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Can National Forest Cities
Construction promote Urban
Sustainability and Resilience?
Evidence from a quasi-natural
experiment in China
Song Jiang1, Jianhui Yin2* and Yu Jiang2

1School of Economics and Management, Harbin University, Harbin, China, 2School of Economics and
Management, Northeast Forestry University, Harbin, China
With the rapid acceleration of global urbanization, Urban Sustainability and

Resilience (USR) have emerged as pivotal issues in addressing resource scarcity,

environmental degradation, and extreme climate challenges. Focusing on this

context, this study investigates whether the National Forest Cities Construction

(NFCC) policy promotes urban sustainability and resilience and examines how

human capital (HC), artificial intelligence (AI) and government support (GS)

mediate these effects. This study evaluates the impact of National Forest Cities

Construction (NFCC) policies on USR using panel data from 300Chinese cities from

2000 to 2023. Employing a multi-period Difference-in-Differences (DID) approach

and constructing an entropy-weighted TOPSIS evaluation framework, we

systematically assess the policy effects on urban economic, social, and

environmental coordination and risk response capacities. Our findings reveal a

significant positive impact of NFCC policies on overall USR, with pronounced

heterogeneous effects observed across regions and city scales—most notably,

policies exhibit the strongest effects in eastern regions and are particularly

sensitive among small-to-medium-sized cities. Further mechanism analyses

identify three intrinsic transmission pathways: Human Capital (HC), Artificial

Intelligence (AI), and Government Support (GS). Although the HC channel initially

displays a negative adjustment effect, the gradual accumulation of skilled talent

significantly enhances its positive influence over time. In contrast, while the AI

channel effectively promotes intelligent technology adoption, it negatively affects

Urban Sustainability (US) yet positively contributes to Urban Resilience (UR). The GS

channel significantly increases public financial investment and environmental

governance; however, inefficiencies in resource allocation yield negative

transmission effects on both US and UR. These empirical insights clarify the
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effectiveness of NFCC policies and their regional and scale-specific differences,

offering practical recommendations for policy optimization and governance

strategies. Ultimately, this study provides a robust theoretical and empirical

foundation for advancing high-quality urban development characterized by

integrated economic growth, environmental protection, and risk management.
KEYWORDS

National Forest Cities Construction, Urban Sustainability and Resilience, sustainability,
quasi-natural experiment, multi-period DID mode
1 Introduction

The rapid progression of global urbanization has significantly

boosted economic prosperity and social advancement; however, it has

simultaneously intensified critical issues, including resource depletion,

environmental degradation, and extreme climatic events (Cohen,

2006; Zhang, 2016). These challenges pose unprecedented threats to

cities’ capacity to maintain long-term Urban Sustainability (US) and

Urban Resilience (UR). Consequently, achieving green growth and

strengthening ecological resilience amid ongoing urban expansion has

become a pressing issue for both researchers and policymakers

(McCormick et al., 2013; Artmann et al., 2019; Elmqvist et al.,

2019). US refers to balanced growth across economic, social, and

environmental dimensions (Alberti, 1996). Its central objective

involves harmonizing economic prosperity, environmental

conservation, and social stability through efficient resource

management, green technology adoption, and equitable social

mechanisms (Klopp and Petretta, 2017). In contrast, UR emphasizes

a city’s capability to withstand disruptions, recover quickly, and adapt

effectively to both internal and external shocks (Amirzadeh et al.,

2022). The integration of US and UR requires cities to possess not only

strong foundations for stable development but also flexibility in crisis

response and recovery. This integration ensures continued urban

vitality and resilience amid a dynamic external environment (Zhang

and Li, 2018). Constructing cities characterized by high Urban

Sustainability and Resilience (USR) thus necessitates achieving

dynamic equilibrium among economic, environmental, and social

factors, alongside continuously enhancing risk management and

emergency response mechanisms. Such improvements are crucial

for overall urban resilience and long-term sustainable growth.

Recently, countries worldwide have actively pursued innovative

urban development models (Cooke, 2011; Addanki and

Venkataraman, 2017), within which policy innovation has become

essential for promoting USR. In this context, China initiated the

NFCC program in 2004. National Forest Cities Construction (NFCC)

aims to develop exemplary cities with coordinated economic,

ecological, and social growth through extensive urban greening,

ecological restoration, and intelligent urban management practices

(Wang C. et al., 2024). Beyond enhancing urban green coverage and

environmental quality (Xu et al., 2020; Zhang et al., 2024), NFCC
02
promotes structural adjustments and institutional innovations,

targeting comprehensive improvements in US and UR (Xu and

Song, 2024). However, existing research has predominantly focused

on ecological and socioeconomic outcomes of NFCC (13(15, whereas

systematic empirical analyses regarding the broader impacts of NFCC

on USR—particularly its internal transmission mechanisms—remain

limited. For example, Zhang and Zhong (2024) examined the direct

impact and spatial spillover effects of NFCC on county-level economic

growth, analyzing its impact mechanisms solely from labor and

market dimensions without fully considering technological and

governmental interventions (Zhang and Zhong, 2024). Xie et al.

(2024) also analyzed NFCC’s effects on public health, examining its

impact pathways through reduced haze and altered resident behaviors

(Xie et al., 2024). Hu et al. (2023) examined the impact of NFCC on

smog emission reductions (Hu et al., 2023). Ai and Zhou (2023)

analyzed NFCC’s influence on economic growth, incorporating the

mechanism effects of total factor productivity and human capital (Ai

and Zhou, 2023). Xu et al. (2020) tested the impact of NFCC on urban

air quality (Xu et al., 2020).

Current studies have extensively discussed the concepts of US and

UR (Roostaie et al., 2019; Zeng et al., 2022), proposing various

multidimensional evaluation frameworks. However, most studies

have primarily focused on evaluating the current state of urban

environments or the outcomes of environmental quality

improvements (Liu et al., 2017). There remains insufficient

consideration of how national green-city construction policies

contribute to guiding urban transformation. Furthermore, there is no

consensus regarding the heterogeneous effects of these policies or the

specific roles played by Human Capital (HC), Artificial Intelligence

(AI), and Government Support (GS) as underlying transmission

mechanisms. High-quality HC can significantly enhance a city’s

technological innovation capacity, optimize resource allocation, and

accelerate green industrial development (Wang et al., 2022). However,

systematic empirical evidence remains scarce on how NFCC policies

may enhance local talent cultivation and technological accumulation,

thereby promoting US and UR. Similarly, AI—representing a critical

aspect of the ongoing technological revolution—is profoundly

reshaping urban governance and industrial structures. Increasingly,

intelligent technologies are recognized for their potential to optimize

public services, improve administrative efficiency, and facilitate green
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transformation (Boyd and Holton, 2018). While some studies have

explored AI’s impact on urban environments and carbon emissions

(Liu et al., 2022), limited research addresses how AI, propelled by green

policies, serves as a vital factor in enhancing urban sustainability and

resilience. GS is another critical factor, serving as essential institutional

support for policy implementation through resource allocation,

institutional innovations, and public investments (Wang et al., 2020).

