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In many high-stakes testing programs, testlets are used to increase efficiency. Since 
responses to items belonging to the same testlet not only depend on the latent abil-
ity but also on correct reading, understanding, and interpretation of the stimulus, the 
assumption of local independence does not hold. Testlet response theory (TRT) models 
have been developed to deal with this dependency. For both logit and probit testlet 
models, a random testlet effect is added to the standard logit and probit item response 
theory (IRT) models. Even though this testlet effect might make the IRT models more 
realistic, application of these models in practice leads to new questions, for example, in 
automated test assembly (ATA). In many test assembly models, goals have been formu-
lated for the amount of information the test should provide about the candidates. The 
amount of Fisher Information is often maximized or it has to meet a prespecified target. 
Since TRT models have a random testlet effect, Fisher Information contains a random 
effect as well. The question arises as to how this random effect in ATA should be dealt 
with. A method based on robust optimization techniques for dealing with uncertainty in 
test assembly due to random testlet effects is presented. The method is applied in the 
context of a high-stakes testing program, and the impact of this robust test assembly 
method is studied. Results are discussed, advantages of the use of robust test assembly 
are mentioned, and recommendations about the use of the new method are given.

Keywords: automated test assembly, high-stakes testing, robust optimization, robust test assembly, testlet 
response theory

INtRodUCtIoN

In many tests, a reading passage, graph, video fragment, or simulation is presented to a test taker; 
and after reading the passage, studying the graph, watching the video fragment, or participating 
in the simulation, the test taker is presented with a number of items pertaining to the stimulus. 
Such a group of items can be referred to as a testlet (Wainer and Kiely, 1987). The responses of the 
test takers to items in the testlet depend on the correct reading, interpretation, and understanding 
of the stimulus. This causes a dependency among the responses given to the items pertaining to 
the same stimulus. Even after controlling for latent ability, responses to items within a testlet tend 
to be correlated. This violates the assumption of local independence (LI) (Koziol, 2016). For an 
item pair that shows positive local dependence, the information provided by the items consists of a 
redundant (overlapping) part and a unique part. If the local dependency is ignored, the overlapping 
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part is counted twice, and thus the measurement precision is 
overestimated1 (e.g., Junker, 1991; Braeken, 2011; Baghaei and 
Ravand, 2016). To deal with these kinds of issues, testlet response 
theory (TRT; Wainer et al., 2007) models were proposed. In these 
models, the dependency between responses to items in the same 
testlet is modeled by adding a testlet effect to the item response 
theory (IRT) models that accounts for the excess within-testlet 
variation.

Applying TRT models to practical testing problems was found 
to reduce overestimation of the precision of the ability estimates 
(e.g., Wainer and Wang, 2000; Chang and Wang, 2010). It was 
demonstrated that for some ability levels, information in the 
test was overestimated by 15%, when the testlet structure was 
not taken into account. Application of these new TRT models 
also led to new questions. For example, in many large-scale 
testing programs, automated test assembly (ATA) methods 
are applied to select items from an item bank to build new test 
forms. Depending on the amount of information the items pro-
vide, they are generally selected either consecutively (e.g., Lord, 
1977) or simultaneously (e.g., van der Linden, 2005). For some 
test assembly problems, the amount of information in the test 
has to be maximized, whereas for other test assembly problems, 
the amount of information has to meet a prespecified target. van 
der Linden (2005) (Chap. 1) describes how targets might vary 
depending on the goal of testing. For making pass/fail decisions, 
the target information function (TIF) has to be peaked around 
the cutoff score, while for broad ability testing, the TIF might 
be uniform for all relevant ability values. ATA methods typically 
model the test assembly problem as a mathematical program-
ming problem that maximizes an objective function, for example, 
related to the amount of information in the test, while a number 
of constraints, for example, related to the test specifications, have 
to be met. Mathematical programming solvers like CPLEX (IBM, 
2016) or Gurobi (Gurobi Optimization, 2016) can be applied to 
solve the problems and to assemble the tests.

One of the main assumptions of ATA is that the coefficients of 
the test assembly models are fixed and known. In TRT, this might 
be a problem, because testlet effects are typically modeled as ran-
dom effects (Wainer et al., 2007), and the random testlet effects 
cause uncertainty in the information functions. The question 
arises: how can we assemble test forms when Fisher Information 
varies from person to person?

