most q-values below 0.2. Among them, the

interactions between dem and temperature (q = 0.282) and between

soil type and dem (q = 0.219) were the most pronounced;

meanwhile, the interactive values of human activity factors were

generally below 0.1, showing only minor influence.
FIGURE 4

Spatial distribution characteristics of RSEI in Ludian during pre-earthquake, post-earthquake, and recovery periods.
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After the earthquake, seismic disturbance altered the surface

morphology, and the interactions between aspect and slope (q =

0.343) and between aspect and soil (q = 0.378) increased sharply,

with q-values rising by approximately 50–70% compared with the

pre-seismic period, thereby becoming the core driving forces of

ecological change.

During the recovery period, the interactive effects among

topographic factors first increased and then declined. However,

combinations such as aspect and slope, as well as aspect and

precipitation, maintained relatively high levels of influence—for

example, the interaction between aspect and slope reached a peak in

2015 (q = 0.433), and the interaction between aspect and

precipitation remained high in 2019 (q = 0.446). As the recovery
Frontiers in Ecology and Evolution 10
process advanced, the interactions of human activity factors became

increasingly evident, with the interaction between population

density and distance to road rising to 0.171 in 2021. This suggests

that in the later stages of ecological recovery, the importance of

anthropogenic disturbances became increasingly significant.
4 Discussion

In this study, we systematically investigated the dynamic

evolution process and recovery mechanisms of ecological

environment quality in Ludian under earthquake disturbance.

The results demonstrated that the regional ecological
FIGURE 5

Statistical values of ecological environment quality grades in different seismic intensity zones during pre-earthquake, post-earthquake and recovery
periods.
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environment exhibited a typical “destruction-recovery” dynamic

pattern, confirming that post-disaster ecosystems possess certain

self-recovery capacities (Wang et al., 2024b), while highlighting the

driving roles of both natural and anthropogenic factors in the

recovery process.
4.1 Characteristics and spatial
differentiation of earthquake-induced
ecological damage

The results indicated that the Ludian earthquake significantly

impacted the regional ecological environment, with the average RSEI
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declining by 21.3% shortly after the earthquake and showing a

marked spatial differentiation. Specifically, the degree of ecological

damage exhibited a significant gradient across seismic intensity zones:

the IX-intensity zone experienced the largest RSEI decrease (31.0%),

followed by the VIII-intensity zone (24.8%) and the VII-intensity

zone (16.9%). This distribution pattern aligns closely with the spatial

distribution of seismic intensity, confirming a positive correlation

between earthquake intensity and the extent of ecological damage

(Hou et al., 2014). This conclusion is consistent with the findings of

other scholars. For instance, a study by (Li et al., 2022) on the

earthquake in Wen County, Gansu, revealed that the response of

vegetation coverage to the earthquake intensified with increasing

intensity. In the IX to VI degree zones, the reduction rates of high
FIGURE 6

Trends of eco-environmental quality change.
TABLE 5 Results of single factor detection.

Year
Dring factors

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

2013 0.025* 0.063* 0.114* 0.082* 0.150* 0.052* 0.092* 0.044* 0.019* 0.020*

2014 0.042* 0.016* 0.094* 0.088* 0.071* 0.227* 0.042* 0.086* 0.050* 0.025*

2015 0.011* 0.030* 0.050* 0.018* 0.056* 0.288* 0.039* 0.042* 0.021* 0.009*

2017 0.014* 0.028* 0.092* 0.083* 0.061* 0.182* 0.079* 0.079* 0.035* 0.025*

2019 0.010* 0.027* 0.068* 0.021* 0.070* 0.330* 0.073* 0.035* 0.022* 0.010*

2021 0.040* 0.047* 0.131* 0.103* 0.076* 0.195* 0.125* 0.097* 0.060* 0.042*
fr
Earthquake intensity(X1), Slope(X2), Soil type(X3), Dem(X4), Temperature(X5), Aspect(X6), Precipitation(X7), Population Density(X8), Distance to town(X9), Distance to road(X10). *P < 0.01.
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vegetation coverage areas during the earthquake were 9.02%, 8.31%,