Previous research indicates positive impacts from governmental

interventions on coordinated regional economic development and

ecological improvements (Li et al., 2024). Nevertheless,

comprehensive theoretical frameworks and empirical validations

remain lacking on how GS—specifically governmental fiscal

expenditures and policy interventions within the NFCC context—

indirectly enhances US and UR through improvements in urban

governance and infrastructure. Recent studies on related policies

provide further context. Quasi−experimental analysis of the National

Civilized City program shows that attaining the title increases per

capita GDP by about 2.88%, with benefits varying across regions and

administrative levels (Yang et al., 2025). Research on environmental

regulation finds a significant ‘U−shaped’ relationship between

regulatory intensity and the export−technology complexity of high

−tech industries and highlights transmission channels via foreign direct

investment, human capital and R&D (Yang et al., 2024a). Another

study on urban digital construction reports that every 1% increase in

digital−construction level raises GDP (Yang et al., 2024b). These

findings underscore the diversity of urban policy impacts and

motivate our examination of NFCC’s effects on both sustainability

and resilience.

Against this background, our research seeks to answer two key

questions: (i) Does NFCC policy enhance urban sustainability and

resilience? and (ii) Through which transmission mechanisms—

human capital, artificial intelligence and government support—

does this influence operate? Given these gaps, this study constructs

a comprehensive evaluation index system for USR, incorporating 6

secondary and 22 tertiary indicators. We analyze the spatial

distribution characteristics of NFCC, USR, US, and UR, using a

dataset comprising 300 Chinese cities from 2000 to 2023.

Employing a multi-period Difference-in-Differences (DID) model,

we systematically examine the effects of NFCC on USR.

Additionally, by introducing HC, AI, and GS as key mechanism

variables, we aim to uncover the internal transmission pathways

through which NFCC policies influence urban transformation. This

approach provides novel theoretical insights and empirical evidence

regarding how green urban policies drive comprehensive urban

upgrades. This research moves beyond previous single-dimensional

assessments of urban development by jointly investigating US and

UR, enriching both sustainable development and urban resilience

theories. Moreover, our detailed exploration of the transmission

mechanisms—HC, AI, and GS—fills existing gaps in mechanism-

oriented analyses, expanding the theoretical frameworks underlying

sustainable and ecological urban construction. Ultimately, this

study seeks to offer scientific and systematic theoretical guidance

and practical recommendations for future urban governance,

ecological restoration, and smart-city initiatives.
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2 Literature review and theoretical
hypotheses

NFCC, as a key component of China’s green transformation

strategy (Wang C. et al., 2024), has been promoted nationwide since

2004. Its core objective is to directly improve urban environmental

quality and optimize spatial structure through large-scale urban

greening, ecological restoration, and intelligent management (Zhang

et al., 2024). Empirical evaluations of similar urban policies provide

useful points of comparison. For instance, a quasi−experimental study

of China’s National Civilized City (NCC) program found that winning

the NCC title increases per−capita GDP by about 2.88%, with benefits

varying by region and city−administrative level (Yang et al., 2025).

Research on environmental regulation in high−tech manufacturing

documents a significant ‘U−shaped’ relationship between regulation

intensity and the export−technology complexity of high−tech products,

mediated by foreign direct investment, human capital and R&D

investment (Yang et al., 2024a). Another study on urban digital

construction shows that every 1% increase in digital−construction

level raises city GDP (Yang et al., 2024b). These studies typically

employ quasi−natural experiments or multi−period DID models and

focus on specific economic or technological outcomes. By contrast,

existing NFCC research has mainly evaluated ecological improvements

and short−term socioeconomic benefits. Our work fills this gap by

systematically assessing NFCC’s effects on Urban Sustainability and

Resilience (USR) and by modelling the internal transmission

mechanisms of human capital, artificial intelligence and government

support. Improved urban environments not only enhance residents’

quality of life but also facilitate economic structural adjustment and

better resource allocation, thereby promoting coordinated socio-

economic and ecological development (Yun et al., 2024). Sustainable

Development Theory (SDT) asserts that development must meet

current needs without hindering future generations, guided by the

principles of equity, sustainability, and commonality, and aiming for

balanced, fair, efficient, and multidimensional growth (Holden et al.,

2014). SDT provides a systematic framework for US by advocating

balanced development across economic, social, and environmental

dimensions while ensuring proper resource allocation and long-term

ecological health. In contrast, RT emphasizes that systems must rapidly

adapt, effectively defend, and quickly recover when faced with external

shocks to maintain essential functions and stable operation (Pettersen

and Schulman, 2019). Upgrading urban hardware and green

infrastructure is regarded as a fundamental basis for fostering US,

and under policy guidance, NFCC strengthens both UR and US

through increased green coverage, improved environmental

governance, and the adoption of ecological restoration technologies

(Kaluarachchi, 2021).

Based on SDT, NFCC enhances urban ecosystem services

through measures such as ecological restoration, air and water

quality management, and urban greening (Roeland et al., 2019).

Simultaneously, by improving urban landscapes and living

environments, NFCC increases city attractiveness, which in turn

supports economic structural optimization and the equitable

distribution of social resources. A wealth of research indicates
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that environmental improvements often catalyze economic and

social development, thus advancing US (Roseland, 2000; Naess,

2001). From the perspective of Resilience Theory (RT), NFCC’s

similar environmental improvement measures substantially bolster

urban ecosystem services (Xu et al., 2024). Moreover, by enhancing

urban aesthetics and livability, NFCC contributes to optimizing

economic structures and redistributing social resources more

equitably (Wang et al., 2024b). Empirical evidence also suggests a

positive relationship between green urban construction and

enhanced UR; policy implementation helps establish urban

emergency plans, reinforces risk prevention mechanisms, and

achieves efficient resource scheduling through intelligent systems.

Based on the above discussion, this paper proposes the

following hypotheses:
Fron
H1: NFCC significantly promotes USR.

H2: NFCC significantly promotes US.

H3: NFCC significantly promotes UR.
From the perspectives of SDT and RT, NFCC improves not only

urban environmental quality and public service levels (Xie et al., 2023)

but also urban living and working conditions, thereby attracting and

retaining high-quality talent to promote HC development (Chen et al.,

2021). SDT emphasizes balanced development across economic, social,

and environmental dimensions, while HC—representing a

concentration of knowledge, skills, and innovative capacity (Zheng

and Du, 2020)—serves as a key endogenous driver for such balanced

growth. From the perspective of human capital theory, investments in

education, health and high−quality living environments enhance labor

productivity and innovation capacity (Ibrahim, 2023). Cities endowed

with abundant green spaces and cultural amenities tend to attract a

‘creative class’ of highly skilled workers whose presence fosters

technological innovation, social cohesion and environmentally

conscious consumption (Wu et al., 2024). These dynamics explain

why NFCC’s improvements in urban ecological quality and public

amenities can strengthen the economic, social and environmental

dimensions of urban sustainability and resilience (Xu and Song,

2024). By improving ecological conditions and living environments,

NFCC enhances a city’s ability to attract and retain top talent, thus

significantly promoting HC development (Xu et al., 2024). With

enhanced HC, a city gains greater capacities for technological

innovation and resource integration (Sun, 2022). This progress not

only optimizes industrial structure, management efficiency, and public

service quality to achieve coordinated socio-economic and

environmental development but also enhances the city’s ability to

rapidly adapt to and manage external shocks such as natural disasters,

economic fluctuations, or social unrest (Meng et al., 2021). Therefore,

by leveraging the HC channel, NFCC simultaneously promotes US and

UR. Based on this mechanism, the following hypotheses are posited:

H4: NFCC significantly promotes HC development.
H5: NFCC promotes USR via the HC channel.

H6: NFCC promotes US via the HC channel.