To answer this question, TRT models will be presented in more 
detail first. Existing methods for robust ATA will be described 
and evaluated theoretically in case of ATA with testlets. We will 
focus on the specific problems in ATA caused by the uncertainty 
in Fisher Information at the individual level. The implications 
and shortcomings of the existing methods will be discussed. 
After that, a method for robust ATA will be presented. It will then 
be applied in the context of a high-stakes testing program. The 
resulting test forms will be compared for various settings of the 
method. Finally, implications of this new method for automated 
assembly of tests with testlets will be discussed, and recommen-
dations will be given.

1 Conversely, for negative local dependence measurement, precision may be under-
estimated (Braeken, 2011).

testLet ResPoNse theoRY

One of the assumptions of IRT states that the observed responses 
to items are independent of each other given a test taker’s score 
on the latent ability. For items within testlets, the assumption of LI 
does not hold. Besides the latent ability, the responses also depend 
on the common stimulus. To account for this dependency a testlet 
effect can be added to a response model. For example, let the 
response behavior of a test taker be described by the 3-parameter 
logistic model (3PLM). Define,

 τ θij i j ia b= −( ),  (1)

where ai denotes the discrimination parameter of item i, bi denotes 
the difficulty parameter, and θj denotes the latent ability of person 
j. When ci denotes the guessing parameter for item i, the 3PLM 
can be formulated as follows:

 
P c ci j i i

ij

ij
( ) ( ) exp( )

exp( )
.θ

τ
τ

= + −
+
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1  

(2)

To extend the 3PLM to a 3-parameter testlet model (3PL-T), 
a random testlet effect γ σjt i t iN( ) ( )( )~ ,0 2  for person j on testlet 
t(i), where σt i( )

2  indicates the strength of the testlet effect, can be 
added to the exponent:

 τ θ γij i j i jt ia b= − +( ).( )  (3)

Several procedures for estimating testlet response models have 
been developed and applications of TRT have been studied (Glas 
et al., 2000; Wainer et al., 2007). Recently, Paap et al. (2013) proposed 
to reduce the variance of the testlet effect by adding a fixed effect to 
the model in Eq. 3, which depended on features that described the 
stimulus (e.g., word diversity, topic, or structure of the stimulus):
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(4)

where βq is the regression coefficient associated with feature q (see 
also Glas, 2012a). Paap et al. (2015) showed how regression trees 
can be used to select testlet features with predictive value for the 
testlet effect.

Testlet response theory can be used to estimate the latent 
abilities more realistically, by taking the dependency between 
the items into account. Glas et al. (2000) showed that ignoring 
the testlet effect can lead to biased item parameter estimates. 
Wang et al. (2002) illustrated that ignoring testlet effects provides 
SEs that will be potentially too small when the testlet effect is 
neglected.

Fisher Information
Fisher Information is defined as the negative inverse of the 
asymptotic variance. For the 3PL-T model, Fisher Information 
for item i at ability level θj can be formulated by the following 
equation:
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where τij is the same latent linear predictor as in Eq. 4. An inter-
esting feature of this information function is that it has some 
uncertainty in it due to the probabilistic nature of the testlet effect. 
At an individual level, the location of the information function 
varies based on the testlet effect.

Maximum Fisher Information is obtained for
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(6)

In other words, the testlet effect does have an impact on the 
ability level θj for which the maximum amount of information 
is obtained. Besides, given an ability level, it can be deducted 
that the larger the testlet effect, the larger the deviation in Fisher 
Information between TRT models that take the effect into 
account (γjt(i) ≠ 0), and IRT models that assume γjt(i) = 0. In the 
next section, a method is introduced to deal with this uncertainty 
in the test assembly process.

RoBUst AtA

In ATA, items are selected from an item bank based on their 
properties. In this selection process, 0–1 linear programming (0–1 
LP) techniques are generally applied (e.g., van der Linden, 2005). 
The first step in ATA is to formulate the test assembly problem 
as a linear programming model. These models are characterized 
by decision variable xi  ∈  {0,1} for i  =  1,  …,  I, which denotes 
whether an item i is selected for the test (xi = 1) or not (xi = 0). 
An objective function, for example, to maximize the amount of 
information in a test or to minimize the deviation from a TIF, 
is defined, and restrictions related to the test specifications are 
imposed.