6.01%, and 3.59%, respectively. Notably, the RSEI reduction in the

VI-intensity zone in this study had an abnormally high value of

22.7%. This anomaly is attributed to the dominance of cropland and

construction land in the area, where long-term intensive agricultural

practices and urbanization have resulted in a fragile ecological

baseline, leading to lower RSEI values.
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From a spatial perspective (Figure 4), distinct RSEI low-value

centers emerged in the northern part of the IX-intensity zone and

the northeastern part of the VIII-intensity zone after the

earthquake. This is due to the area’s mountainous and canyon

terrain, with steep slopes, fractured rock masses, and frequent

aftershocks. Coupled with the impact of seasonal rainfall, these

conditions triggered large-scale secondary disasters, such as
FIGURE 7

(A–C) Results of interaction factor detection.
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landslides and collapses (Tao et al., 2015; Yin et al., 2016). These

secondary disasters not only destroyed surface vegetation but also

disrupted soil structures and hydrological conditions, leading to

severe ecological degradation.
4.2 Spatiotemporal dynamics of ecological
recovery

From the perspective of temporal evolution, the post-

earthquake ecological recovery process in Ludian exhibited

distinct stage-specific differences:

(1) Rapid recovery phase (2015-2017). The RSEI showed an

average annual growth rate of 3.9%. This rapid recovery was

primarily attributed to the implementation of large-scale artificial

restoration projects, such as afforestation and slope reinforcement.

These measures significantly increased surface vegetation coverage

and effectively mitigated soil erosion (Thapa et al., 2024), leading to

a notable short-term improvement in RSEI values. However, the

ecosystem during this phase remained in the early stages of

recovery, characterized by low overall stability and resistance to

disturbances, with ecological functions largely dependent on

artificial interventions. The community structure was dominated

by plantation forests, with pioneer herbaceous communities rapidly

colonizing locally exposed areas (Goyal and Joshi, 2025), resulting

in a relatively simple community composition.

(2) Stable recovery phase (2017-2019). The restoration model

shifted from being primarily human-led to a combination of

artificial and natural recovery. Due to the relatively slower short-

term recovery rates of vegetation and soil under natural restoration

conditions, the average annual growth rate of RSEI slowed to 2.3%.

However, the ecosystem during this phase exhibited greater

structural stability and functional sustainability (Chen et al.,

2023). The focus of vegetation restoration transitioned from

expanding coverage to optimizing community quality and

function. In some areas, herbaceous communities gradually

evolved into shrubs and trees, forming complex arbor-shrub-herb

communities alongside plantation forests (Chen et al., 2023). The

increase in the proportion of woody vegetation promoted the three-

dimensional accumulation of biomass (both above and below

ground) and improved microenvironments, thereby enhancing

soil organic matter and water retention capacity (Petaja et al., 2023).

(3) Stable surpassing phase (2019-2021). The average RSEI

value of the county increased to 0.588, representing a 5%

improvement compared to the pre-earthquake level. This

indicates that the ecosystem achieved optimization and

enhancement in both structure and function. The community

structure became more complex, gradually transitioning from

shrub-herb communities to composite arbor-shrub-herb

communities (Chen et al., 2023), leading to significant

improvements in biodiversity and carbon storage, as well as

enhanced soil structure and fertility. The ecosystem service

functions (such as water conservation, carbon sequestration, and

habitat provision) were comprehensively strengthened (Wei et al.,

2023a; He et al., 2025). This “surpassing” reflects the combined
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effects of artificial restoration and natural succession. However, a

2.8% recovery lag persisted in the Intensity IX zone, primarily due

to the complexity of the geological structure and the ongoing impact

of secondary disasters such as landslides (Zi et al., 2025).