H7: NFCC promotes UR via the HC channel.
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NFCC not only drives urban development directly through

improvements in environmental quality and resource allocation but

also plays a crucial role in advancing digital transformation and

technological innovation. In promoting green transformation and

ecological governance, NFCC enhances infrastructure and urban

management, creating favorable conditions for the deployment of

digital platforms and intelligent systems (Sanesi et al., 2017). This

environment, in turn, supports the development of AI by providing

essential technical backing and market conditions. Through rapid

adoption and application, AI endows urban governance with real-

time data collection, precise monitoring, and intelligent decision-

making capabilities (Yigitcanlar et al., 2021). According to SDT,

achieving US requires balanced development across economic,

social, and environmental dimensions, and AI facilitates this

balance by optimizing resource allocation, boosting management

efficiency, and fostering service innovation (Son et al., 2023). In

addition, digital−transformation theory posits that intelligent

technologies empower cities to integrate heterogeneous data

sources, enabling predictive analytics for resource demand,

pollution control and public−health surveillance (Wang et al.,

2024a). These capabilities not only improve operational efficiency

but also expand citizens’ access to public services, contributing to

social inclusiveness and environmental sustainability (Yu et al.,

2023). However, AI deployments also consume large amounts of

electricity and cooling water; proliferating AI data centers produce

electronic waste and ‘use massive amounts of electricity, spurring

the emission of planet−warming greenhouse gases (Richards et al.,

2023). Therefore, greening AI is essential for ensuring its net

positive contribution. Moreover, from an RT perspective, when

facing external shocks such as natural disasters, economic

fluctuations, or social crises, cities rely on effective risk-warning

and emergency response mechanisms (Seeliger and Turok, 2013)—

a function for which AI is indispensable (Son et al., 2023).

Intelligent monitoring and data analytics enable swift responses

and effective coordination, thereby enhancing a city’s ability to

prevent and manage emergencies (Alahakoon et al., 2023), which

ultimately bolsters overall UR. Consequently, by promoting the

widespread adoption of AI, NFCC directly advances intelligent

urban management and, through its technological impetus,

further drives coordinated development across multiple

dimensions while strengthening a city’s adaptability and recovery

capacity. On this basis, the following hypotheses are formulated:H8:

NFCC significantly promotes AI development.
H9: NFCC promotes USR via the AI channel.

H10: NFCC promotes US via the AI channel.

H11: NFCC promotes UR via the AI channel.
In addition to serving as a green policy that directly improves

urban environmental quality and resource allocation, NFCC also

triggers a series of institutional changes at the governmental level,

thereby providing policy and financial support for urban green

transformation. Specifically, SDT stresses that balanced development

across economic, social, and environmental dimensions requires
frontiersin.org
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effective GS, which acts as a vital institutional guarantee (Yang et al.,

2013). Public−administration and meta−governance theories

emphasize that cross−sectoral collaboration and coherent policy

instruments are crucial for aligning economic, social and

environmental goals (Christopoulos et al., 2016). Through

legislation, fiscal transfers and targeted subsidies, government

support can steer markets and communities toward sustainable

behaviors, mobilize social capital and coordinate multiple

stakeholders, thereby building institutional resilience and enhancing

a city’s capacity to withstand shocks (de Oliveira et al., 2013). In

parallel, RT maintains that a city’s capacity to respond to sudden

shocks depends not only on physical infrastructure but also on robust

policies, funding, and management systems (Dzigbede et al., 2020).

Within this framework, by refining policy systems and increasing

fiscal investments, NFCC can directly enhance GS, thereby providing

the essential public services, green infrastructure, and environmental

governance resources needed to underpin US and UR (Zhang and

Zhong, 2024). Moreover, as GS strengthens, its role in optimizing

public resource allocation, fostering interdepartmental coordination,

and guiding social capital participation becomes increasingly critical

(Christopoulos et al., 2012). These effects collectively promote

coordinated development across economic, social, and

environmental dimensions and help establish efficient risk-warning

and emergency response systems, enhancing a city’s capacity for rapid

recovery and adaptation to external shocks (Sun et al., 2024). Thus,
Frontiers in Ecology and Evolution 05
through the GS channel, NFCC not only directly promotes

improvements in US and UR but also achieves synergistic

enhancements in overall urban sustainability and resilience. Based

on this transmissionmechanism, the following hypotheses are posited:

H12: NFCC significantly promotes GS.
H13: NFCC promotes USR via the GS channel.

H14: NFCC promotes US via the GS channel.

H15: NFCC promotes UR via the GS channel.
Based on this, the following theoretical mechanism framework

is constructed (Figure 1).
3 Research design

3.1 Variable description

3.1.1 Dependent variables
(1) Urban Sustainability and Resilience. Based on the studies of

Buzási et al. (2022) and the evaluation method of Delgado-Ramos

et al (Delgado-Ramos and Guibrunet, 2017), and considering cities’

economic and social characteristics, the USR indicator is

decomposed into two sub-dimensions: US and UR. Together,

they support an integrated evaluation system measured by 6
FIGURE 1

Theoretical mechanism diagram.
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secondary indicators and 22 tertiary indicators (see Table 1).

Following the method of Xu et al (Xu et al., 2022), we construct

an entropy-weighted TOPSIS model and calculate the USR values

for 300 Chinese prefecture-level cities using the collected data (see

Appendix A).

(2) Urban Sustainability. The US indicator is decomposed

into three sub-dimensions—economic development, social

development, and ecological development—using 10 tertiary

indicators. The entropy-weighted TOPSIS model of Xu et al.

(2022) is employed to compute the US values for the sample

cities (see Appendix A).
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(3) Urban Resilience. The UR indicator is decomposed into

three sub-dimensions: risk resistance, adaptive adjustment, and

recovery growth, measured via 12 tertiary indicators. Following

the method of Xu et al (Dang et al., 2025), an entropy-weighted

TOPSIS model is constructed to calculate the UR values for the 300

prefecture-level cities (see Appendix A).

3.1.2 Core independent variable
The core independent variable is the interaction term between a

city dummy for NFCC policy implementation and a time dummy

variable. Cities recognized for NFCC are assigned a value of 1
TABLE 1 Urban Sustainability and Resilience evaluation indicator system.

Primary indicator Secondary indicator Tertiary indicator Indicator description Unit

Urban Sustainability

Economic Development

Development Level Per capita GDP yuan/person

Development Efficiency
Ratio of local fiscal revenue to total

fixed asset investment
%

Economic Openness
Ratio of total imports and exports to

local GDP
%

Social Development

Educational Attainment
Number of full-time faculty in

ordinary higher education institutions
persons

Social Distribution
Number of employees in private and
self-employed sectors in urban areas

persons

Social Vitality Total retail sales of consumer goods 10,000 yuan

Ecological Development

Air Quality PM2.5 concentration mg/m³

Water Environment Efficiency
Ratio of compliant industrial

wastewater discharge to total industrial
wastewater

%

Land Use Efficiency Cultivated land area per capita mu

Solid Waste Utilization
Comprehensive utilization rate of

industrial solid waste
%

Urban Resilience

Risk Resistance

Life Security Total grain output 10,000 tons

Income Level Average wage of on-post employees yuan

Employment Pressure
Number of registered unemployed

persons in urban areas
persons

Financial Risk Loan-to-deposit ratio at year-end %

Adaptive Adjustment

Investment Scale Total fixed asset investment 10,000 yuan

Fiscal Self-Sufficiency
Ratio of local fiscal revenue to

expenditure
%

Savings Level
Balance of household savings at year-

end
10,000 yuan

Social Security
Number of hospital beds in hospitals

and health centers
beds

Recovery Growth

Science & Technology Input
Proportion of science & technology
expenditure in fiscal expenditure

%

Education Investment
Proportion of education expenditure

in fiscal expenditure
%

Innovation Output Number of granted patents items

Industrial Structure
Ratio of value-added in tertiary

industry to that in secondary industry
%
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(treatment group), while non-recognized cities are assigned 0

(control group). For treated cities, the dummy takes the value of

1 from the year of recognition onward and 0 before recognition. For

control cities, the time dummy remains 0 in all years.