Let

c be the vector of coefficients of the objective function;
A be a matrix of coefficients of the various constraints;
b be a vector of bounds;
N be the number of items in the bank;
x be a vector of decision variables;

a general model for ATA can now be formulated as follows:

 max ,c xT  (7)

subject to

 Ax b£ ,  (8)

 x N∈{ , } .0 1  (9)

For an extensive introduction to the problem of model building 
in 0–1 LP, see Williams (1999) or van der Linden (2005) (Chap. 
2–3). These optimization problems are solved either by applying 
Branch-and-Bound-based solvers that search for optimal solu-
tions (van der Linden, 2005) (Chap. 4) or by using heuristical 
approaches (e.g., Swanson and Stocking, 1993; Armstrong et al., 
1995; Luecht, 1998; Veldkamp, 2002; Verschoor, 2007).

AtA with testlets
The model in Eqs 7–9 has been formulated to select individual 
items from an item bank. However, for some testing programs, 

the item bank may consist of subsets of items, for example, when 
items belong to a testlet. To deal with the testlet structure during 
test assembly, additional constraints might have to be added to the 
test assembly model: (1) the number of testlets to be selected for 
a test is bounded by a minimum or a maximum and (2) for every 
testlet that is selected for the test, a minimum and/or maximum 
number of items has to be selected from the corresponding set.

To model these limitations, an additional set of decision 
variables zt(i)  ∈  {0,1} for t(i)  =  1,  …,  T, has to be defined that 
denotes whether testlet t(i) is selected for the test [zt(i) =  1] or 
not [zt(i) = 0]. Imposing the additional constraints on the general 
model for test assembly in Eqs 7–9 comes down to adding the 
following constraints:

 b z bZl
T

Zu£ £1 , (10)

 
n z x n z t it i l t i

i V
I t i u t i

t i

( ) ( )
∈

( ) ( )≤ ≤ ∀ ( )
( )
∑ ,

 
(11)

 z T
∈{ }0 1, .  (12)

where 1 denotes the unity vector; t(i) is an indicator for the 
testlets; z is a vector of decision variables zt(i); bZl is a lower bound 
on the number of testlets in a test; bZu is an upper bound on the 
number of testlets in a test; Vt(i) set of items belonging to testlet s; 
nt(i)l is the minimum number of items to be selected for testlet s 
once the testlet is selected; and nt(i)u is the maximum number of 
items to be selected for testlet s once the testlet is selected.

Please note that testlets can be seen as a special type of item 
sets. For an overview of how to model ATA problems with item 
sets, see van der Linden (2005) (Chap. 5).

Robust AtA with testlets
When TRT is used to model the responses, the coefficients of 
Fisher Information have uncertainty in them as illustrated in 
Eq.  5. So either the coefficients of the objective function cTx 
become uncertain, or the coefficients of some of the constraints 
Ax ≤ b are affected. Several methods for dealing with uncertainty 
in 0–1 LP models have been proposed in the literature. First of 
all, Soyster (1973) proposed to take the maximum level of uncer-
tainty into account in the 0–1 LP model. For large problems with 
uncertainty in many parameters, this method turned out to be 
very conservative. In case of ATA with testlets, it would imply 
that three times the SD of the testlet effect would be subtracted in 
Eq. 5, and the resulting value for the information function would 
be close to 0. A less conservative alternative was proposed in De 
Jong et  al. (2009), where only 1 SD was subtracted. Veldkamp 
et al. (2013) studied the De Jong et al. (2009) method more into 
detail and found that subtracting 1 SD for all items might not be 
realistic and for long tests it might be too conservative.

Soyster (1973) based methods assume all the uncertain coefficients 
parameters have maximum impact on the solution of a 0–1 LP prob-
lem, which is usually not the case in practice. Bertsimas and Sim (2003) 
observed that it hardly ever occurs that uncertainties in all coefficients 
impact the solution. They developed a method for solving 0–1 LP 
optimization problems with uncertainty in some of the parameters. 
They proved that when uncertainty in some of the coefficients affects 
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the solution, 0–1 LP problems with uncertainty in the coefficients can 
be solved as a series of 0–1 LP problems without uncertainty in the 
coefficients. Veldkamp (2013) applied their method for ATA problems.

Let

  Γ denotes the protection level, which is the number of items for 
which uncertainty impacts the solution (this number has to be 
specified by the user);

di represents the uncertainty in the coefficients of the objective 
function ci;

aik  represents the uncertainty in the coefficients aik of constraint k.