From the perspective of spatial distribution, trend analysis

results showed that ecological environment quality improved in

91% of the study area, while 8.75% of degraded zones were

concentrated in the southeastern part of the Intensity VI zone,

the southern part of the Intensity VII zone, and the northern part of

the Intensity VIII zone. This pattern was likely closely related to

disturbances of the natural recovery process caused by human

activities such as agricultural expansion.
4.3 Driving mechanisms of ecological
quality changes

In this study, we employed Geodetector to conduct an in-depth

analysis of the key driving factors underlying the spatial

differentiation of ecological environment quality across different

stages—pre-earthquake, post-earthquake, and recovery—in Ludian.

The results revealed that the driving mechanism of ecological

environment quality changes in the study area generally followed

the pattern of “natural background factors dominating before the

earthquake—topographic factors emerging after the earthquake—

anthropogenic factors intensifying during the recovery period.”

This pattern not only reflects the universal response mechanism

of plateau mountain ecosystems under seismic disturbance but also

highlights the regional differences of Ludian shaped by its unique

natural conditions and human activity context.

(1) Pre-earthquake. The spatial differentiation of ecological

environment quality was primarily determined by natural

background conditions. Factor detection results indicated that

temperature (q = 0.150) and soil type (q = 0.114) had the highest

explanatory power, suggesting that the ecological pattern was

mainly controlled by regional climate and soil properties.

Favorable thermal conditions ensured stable vegetation growth,

while soil texture influenced water retention and nutrient supply,

jointly supporting long-term vegetation succession (Joswig et al.,

2022). Although topographic factors such as slope and dem had

limited explanatory power, they indirectly affected ecosystem

stability by regulating the spatial distribution of water and heat

(Chen, 2025).

Interaction detection further revealed that pre-earthquake

ecological quality was largely governed by the interactions among

natural factors. In particular, the synergistic effects between

topography and climate were most prominent, such as dem with

temperature (q = 0.282) and soil type with dem (q = 0.219),

reflecting the long-term control of the “topography–climate–soil”

coupled system on ecological patterns. This mechanism, by

influencing vegetation distribution and community structure,

maintained the overall stability of pre-earthquake ecological

quality (Joswig et al., 2022; Guo et al., 2024). Such findings are

consistent with pre-earthquake studies in Wenchuan and Chi-Chi,

both of which emphasized the dominant role of natural conditions
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(Duan et al., 2021; Wei et al., 2023b). However, due to the

weathering susceptibility of carbonate rocks in Ludian, the

baseline stability of its ecosystems was relatively low, making

them more vulnerable to post-earthquake disturbances.

(2) Post-earthquake. Strong seismic disturbances significantly

altered the driving mechanisms of ecological patterns. The

explanatory power of aspect rose sharply (q = 0.227), becoming

the dominant factor. This was mainly due to earthquake-induced

landslides and collapses, which made aspect a key determinant of

stress distribution and landform reorganization, while directly

influencing vegetation regeneration potential by altering solar

radiation and moisture conditions (Zhang et al., 2015).

Interaction detection showed that the interactions of aspect with

slope (q = 0.343) and aspect with soil type (q = 0.378) were 50–70%

stronger than pre-earthquake, underscoring the central role of

topographic factors in post-earthquake ecological restructuring. Slope

and aspect jointly controlled the scale and spatial distribution of

secondary disasters, whereas soil conditions and slope stability co-

regulated vegetation recovery processes, thereby reshaping ecological

spatial patterns. This mechanism is consistent with findings in

Wenchuan and Nepal’s Gorkha earthquake areas (Zhang et al., 2015;

Roback et al., 2018; Pandey et al., 2022). However, in Ludian, the

combined effects of deeply incised mountain landforms and

concentrated rainfall made the aspect–precipitation interaction more

significant (q = 0.446 in 2019), underscoring the uniqueness of the

region’s hydro-geomorphic coupling.