3.1.3 Control variables
Following Dang, Wang, Tu, and Yuan et al (Yuan et al., 2022;

Dang et al., 2025), this study selects four control variables:

Population Density (pd): Measured by the number of permanent

residents per square kilometer; Openness (doow): Captured by the

number of foreign-invested enterprises in the region; Internet

Development (nd): Measured using the number of international

internet users; Infrastructure (inf): Represented by railway

passenger volume.

3.1.4 Mechanism variables
To further investigate the transmission mechanism

underlying NFCC’s effect on USR, three mechanism variables

are introduced: HC: Measured as the ratio of undergraduate and

college students to the total population at year-end, reflecting the

region’s stock of high-quality talent and its potential for

technological innovation; AI: Measured by the density of robot

installations, indicating the prevalence of advanced automation

technology and the level of technological innovation; GS:

Measured by the ratio of general government expenditures to

regional GDP, representing the intensity of government public

investment and policy support. These three mechanism variables

jointly form the channels through which NFCC policies, by

improving HC, promoting AI development, and strengthening

GS, indirectly enhance USR. Detailed definitions for all variables

are provided in Table 2.
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3.2 Data sources

The study uses panel data for 300 prefecture-level cities in China

over the period 2000–2023. Data sources include the China City

Statistical Yearbook, various provincial and municipal statistical

yearbooks, the CNRDS – China National Research Data Service

platform, and the EPS Global Data Statistical Platform. Specifically,

the indicators within the urban sustainability and resilience evaluation

framework for the dependent variable were cross-validated using data

from the China Urban Statistical Yearbook, provincial and municipal

statistical yearbooks, and the EPS Global Data Platform. The

explanatory variable, national forest city construction data, is derived

from the date cities were designated as national forest cities, as

published on government websites. The control variables and

mechanism variables—human capital and government intervention

—are also sourced from the China Urban Statistical Yearbook,

provincial and municipal statistical yearbooks, and cross-validated

using the EPS Global Data Platform. The mechanism variable,

artificial intelligence, is sourced from CNRDS—the China Research

Data Service platform. To ensure sample consistency, prefecture-level

cities that include counties or district-level municipalities recognized

for NFCC but not entirely recognized are excluded. Only prefecture-

level data are used. For regions in Tibet with missing data, linear

interpolation and median substitution methods are applied to fill the

gaps. Missing observations represented less than 3% of the sample; for

gaps of up to two consecutive years we applied linear interpolation,

while longer gaps were filled with the median value of the

corresponding province and year. These quality−control measures

enhance the robustness of our results. Data processing is performed

using STATA17, and map visualizations are produced via

ArcGIS10.8.Model Selection and Construction.
TABLE 2 Variable descriptions.

Classification Declaration Symbol Definition

Dependent
Variable

Urban Sustainability and
Resilience

usr Calculated using the entropy-weighted TOPSIS method

Urban Sustainability us Calculated using the entropy-weighted TOPSIS method

Urban Resilience ur Calculated using the entropy-weighted TOPSIS method

Independent
Variable

National Forest Cities
Construction

nfcc
Interaction term between the policy implementation

dummy and time dummy

Control Variable

Population Density pd Number of permanent residents per square kilometer

Degree of Openness doow
Measured by the number of foreign-invested enterprises in

each region

Network Development nd
Measured by the number of international internet users in

each region

Infrastructure inf Measured by railway passenger volume in each region

Mechanism
Variable

Human Capital hc
Ratio of undergraduate and junior college students to the

total population

Artificial Intelligence ai Robot installation density

Government Support gs Ratio of general government expenditure to regional GDP
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The empirical analysis is based on a multi-period Difference-in-

Differences (DID) model, employing the NFCC policy as a quasi-

natural experiment to examine its impact on USR. The baseline

model is specified as follows:

usrit = a0 + a1nfccit + a2Controlit + mi + jt + eit (1)

usit = ς0 + ς1nfccit + ς2Controlit + mi + jt + eit (2)

urit = t0 + t1nfccit + t2Controlit + mi + jt + eit (3)

Where usrit , usit , and urit denote the measures of USR, US, and

UR for city i in year t; nfccit is the interaction term for NFCC policy

implementation; Controlit represents the vector of control variables;

mi and jt denote city and time fixed effects respectively; and eit is the
error term (Equations 1–3).

Furthermore, to explore the underlying transmission

mechanisms, additional regression models are constructed by

incorporating HC, AI, and GS as mechanism variables. These

models examine the direct impact of NFCC on each mechanism

variable and the mediating effect of these variables on the

relationship between nfcc and USR (as well as its sub-dimensions,

US and UR). Detailed Equations 4–15 specify the estimation

strategy for assessing these indirect channels.

hcit = b0 + b1nfccit + b2Controlit + mi + jt + eit (4)

aiit = h0 + h1nfccit + h2Controlit + mi + jt + eit (5)

gsit = d0 + d1nfccit + d2Controlit + mi + jt + eit (6)

usrit = g0 + g1nfccit + g2hcit + g3Controlit + mi + jt + eit (7)

usrit = l0 + l1nfccit + l2aiit + l3Controlit + mi + jt + eit (8)

usrit = e0 + e1nfccit + e2gsit + e3Controlit + mi + jt + eit (9)

usit = z0 + z1nfccit + z2hcit + z3Controlit + mi + jt + eit (10)

usit = q0 + q1nfccit + q2aiit + q3Controlit + mi + jt + eit (11)

usit = ϑ0 + ϑ1nfccit + ϑ2gsit + ϑ3Controlit + mi + jt + eit (12)

urit = k0 + k1nfccit + k2hcit + k3Controlit + mi + jt + eit (13)

urit = x0 + x1nfccit + x2aiit + x3Controlit + mi + jt + eit (14)

urit = s0 + s1nfccit + s2gsit + s3Controlit + mi + jt + eit (15)

Here, hcit denotes the human capital in region i at time t, aiit
denotes the artificial intelligence in region i at time t, and gsit
denotes the government intervention in region i at time t.
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4 Results and analysis

4.1 Descriptive statistics

First, descriptive statistical analyses were conducted for all

variables to provide an intuitive understanding of the data’s

distribution and characteristics, as well as to assess its quality.

The results are presented in Table 3. The findings indicate that

no data set exhibits abnormally high or low values, the level of

dispersion is moderate, and the overall distribution trends

are favorable.

(1) Spat ia l Distr ibut ion Character is t ics of NFCC

Policy Implementation.