The first step in modeling ATA problems with testlets is to 
reorder the items according to their maximum amount of uncer-
tainty d1 ≥ d2 ≥ … ≥ dn, and define dn+1 = 0. Note that for every 
item belonging to the same testlet the deviations di are identical. 
Once the items have been reordered, the following sets can be 
defined. For any item m, let
Sm be the subset of items with di > dm;
Smk  be the subset of items with  a aik mk> .

Following Veldkamp (2013), a generic model for robust testlet 
assembly problems with protection level Γ can be formulated as 
follows:

 
max max ,, ,m n

T
m

i S
i m ic x d d d x

m

= … +

∈

− + −( )
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
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(18)

 h H y1 2 0, , ,≥  (19)

 z T
∈{ }0 1, ,  

(20)

 z I
∈{ }0 1, .  (21)

where h1 is an auxiliary vector; H2 is an auxiliary matrix; and y is 
a vector of auxiliary decision variables.

In this model, the original objective function maxc xT  is 
corrected for uncertainty. For each of the subsequent optimi-
zation problems m = 1, … n + 1 the correction term is equal 
to Γ times the maximum deviation of the lth item plus an 
additional correction when some of the items with a larger 
maximum deviation than item l are selected. For example, let 
the protection level Γ = 5. This implies that the uncertainty in 
at most five of the items is assumed to impact the test assembly 
problem. To solve the second optimization problem, the set 

S2  =  {1}, since only item 1 has a larger maximum deviation 
than item 2 in the reordered item bank. Therefore, the cor-
rection term for this problem is equal to (5*d2) + (d1 − d2)x1. 
To deal with uncertainties in the constraints, the same logic 
is applied. But since the items cannot be reordered for every 
constraint, the auxiliary matrix and vectors are needed in the 
model formulation.

Uncertainty due to the testlet effect either affects the objective 
function when Fisher Information is maximized, or it affects the 
constraints when Fisher Information has to meet specific bounds 
for the TIF. Since Fisher Information is a function of ability 
and not a scalar, it is generally discretized and the optimization 
problem is solved as a maximin problem over a number of ability 
values (Boekkooi-Timminga and van der Linden, 1989). Instead 
of deviations di, deviations dik have to be defined, which denote the 
deviation from the objective function for θk, where k = 1, …, K, 
and θk denote the evaluation points of the information function at 
the ability scale. Veldkamp (2013) showed how to model a robust 
maximin problem.

A different Approach for defining 
deviations dik
In both Bertsimas and Sim (2003) and Veldkamp (2013), the 
deviations are related to the maximum uncertainty for item i. For 
the problem at hand, this might be far too drastic. In ATA with 
testlets, the uncertainty is caused by normally distributed testlet 
effects γ σjt i t iN( ) ( )( )~ ,0 2 . This implies that a testlet effect might 
be equal to three times the SD. However, setting the deviation 
to its maximum uncertainty decimates the contribution of the 
items belonging to this testlet to the objective function. This is 
not realistic, since such deviations are only expected to occur for 
0.27% of the test takers.

Besides, most tests consist of a limited number of testlets. 
The analytical reasoning (AR) section of the LSAT, for example, 
consists of four stimuli. Veldkamp (2013) already suggested to 
replace the maximum uncertainty by the expected maximum 
uncertainty. For testlets, this would imply that the deviations di 
are based on the expected maximum absolute value of a number 
of draws from normally distributed testlet effects with mean 
equal to 0 and known SDs, where the number of draws equals 
the number of testlets in the test. Tippett (1925) demonstrated 
that the extreme value of a number of draws from a normal 
distribution does not have a normal distribution, and that it is far 
from straightforward to calculate them analytically. For a table of 
the maximum of a number of draws from a normal distribution, 
see, e.g., Harter (1960). For example, in case of four testlets, the 
expected maximum equals 1.027 SDs. This is much smaller than 
the maximum of 3 SDs. The impact of various settings of the 
deviations di is illustrated in Section “Numerical Examples.”