(3) Recovery period. The driving mechanisms exhibited a

composite feature of persistent natural influences and progressively

intensifying human interventions. Between 2015 and 2019, aspect

maintained relatively high explanatory power (q = 0.182–0.330), with

its interactions with slope and precipitation remaining significant,

reflecting the fundamental role of the topography–climate system in

ecological recovery. Meanwhile, the explanatory power of

anthropogenic factors steadily increased: population density (q =

0.125 in 2021) and proximity to towns and roads peaked during the

later recovery stage. This suggests that with post-disaster reconstruction

and the resumption of agricultural activities, human activities gradually

became the critical drivers of ecological pattern evolution. On the one

hand, afforestation and slope stabilization projects promoted overall

ecological improvement (Chen et al., 2025); on the other hand,

agricultural expansion and urban–rural construction triggered

localized degradation, resulting in spatial heterogeneity of the recovery

process (Zhang et al., 2022). This finding is consistent with studies in

Wenchuan and Jiuzhaigou, which also noted the rising importance of

anthropogenic factors in later recovery stages (Duan et al., 2024; Chen

et al., 2025). However, in Ludian, due to high population density and

large proportions of cropland and construction land, human

disturbances emerged earlier and exerted more significant impacts.
4.4 Limitations and future research

This study quantitatively assessed the dynamic changes in

ecological environmental quality in Ludian under the disturbance of

seismic disasters using the RSEI model and the Geodetector model. It
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systematically identified key driving factors and their mechanisms

influencing ecological environmental quality changes, providing a

scientific basis for post-disaster ecological restoration and regional

sustainable development. However, due to research constraints and

data availability, the study has the following limitations:
1. Data Accuracy and timeliness limitations: The remote sensing

data used in the study may be affected by cloud cover and

spatial resolution, potentially leading to deviations in local

ecological environment quality assessments. Additionally,

immediate post-earthquake ecological responses may not

have been fully captured due to data acquisition cycles.

Future research could incorporate remote sensing data with

higher spatiotemporal resolution for dynamic monitoring.

2. Insufficient long-term ecological effect monitoring: Earthquake

impacts on ecosystems are long-term and cumulative, yet this

study only analyzed trends within the first decade after the

disaster. Future efforts should establish long-term observation

networks, integrating ground monitoring and remote sensing

technologies to assess the sustained effects of ecological

restoration measures and provide a scientific basis for

regional sustainable development.
5 Results
1. The destructive effects of the earthquake exhibited a

pronounced intensity-gradient feature. The Ludian

earthquake caused a short-term decline of 21.3% in the mean

RSEI, with the severity of degradation strongly correlated with

seismic intensity. The high-intensity zone (IX degree) showed

the largest decrease (31.0%), followed by the medium-intensity

zone (24.8%), while the low-intensity zone experienced the

smallest decline (16.9%).

2. The ecological recovery process displayed marked stage-

specific and spatial differentiation characteristics.

Temporally, post-earthquake recovery followed a three-

stage trajectory of “rapid recovery–stable recovery–stable

surpassing.” Spatially, most of the area (91%) experienced

positive ecological succession, whereas some human

activity–intensive zones (8.75%) showed a trend

of degradation.

3. The driving mechanisms of ecological environment quality

change exhibited significant spatiotemporal heterogeneity.

Before the earthquake, ecological patterns were primarily

controlled by natural background factors such as temperature

and soil type. After the earthquake, strong seismic disturbances

elevated aspect to the dominant factor, which, in combination

with slope, soil type, and other topographic elements, played a

decisive role in reshaping the ecological landscape. During the

recovery period, natural factors continued to exert a

fundamental influence, but anthropogenic drivers—including

population density and proximity to roads and towns—gained

markedly stronger explanatory power, becoming critical forces

shaping the differentiated trajectories of ecological recovery.
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