Since 2004, the implementation of NFCC policies across the

nation has exhibited significant spatial heterogeneity (Figure 2). In

the early stages (e.g., in 2008), policy implementation was mainly

concentrated in regions with higher economic development and

urbanization levels. Such areas, endowed with strong economic

strength and high administrative efficiency, received policy support

earlier. Over time (e.g., from 2016 to 2023), the policy gradually

extended to central, western, and inland regions. Although the

expansion rate was relatively slow, this trend reflects the

government’s strategic intent to narrow regional disparities and

achieve balanced development. Further analysis reveals a clear scale

effect. Large and medium-sized cities, with well-developed

infrastructure and efficient resource allocation, often serve as key

targets of NFCC, whereas smaller cities tend to lag behind. This

spatial distribution pattern not only illustrates the constraining role of

economic development and urban scale on policy implementation

but also reflects the government’s consideration of regional

differentiation in promoting green urban transformation. In

summary, the spatial distribution of NFCC policy implementation

demonstrates a diffusion process from east to west and from large to

small cities. This pattern is closely aligned with the geographic

distribution of economic, social, and administrative resources in

China, and it provides critical background information for further

assessing the policy’s effect on enhancing USR.

(2) Spatial Distribution Characteristics of USR.

Figure 3 illustrates the spatial distribution characteristics of USR

in Chinese prefecture-level cities for 2008, 2016, and 2023. Cities

along the eastern coastal regions exhibit higher USR indices, which

is closely related to their developed economies, comprehensive

infrastructure, and advanced environmental governance.

Simultaneously, as NFCC policies and green transition measures

continue to expand, several cities in central and western regions have

shown notable improvements in USR, indicating both policy

diffusion and enhanced local adaptability. Further analyses suggest

that economic vitality, levels of social development, and

improvements in the ecological environment are critical drivers of

high-level USR. In addition, technological innovation and the

development of green infrastructure play important roles in

bolstering a city’s capacity to counter natural disasters and
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economic fluctuations. Overall, this spatial pattern validates the

fundamental tenets of SDT and RT, provides scientific evidence for

region-specific green transition policies, and offers guidance for

future urban planning and governance.

(3) Spatial Distribution Characteristics of US.

Figure 4 presents the spatial distribution of US among

prefecture-level cities for 2008, 2016, and 2023. Overall, cities in

the eastern coastal areas display generally higher levels of US.

This pattern is largely attributed to mature economic systems,

efficient resource allocation, and stringent environmental

governance measures. According to SDT, US is not only about

achieving economic growth but also about maintaining a balance

with social and environmental progress; hence, cities in the east

perform well across these dimensions. In contrast, although cities in

some central and western areas show relatively lower US levels,

many regions have witnessed significant improvements in recent

years due to the deepening of green transition policies and the

promotion of technological innovations. Specifically, these regions

are gradually enhancing their ecological protection, resource

utilization efficiency, and public service provision, which lays the

foundation for future balanced, coordinated, fair, efficient, and
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multidimensional development. Overall, the spatial distribution of

US is characterized by regional clusters, reflecting the combined

influences of regional economic development, resource

endowments, and policy execution intensity—factors that serve as

important references for devising region-specific green

development strategies.

(4) Spatial Distribution Characteristics of UR.

Figure 5 displays the spatial distribution of UR among Chinese

prefecture-level cities for 2008, 2016, and 2023. In general, cities in

the eastern coastal region exhibit higher UR levels. This is primarily

due to stronger investments in risk management, infrastructure

development, and intelligent emergency systems in those areas.

According to RT, UR depends not only on robust physical

infrastructure but also on effective risk-warning and emergency

response mechanisms. Eastern cities can rapidly respond to and

adjust their strategies when faced with natural disasters, economic

fluctuations, or social emergencies, thereby demonstrating strong

adaptability and recovery capabilities. Meanwhile, although cities in

some central and western regions may have relatively weaker

infrastructure and economic strength, many have shown gradual

improvements in UR in recent years as a result of ongoing green

transition policies and the enhancement of green infrastructure.

This improvement reflects both local governments’ efforts in risk

prevention and intelligent governance, and the gradual

coordination effects among regions. The internal gradient

distribution of UR indicates that regions with more developed

economies and stronger policy implementation generally have

higher UR. In summary, the spatial distribution of UR follows a

trend of gradual decrease from east to west, with noticeable

clustering within regions. This pattern not only reflects the

comprehensive differences in regional economic development,

public service quality, and intelligent governance but also

provides important insights for the formulation of region-specific

risk prevention and urban recovery strategies.
4.2 Benchmark regression analysis

We adopt a multi-period Difference-in-Differences (DID)

model using the NFCC policy as a quasi-natural experiment to
TABLE 3 Descriptive statistics of variables.

Variable Obs Mean Std.Dev. Min Max

usr 7200 0.116 0.038 0.045 0.358

us 7200 0.092 0.044 0.019 0.369

ur 7200 0.131 0.041 0.046 0.406

nfcc 7200 0.205 0.404 0 1

pd 7200 416.461 329.802 5 3005

doow 7200 89.444 289.802 0 4773

nd 7200 78.673 137.023 0.001 5174

inf 7200 1.058 43.51 0.001 3019.248

hc 7200 0.102 2.306 0.012 129.43

ai 7200 3.88 2.268 0.693 11.539

gs 7200 0.201 0.275 0.027 4.831
FIGURE 2

Spatial distribution map of NFCC policy implementation in 2008, 2016, and 2023. Note: Data from the National Forestry and Grassland
Administration. The map was produced using ArcGIS based on the standard map provided by the Ministry of Natural Resources (GS [2024] 0650),
with unmodified base boundaries.
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evaluate its impact on USR, US, and UR. In the preliminary

regression results (see Table 4), models without control variables

show that the coefficient for NFCC is 0.007 (p< 0.01) on the overall

USR index, supporting H1; the coefficient is 0.011 (p< 0.01) on US,

supporting H2; and the coefficient is 0.05 (p< 0.01) on UR,

supporting H3. These findings indicate that even without

controlling for other factors, the NFCC policy significantly

improves overall urban development quality and risk

management capabilities. After including control variables (pd,

doow, nd, and inf), the regression coefficients remain robust. The

model’s R² values reach 0.852, 0.862, and 0.776 for USR, US, and

UR, respectively, demonstrating that control variables greatly

enhance the model’s explanatory power while the nfcc coefficient

remains positive and highly significant. Overall, the baseline

regression results—both with and without control variables—

consistently show a positive relationship, confirming the robust

positive effect of the NFCC policy on USR. This result aligns

with the coordinated economic, social, and environmental

development emphasized by SDT and with RT’s requirement for

rapid adaptation and recovery amid external shocks, thereby

providing a solid empirical foundation for subsequent mechanism

analyses. Studies by Dang et al. (2025), Zheng et al. (2025),

and Li and Zhao (2023). further support the conclusions of

this paper. They respectively validated that national forest city

initiatives exert significant positive impacts on local employment,

urban environmental quality and welfare, and air pollution
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levels, thereby further substantiating the reliability of this

paper’s findings.
4.3 Parallel trend test

A key assumption of the multi-period DID model is that the

treatment and control groups share a similar trend before policy

implementation—that is, the parallel trend assumption holds. Since

the timing of NFCC policy shocks varies across cities, relative

time dummies are assigned to each city based on the NFCC

implementation timeline. The parallel trend test equations are

constructed as follows:

usrit = r0 + r1Dpre _ jit + r2Dcurrentit + r3Dpost _ kit

+ r4Controlit + mi + jt + eit (16)

usit = ϱ0 + ϱ1Dpre _ jit + ϱ2Dcurrentit + ϱ3Dpost _ kit

+ ϱ4Controlit + mi + jt + eit (17)

urit = w0 + w1Dpre _ jit + w2Dcurrentit + w3Dpost _ kit

+ w4Controlit + mi + jt + eit (18)

Where the time dummies represent the observations for each

city in the 10 years prior to, the year of, and the 15 years after NFCC
FIGURE 3

Spatial distribution map of USR in 2008, 2016, and 2023. Note: Data derived from the entropy-weighted TOPSIS method. The map was created
using ArcGIS based on the standard map from the Ministry of Natural Resources (GS [2024] 0650), with unaltered base boundaries.
FIGURE 4

Spatial distribution map of US in 2008, 2016, and 2023. Note: Data obtained via the entropy-weighted TOPSIS method. The map was produced
using ArcGIS based on the standard map from the Ministry of Natural Resources (GS [2024] 0650), with unmodified base boundaries.
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recognition, while non-treated cities have a value of 0 (Equations

16–18).