NUMeRICAL eXAMPLes

testlet Pool
The empirical item bank used in this study consists of 594 items 
nested within 100 testlets. The bank came from the AR section of 
the Law School Admission Test. AR items test the ability to reason 
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Item discrimination α 0.077 3.361 1.260 0.079
Item difficulty β −1.482 3.188 0.605 0.136
Item guessing c 0.036 0.865 0.222 0.035
Testlet effect σ t i( )

2 0.428 1.289 0.707 0.063
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within a given set of conditions. An example of an AR testlet was 
provided in the official LSAT Handbook (Law School Admission 
Council, 2010, pp. 6–8):

Each of five students – Hubert, Lori, Paul, Roberta, and 
Sharon – will visit exactly one of three cities – Montreal, 
Toronto, or Vancouver – for the month of March, 
according to the following conditions: Sharon visits a 
different city than Paul. Hubert visits the same city as 
Roberta. Lori visits Montreal or else Toronto. If Paul 
visits Vancouver, Hubert visits Vancouver with him. 
Each student visits one of the cities with at least one of 
the other four students.

Which one of the following could be true?

 (A) Hubert, Lori, and Paul visit Toronto, and Roberta and Sharon 
visit Vancouver.

 (B) Hubert, Lori, Paul, and Roberta visit Montreal, and Sharon 
visits Vancouver.

 (C) Hubert, Paul, and Roberta visit Toronto, and Lori and Sharon 
visit Montreal.

 (D) Hubert, Roberta, and Sharon visit Montreal, and Lori and 
Paul visit Vancouver.

 (E) Lori, Paul, and Sharon visit Montreal, and Hubert and Roberta 
visit Toronto.

Other items for this testlet are questions such as: which of the 
following could be false? If Sharon visits Vancouver, which one of 
the following must be true? Each of these questions comes with 
five possible answers as well. For more examples, we refer to the 
Official LSAT Handbook (Law School Admission Council, 2010).

Pretesting data were gathered in an incomplete design, where 
49,256 candidates each responded to four testlets. Bayesian esti-
mates of the parameters were made using MCMC methodology 
(Glas, 2012a). The number of respondents varied from 1,500 to 
2,500 respondents per item. Descriptive statistics on the item 
parameters are provided in Table 1.

The average SE of estimation of the parameters was quite 
reasonable given the small number of respondents per item. Glas 
(2012b) demonstrated that the TRT model had an acceptable fit. 
For the purpose of this study, the parameters were transformed 
from the 3PNO-T framework (Glas, 2012b) to a 3PL-T frame-
work, applying D = 1.702.

Various Conditions
In this study, the impact of various settings of robust test assembly 
models is compared. The resulting test had to meet the following 
specifications. First of all, a TIF was defined. For five θ-values, 
both a lower and an upper bound for Fisher Information in the 

test were imposed. The TIF was formulated based on the average 
amount of information provided by the items in the bank.

Furthermore, several test specifications were imposed. For 
the items in the bank, several item types were distinguished. 
The number of testlets per item type was fixed. Besides, the 
number of testlets per test was set equal to four, and the number 
of items per test was set equal to 24. Because of this, the total 
number of constraints was equal to 16. For the test assembly 
model, this implied that uncertainties just played a role in the 
constraints related to the TIF. For these constraints, dik represents 
the uncertainty in Fisher Information for item i at ability level 
θk ∈ {−0.5,0,0.5,1,1.5}. Due to the effects of uncertainty on Fisher 
Information, it might be possible that either the lower bounds 
imposed by the TIF, the upper bounds, or both, can no longer be 
met. The test assembly model might become infeasible. Following 
Huitzing et  al. (2005) and Veldkamp (1999), we forced a solu-
tion in these cases by minimizing the sum of violations of these 
bounds. The violations were defined as the absolute difference 
between Fisher Information and its bound.

Several conditions were compared. In condition 1 no uncer-
tainty due to testlet effects was taken into account. This condition 
was used as a bench mark. In condition 2, the Veldkamp (2013) 
model with deviations dik equal to their maximum values was 
applied. We compared four different settings, where uncertainty 
due to the testlet effect in one, two, three, or all four testlets was 
assumed to have an impact on Fisher Information of the test. In 
the original Bertsimas and Sim (2003) and in the Veldkamp (2013) 
model, the maximum number of items for which uncertainty was 
assumed to have an impact on the objective function, that is, on 
the test information function, had to be specified at item level. 
But due to the nested nature of items within testlets, and since 
the uncertainty was caused by a parameter at testlet level, is was 
decided to assume impact of uncertainty at testlet level as well. 
As a consequence, Γ was only allowed to take values equal to the 
total number of items in the affected testlets, and the deviations 
for the items belonging to the same testlet were identical. In 
condition 3, the modified version of the Veldkamp (2013) model 
was implemented, where the expected maximum deviation was used 
to calculate the deviations dik. The same settings as in the second 
condition were applied and compared. Impact of uncertainty on 
one, two, three, or all four testlets was studied.