Figures 6, 7, and 8 display the dynamic changes in overall USR,

US, and UR, respectively, across these relative periods. The results

show that before policy implementation, the regression coefficients

for both the treatment and control groups are insignificant and

close to zero, indicating no systematic trend differences pre-

intervention. In contrast, after policy implementation, all indices

exhibit significantly positive changes, with the differences growing

over time. These dynamics confirm that the NFCC policy’s effects

are genuine and help rule out potential confounding time trends.

The parallel trend test thus strongly supports our DID model’s

assumptions, enhancing the credibility of our subsequent

empirical results.
4.4 Robustness checks

4.4.1 Placebo test
To further ascertain that our results are not driven by

unobserved factors, we conduct a placebo test. Given the lagged

policy impacts in the multi-period DID framework, pseudo

treatment dummies and pseudo policy shock variables are

generated. Specifically, from the 300 cities, 100 are randomly

selected as NFCC cities (treatment group) while the remaining

200 serve as controls; this procedure is repeated 500 times, with 500

baseline regressions estimated. As shown in Figure 9, the

coefficients for the interaction terms generated in the placebo

tests are mostly concentrated around zero, and the p-values are

generally above 0.1. This outcome supports the robustness of the

baseline regression results.

4.4.2 Changing dependent variables
To further validate the robustness of our findings, we conduct a

robustness check by substituting the main dependent variables

(Table 5). In this test, alternative measures of USR—such as total

retail sales of consumer goods and the ratio of local fiscal revenue to

expenditure—are used as proxies. After re-estimating the model
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with these alternative indicators, the coefficient on nfcc remains

significantly positive with effect sizes similar to those in the original

model. This demonstrates that regardless of the measurement

approach, the NFCC policy reliably enhances USR.
4.5 Heterogeneity analysis

4.5.1 Regional heterogeneity
To explore potential differences in the policy effect of NFCC

across regions, the sample is divided into three geographic areas:

eastern, central, and western regions. Separate multi-period DID

models are then estimated for each region. As shown in Table 6,

the policy effect is most pronounced in the eastern region, where

nfcc has a coefficient of 0.007 (p< 0.01). This indicates that eastern

regions—characterized by high economic development, robust

infrastructure, and efficient administrative capacities—provide

favorable conditions for policy implementation. In the central

region, nfcc’s coefficient is 0.005 (p< 0.01), slightly lower than in

the east, potentially due to differences in economic development

levels and resource allocation, while also reflecting the gradual

acceleration of the green transition in the central region. In the

western region, the effect is still positive but with a lower

coefficient of 0.003 (p< 0.01), possibly owing to lagging

infrastructure, limited technology adoption, and less vigorous

policy enforcement. These regional heterogeneity findings

suggest that NFCC policy effects are moderated by differences

in regional economic bases, resource endowments, and

administrative efficiency.
4.5.2 Heterogeneity by city size
To examine the impact of NFCC across different city sizes, we

classify cities into three categories—small/medium, large, and extra-

large/ultra-large—according to the 2014 State Council notice on

urban scale standards. The regression results indicate that while

nfcc yields a positive effect for all categories, the intensity and

significance vary considerably. In small and medium cities, the nfcc

coefficient is 0.005 (p< 0.01), indicating a higher sensitivity to the
FIGURE 5

Spatial distribution map of UR in 2008, 2016, and 2023. Note: Data obtained via the entropy-weighted TOPSIS method. The map was created using
ArcGIS based on the standard map from the Ministry of Natural Resources (GS [2024] 0650), with unmodified base boundaries.
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policy, likely because these cities have relatively weaker

infrastructure and resource allocation, making the benefits of

green transition more pronounced. In large cities, nfcc’s

coefficient is 0.003 (p< 0.01), suggesting that, despite the positive

impact, the marginal effect is diminished in cities with more
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substantial resources and technological advantages. In extra-large/

ultra-large cities, the nfcc coefficient is 0.004 (p< 0.1); although the

effect remains positive, the lower statistical significance reflects that

in these complex and massive urban centers, management

complexities and scale effects lead to diminishing marginal
TABLE 4 Baseline regression results.

Variable
Usr Us Ur

(1) (2) (3) (4) (5) (6)

nfcc 0.007*** 0.005*** 0.011*** 0.009*** 0.005*** 0.003***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

pd 0.001*** 0.001*** 0.001***

(7.93) (7.45) (8.86)

doow -2.05 -0.001** 3.81

(3.99) (5.14) (3.65)

nd 0.001** 0.001** 0.001**

(0.001) (0.001) (0.001)

inf -0.001*** -7.87*** -0.001***

(3.37) (1.37) (4.69)

City Fixed Effects Yes Yes Yes Yes Yes Yes

Time Fixed Effects Yes Yes Yes Yes Yes Yes

N 7200 7200 7200 7200 7200 7200

R2 0.852 0.862 0.776 0.786 0.873 0.883
** and *** indicate significance at the levels of 5 and 1%, respectively. Standard errors are reported in parentheses.
FIGURE 6

Parallel trend test for USR.
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benefits. These heterogeneity results are consistent with SDT and

RT, underscoring that infrastructural, resource, and management

differences across regions and city sizes yield varied policy

effectiveness, thereby providing empirical guidance for region-

specific and size-sensitive green transition strategies.
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4.6 Mechanism verification

To further explore how the NFCC policy influences various

dimensions of urban development through internal transmission

mechanisms, we conduct detailed analyses based on the results in
FIGURE 7

Parallel trend test for US.
FIGURE 8

Parallel trend test for UR.
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Table 7. We examine three key dependent variables—overall USR,

US, and UR—and test the roles of HC, AI, and GS, interpreting the

findings in light of SDT and RT.

4.6.1 Analysis of USR
For the overall USR indicator, when mechanism variables are

incorporated, the results reveal multiple transmission channels.

First, in the HC pathway, NFCC exerts a direct effect on HC of –

0.074 (p< 0.1). This negative effect suggests that, in the early phase,

resource reallocation or structural adjustment may temporarily

reduce the accumulation of high-quality talent, possibly due to

the reallocation of administrative resources and funding affecting

college enrollment and training efforts. Subsequently, however, the

mediating role of HC becomes positive: NFCC has a coefficient of

0.005 (p< 0.01) in its positive transmission to USR, while HC itself
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shows a coefficient of 0.001 (p< 0.01). This indicates that as high-

quality talent gradually accumulates, its positive effect eventually

compensates for and surpasses the initial negative impact, thereby

promoting coordinated urban development. This phenomenon

supports H5 and is consistent with SDT’s emphasis on long-term

endogenous drivers.

Regarding the AI pathway, NFCC demonstrates a significantly

positive effect on AI (coefficient = 0.064, p< 0.01), confirming that

the policy effectively promotes the diffusion of intelligent

technology. The adoption of AI, by improving resource

scheduling efficiency and enhancing risk alert capabilities,

contributes positively to overall urban development, supporting

H8. However, the mediating effect of AI in the transmission from

NFCC to USR is statistically insignificant (coefficient= -0.001, p >

0.1), leading to the rejection of H9. This result implies that although
FIGURE 9

Placebo test results.
TABLE 5 Robustness check: alternative measures of the dependent variable.

Variable
Dependent variable

Total retail sales of consumer goods Ratio of local fiscal revenue to expenditure

nfcc 256.411*** 0.009***

(66.578) (0.003)

Control Variables Yes Yes

City Fixed Effects Yes Yes

Time Fixed Effects Yes Yes

N 7200 7200

R2 0.803 0. 893
*** indicates significance at the level of 1%. Standard errors are reported in parentheses.
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the policy advances digital transformation, the progress in AI does

not manifest a statistically significant transmission effect on

overall USR.

In the GS pathway, NFCC positively influences GS (coefficient =

0.019, p< 0.01), which supports H12. Further government support

has a significant negative mechanism effect on USR. Consequently,

H13 is rejected. Overall, despite an initial negative adjustment in the

HC channel, high levels of HC eventually produce a significant

positive impact on overall USR.

4.6.2 Analysis of US
For the US indicator, upon incorporating mechanism variables,

the regression results reveal the presence of multiple transmission

channels with notable differences in their effects. In the HC channel,

the mediating regression indicates that HC (coefficient = 0.001, p<

0.01) significantly transmits the positive effect of NFCC (coefficient

= 0.009, p< 0.01) on US, supporting H6. This finding suggests that

as high-quality talent accumulates over time, its long-term positive

effect compensates for any initial negative adjustment, thereby

promoting balanced economic, social, and environmental

development in line with SDT’s perspective on endogenous drivers.

In contrast, in the AI channel, although AI does mediate the

impact of NFCC on US (with NFCC showing a coefficient of 0.009, p<

0.01), the transmitted effect of AI is negative (coefficient = –0.004, p<

0.01), resulting in the rejection of H10. This negative effect may

indicate that in the early stages of policy implementation or transition,

the promotion of AI might be associated with issues such as high

energy consumption, frequent equipment updates, and the costs of

technology substitution (Chen et al., 2023; Fu et al., 2025), all of which

may have short-term adverse impacts on urban environmental quality

and resource utilization efficiency (Yigitcanlar et al., 2021; Stecuła

et al., 2023). Additionally, potential information asymmetries and

uneven resource allocation during digital transformation may inhibit

AI’s effectiveness in promoting balanced US in the initial phase.

Furthermore, GS exhibits a significant negative mediating effect

in the NFCC–US channel (GS coefficient = –0.013, p< 0.01; NFCC

coefficient = 0.009, p< 0.01), leading to the rejection of H14. This

result suggests that at the current stage, elevated GS may reflect

inefficient resource allocation or overreliance on administrative

intervention, thereby negatively affecting balanced economic,

social, and environmental development in the short term.
4.6.3 Analysis of UR
For the UR indicator, the inclusion of mechanism variables also

reveals distinct transmission channels, with differing directions and

significance levels. In the HC pathway, regression results show that

HC (coefficient = 0.001, p< 0.01) significantly transmits the positive

effect of NFCC (coefficient = 0.003, p< 0.01) on UR, supporting H7.

This implies that the gradual accumulation of high-quality talent

enhances a city’s capability in risk management, emergency

response, and rapid recovery, thereby strengthening UR—a result

that aligns with RT’s emphasis on long-term endogenous drivers

improving system adaptability and recovery capacity.

In the AI pathway, AI exhibits a significant positive mediating

effect on UR (coefficient = 0.002, p< 0.01; with NFCC at 0.003, p< 0.01),
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supporting H11. This positive effect indicates that the promotion of

intelligent technology increases resource scheduling efficiency,

reinforces risk monitoring, and improves emergency response

capabilities, all of which contribute substantially to enhancing UR.

This finding is in line with RT, which underscores the role of AI in

bolstering urban emergency management capabilities.

Finally, in the GS pathway, further mechanism analysis shows

that GS has a significantly negative transmission effect on UR (GS

coefficient = –0.008, p< 0.01; NFCC coefficient = 0.003, p< 0.01),

leading to the rejection of H15. This negative effect may imply that

at the current stage, high GS levels might signal inefficient resource

allocation or an excessive reliance on administrative intervention,

which in the short term dampens the city’s risk management and

emergency response capabilities. This finding indicates that during

the green transition process, it is critical for GS to focus on

improving investment efficiency and optimizing resource

allocation to ensure a positive contribution to UR.
5 Conclusions and policy
recommendations

5.1 Research conclusions

Based on panel data from 300 Chinese prefecture-level cities

spanning 2000–2023, this study employs a multi-period Difference-

in-Differences (DID) model as a quasi-natural experiment to

systematically examine the impact of the NFCC policy on USR,

US, and UR. The findings indicate that, overall, the policy exerts a

significantly positive effect on urban development. Specific

conclusions are as follows:

(1) Significant Direct Effects.
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The baseline regression analysis shows that, regardless of the

inclusion of control variables, NFCC significantly enhances overall

USR, as well as US and UR. This finding confirms that, as an

important green transformation initiative, the policy plays a

positive role in improving the urban ecological environment,

optimizing resource allocation, and enhancing public service levels.

(2) Multiple Transmission Mechanisms.

HC Channel: Although NFCC initially exerts a significantly

negative impact on HC—possibly reflecting short-term resource

reallocation or structural adjustment—the positive transmission

effect through HC becomes significant as high-quality talent

gradually accumulates. This underscores the essential role of HC

accumulation in enhancing long-term coordinated development

and risk management capacity.

AI Channel: NFCC notably promotes AI development. However,

its mediating effect on US is negative, while AI contributes positively

to UR. This suggests that intelligent technology has a clear advantage

in improving risk-warning and emergency response capabilities, even

though its benefits on US may be less immediate.

GS Channel: NFCC substantially increases governmental support

in terms of fiscal investment and environmental governance; however,

the transmission effects via GS on both US and UR are negative. This

result implies that at the current stage, GS may suffer from inefficient

resource allocation or excessive administrative intervention, thus falling

short of the expected positive effects in the short term.

(3) Regional and City Size Heterogeneity.

Heterogeneity analyses further reveal that policy effects vary

significantly across eastern, central, and western regions, as well as

among different city sizes. The policy exhibits the most pronounced

effects in the eastern region and in large to medium-sized cities,

reflecting the moderating impacts of regional economic bases,

infrastructure, and administrative efficiency on green transformation
TABLE 7 Mechanism test results.

Variable
Mechanism variable Transmission mechanism

(1) hc (2) ai (3) gs (4) usr (5) usr (6) usr (7) us (8) us (9) us (10) ur (11) ur (12) ur

nfcc -0.074* 0.064*** 0.019*** 0.005*** 0.005*** 0.005*** 0.009*** 0.009*** 0.009*** 0.003*** 0.003*** 0.003***

(0.042) (0.014) (0.005) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

hc 0.001*** 0.001*** 0.001***

(0.001) (0.001) (0.001)

ai -0.001 -0.004*** 0.002***

(0.001) (0.001) (0.001)

gs -0.012*** -0.013*** -0.008***

(0.002) (0.003) (0.002)

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

City Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 7200 7200 7200 7200 7200 7200 7200 7200 7200 7200 7200 7200

R2 0.618 0.98 0.771 0.862 0.862 0.864 0.786 0.786 0.787 0.883 0.884 0.884
fron
* and *** indicate significance at the levels of 10 and 1%, respectively. Standard errors are reported in parentheses.
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policies. Overall, this study demonstrates that the NFCC policy directly

enhances urban green transformation and operates through multiple

endogenous mechanisms. Although some channels display short-term

negative effects, the policy ultimately improves USR through HC

accumulation and AI implementation. In contrast, the negative

transmission via GS highlights the need to optimize resource

allocation and administrative efficiency. These findings provide

robust empirical evidence and theoretical support for advancing

green urban governance, refining region-specific green transition

policies, and improving urban risk management and emergency

response capabilities.
5.2 Policy recommendations

Based on our empirical analysis, we propose the following

policy recommendations to further strengthen the role of the

NFCC policy in promoting USR, while addressing variations

across transmission channels, regions, and city sizes:

(1) Deepen the Green Transformation Strategy.

The evidence shows that the NFCC policy directly improves urban

ecological environments, resource allocation, and public service levels,

thereby laying the foundation for coordinated economic, social, and

environmental development. However, the policy process exhibits

short-term adjustment effects, such as an initial decline in HC. To

mitigate these shocks, government agencies should establish buffering

mechanisms and gradually enhance supporting measures. This

approach will ensure that talent cultivation and the recruitment of

high-quality personnel proceed in tandem with the green transition,

thus unlocking long-term positive endogenous drivers.

(2) Promote Intelligent Technology Integration.

Although NFCC significantly accelerates AI development, its

negative transmission effect on US may be related to factors such as

high energy consumption, frequent equipment updates, and

technology substitution costs. Therefore, relevant authorities should

not only increase investment in intelligent technologies but also

emphasize technology integration and cost–benefit analyses. By

exploring green, low-carbon AI application models and optimizing

digital resource allocation, the adjustment period can be shortened so

that AI truly transforms into a force for improving urban resource

utilization efficiency and environmental governance.

(3) Optimize Governmental Support.

The negative mediating effect observed via the GS channel suggests

that current government support may be hampered by inefficient

resource allocation or an overreliance on administrative intervention.

To address this, policymakers should continue increasing investments

in green infrastructure and environmental governance while

simultaneously strengthening performance evaluations and

enhancing resource utilization efficiency. Optimizing fiscal

expenditure structures can help prevent short-term inhibitory effects

on coordinated development. Moreover, encouraging market and

private capital participation through diversified financing and

cooperative models can further boost overall investment efficiency.

(4) Tailor Strategies by Region and City Size.

Given that our analysis indicates significant heterogeneity across

regions and among cities of different sizes, differentiated green
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transition strategies should be developed. In the developed eastern

region, efforts should focus on further integrating intelligent

governance with high-end talent cultivation. In contrast, central and

western regions and small to medium-sized cities should prioritize

improving infrastructure and administrative efficiency. Targeted policy

support in these areas can gradually narrow regional development gaps

and achieve common, coordinated, equitable, and efficient growth.
5.3 Limitations and future directions

Our work makes several contributions: it is the first to jointly

evaluate the impacts of NFCC on urban sustainability and resilience

using a multi−period DID design; it constructs an entropy−weighted

TOPSIS framework and identifies three endogenous transmission

channels—HC, AI andGS—thus enriching the theoretical integration

of sustainability and resilience. We also explore regional and city−size

heterogeneity, providing targeted policy insights. Nevertheless, the

study has limitations. First, the macro−level panel data cannot

capture household−level or firm−level behaviors; second, although

multiple controls are included, unobserved factors may still bias the

estimates; third, the selection of indicators for USR and mechanism

variables inevitably involves subjective judgment. Future research

could incorporate micro−data and alternative sustainability−metrics

to validate and extend our conclusions.
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Appendix A

This study employs the entropy-weighted TOPSIS comprehensive

evaluation method to measure and assess urban sustainability and

resilience. The core idea is to use the entropy weighting method to

assign weights to each indicator based on their standardized values,

and then to apply the TOPSIS method to quantitatively rank the levels

of urban sustainability and resilience. The entropy weighting method

relies on the amount of information reflected by the variation in each

index, thereby reducing the influence of subjectivity in weight

allocation. The TOPSIS method uses the cosine approach to

determine the best and worst alternatives by calculating the relative

distances between each evaluation object and the ideal and nadir

solutions. Owing to its simplicity and the logical results produced, the

entropy-weighted TOPSIS method combines the advantages of both

methods and renders the measurement outcomes of urban

sustainability and resilience more objective and reasonable. The

specific implementation steps are as follows:

Step 1: Data Normalization and Standardization

If inverse indicators exist in the data, they must be converted

into positive indicators. In this study, all 22 level-3 evaluation

indicators in the urban sustainability and resilience indicator

system are positive; therefore, no conversion is needed. To

eliminate scale differences, each measurement indicator, Xij, in the

urban sustainability and resilience indicator system is first

standardized.

x
0
ij =

xij −min (xj)

max (xj) −min (xj)
(19)

x
0
ij =

max(xij)

mac(xj) −min(xj)
(20)

where xij denotes the value of the jth evaluation indicator for the

ith city, and the expressions in (19) and (20) represent the standardized

(Equations 19, 20) values of the urban sustainability and resilience

measurement indicators.

Step 2: Calculation of Information Entropy Ej
For each measurement indicator in the urban sustainability and

resilience indicator system, calculate its information entropy Ej
(Equation 21):

Ej = −kon
i=1Rij ln (Rij)  ,   k =

1
ln n

 ,  Rij =
xij

on
i=1x

0
ij

(21)

Step 3: Calculation of Weights Wj

Compute the weight Wj for each measurement indicator within

the system (Equation 22):

Wj =
1 − Ej

om
j=1(1 − Ej)

 ,  on
j=1wj = 1 (22)

Step 4: Construction of the Weighted Matrix Z

Construct the weighted decision matrix Z by multiplying the

standardized matrix by the weights for each indicator (Equation

23):
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Z = (x
0
ij �Wj)m�n (23)

Step 5: Determination of the Ideal and Nadir Solutions

Determine the best alternative Z+
j and the worst alternative Z−

j

for the indicator system. Calculate the distances Z+
j and Z−

j between

each evaluation object and the ideal and nadir alternatives,

respectively (Equations 24, 25):

D+
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

j=1(Zij − Z+
j )

2
q

(24)

D−
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

j=1(Zij − Z−
j )

2
q

(25)

Step 6: Calculation of the Relative Closeness Ci

Calculate the relative closeness Ci of each evaluation object to

the ideal solution (Equation 26):

Ci =
D−
i

D+
i − D−

i
(26)

A larger value of Ci indicates a better level of urban

sustainability and resilience for the ith city; conversely, a lower Ci

implies poorer performance.
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