The resulting tests were compared based on the sums of viola-
tions of the upper and lower bounds of the TIF over the five ability 
values θk. In this study, software packages Microsoft Excel and 
Cran R were used. The simulations were run in R (R Development 
Core Team, 2012) version 2.13.

ResULts

In the test assembly process, both a lower and an upper bound 
for the TIF had to be met. The information functions of the test 
assembled without taking uncertainties due to testlet effects into 
account (condition 1) are shown in Figure 1. The gray lines in 
Figure 1 represent the TIF and both bounds. It has to be mentioned 
that any test that met the specifications would have been accept-
able as a solution to the first test assembly model. The current 
solution was randomly drawn from the set of feasible solutions, 
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by the test assembly algorithm. The information function is close 
to the TIF, and none of the bounds is violated. Since the target was 
defined based on the average amount of information provided by 
the items in the bank, neither the very informative testlets nor the 
uninformative testlets were selected for this test. The testlet effects 
for this solution varied from σS = 0.469 to σ33 = 0.995.

In condition 2, the Veldkamp (2013) model was applied, where 
uncertainty due to testlet effects was assumed to affect the solu-
tion for at most one, two, three, or four testlets, respectively. These 
settings are denoted by At ∈ {1,2,3,4} in Figure 2. For the problem 
denoted by At = 1, uncertainty played a role in one testlet. In the 
optimization model (Eqs 13–21), Γ was set equal to the number 
of items in the testlet; for all items in this testlet, the deviations 
dik for θk ∈ {−0.5,0,0.5,1,1.5} were calculated by setting the testlet 
effect equal to γjt(i) = 3*σt(i) in Eq. 5, and calculating the difference 
with γjt(i) = 0. For the problem denoted by At = 2, Γ was set equal 
to the sum of the number of items in both the affected testlets, 

and so on. Taking the uncertainty into account resulted in a 
decreasing contribution of the affected testlets to the objective 
function. Defining αik based on maximum deviations resulted 
in an average loss of information by 85%. For some items, the 
information was reduced by 66%, but especially for those testlets 
that were informative at a specific range of the ability scale, the 
amount of information was reduced by almost 95%.

For At = 1, the consequence was that one testlet only contrib-
uted at most 33% of its information to the objective function. 
The test assembly algorithm could compensate this, by selecting 
more informative testlets or testlets with smaller testlet effects. 
In comparison with the solution of condition 1, one alternative 
testlet was selected, and the maximum testlet effect reduced to 
σ92 = 0.789.

When the number of testlets for which uncertainty was 
assumed to play a role increased, larger violations and more viola-
tions of the lower bound for the TIF occurred. For At = 2, only one 
(larger) violation occurred. For At = 3 and At = 4, the lower bound 
was violated for all five evaluations points θk. In comparison with 
the solutions in conditions 1 and 2, different testlets were selected, 
and the maximum testlet effect of the selected testlets reduced to 
σ74 = 0.518.

In the third condition, the deviations dik  were defined based on 
the maximum expected effect of four draws from a standard nor-
mal distribution. This resulted in an average loss of information 
of 64%. For some items, the information was reduced by 30%, 
and for those testlets that were informative at a specific range 
of the ability scale, the amount of information was still reduced 
by almost 85%. The information functions of the resulting tests 
for At ∈  {1,2,3,4} are shown in Figure 3. By selecting different 
testlets that were more informative and had smaller testlet effects, 
a feasible test was assembled in case of At = 1. For At = 2, only one 
violation occurred. For At = 2, four violations occurred. Finally, 
for At = 4, the lower bound was violated for all five evaluation 
points. The same testlets were selected for At ∈  {2,3,4} in con-
ditions 2 and 3. The reason is that even though the size of the 
deviations dik differed, the relative order of the testlets did not.

http://www.frontiersin.org/Education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive


7

Veldkamp and Paap Robust ATA for Testlet-Based Tests

Frontiers in Education | www.frontiersin.org December 2017 | Volume 2 | Article 63

dIsCUssIoN

Taking the testlet effect into account when estimating the abil-
ity level prevents that measurement precision is overestimated, 
which implies that too much confidence is given to estimated 
ability levels (e.g., Wainer et al., 2007). In other words, small 
measurement errors might be a statistical artifact when testlet 
effects are neglected. In this article, it was illustrated how the 
presence of testlet effects in IRT models introduces uncertainty 
in Fisher item information at the individual level and affects 
ATA. Testlet effects can be seen as an interaction effect between 
a person and a stimulus, modeling that one test taker perceives 
the items within one testlet as more difficult or less difficult in 
comparison with other test takers, depending on characteristics 
of the stimulus. The testlet parameter, γjt(i), is normally distrib-
uted around 0; but for individual persons within a population, it 
might have an effect, and the amount of Fisher information can 
decrease as a consequence. In this article, a model was presented 
to take this uncertainty into account during test assembly.

The Veldkamp (2013) model for robust test assembly was 
applied. The results showed that straightforward implementa-
tion of this model turned out to be very conservative. Using the 
expected maximum uncertainty as an alternative measure for 
deviations was more realistic. Tippett (1925) already showed that 
the expected maximum draw is much smaller than the maximum 
possible draw. Results illustrate how uncertainty can be taken into 
account without being over conservative. Especially, in the case 
where maximum uncertainty in only one testlet is assumed to 
influence the amount of information in the test, the modified 
approach resulted in a test that met the requirements.

The method proposed in this article does depend on choices 
made during specification of the test assembly model. Choices 
can be made with respect to definition of the deviations di,j. 
Besides, a reasonable value has to be chosen for Γ, the number 
of items for which uncertainty is assumed to play a role. In this 
article, several values were chosen to illustrate the impact of both 
kinds of parameters on the resulting tests. A balance has to be 
found between obtaining a feasible solution and objective value 
correction, where large values for Γ prevent overestimation of 
the precision of the ability estimate but might result in infeasible 
ATA problems. Bertsimas and Sim (2003) call this the price of 
robustness. For testlet assembly problems where uncertainty is 
related to a normally distributed testlet effect, the most reason-
able value for Γ depends on the number of testlets in the test. For 
the numerical example at hand, it seems reasonable to assume an 
effect for uncertainty in only one or two of the testlets, since the 
probability of three or four draws of at least di,j from a standard 
normal distribution, given the total number of four draws, is very 
small.

It could be argued that the method proposed in the article 
solves the problem of dealing with uncertainty in the testlet 
effects by making all kinds of assumptions about the impact of 
the uncertainty to manage it and to present a solution that is 
reasonably close to the TIF. Would not it be better to address the 
issue, to illustrate the consequences, and to advise users to collect 
more data to reduce uncertainty in the estimates of the testlet 

effects? The suggestion to collect more data, assuming that this 
is an option, should always be considered. Although it should 
be mentioned that budgets and capacity for pretesting the items 
are often limited. In this article, we attempt to illustrate and to 
substantiate that subjective choices have to be made in the set-
ting of the algorithms for solving optimization problems with 
uncertainty in the parameters. Straightforward implementation 
of the most conservative settings does not always lead to feasible 
solutions. Especially in the case of automated assembly of tests 
with testlets, it is our opinion that straightforward implementa-
tion of conservative settings of the algorithms does not provide 
useful results. Many operational tests, like the AR section of the 
LSAT, consist of a limited number of testlets. Without correction, 
the resulting test assembly problems will probably be infeasible, 
which means that the set specifications that have been formulated 
for a test cannot be met. Infeasibility would imply that testing 
organizations cannot deliver. Therefore, most organizations 
implement the approach of condition 1, where uncertainty in 
the testlet parameters is neglected in ATA. In this article, it is 
illustrated that this approach might result in an overestimation 
of the precision of the ability estimates. The modified robust 
test assembly approach is proposed as an alternative they might 
consider. Moreover, it should be remarked that after the formal 
administration of the test to a large group of test takers, both 
item and testlet parameters can be reestimated and it can be 
tested whether the assumptions made during test assembly were 
legitimate.

In previous papers about robust test assembly (De Jong et al., 
2009; Veldkamp, 2013; Veldkamp et al., 2013), uncertainty in test 
assembly was always related to uncertainty in the item parameter 
estimates. In this article, uncertainty was related to the violation 
of the assumption of LI, and the presence of testlet effects in 
TRT models. Even though different kinds of uncertainty were 
modeled, the same methods for robust ATA were applicable. One 
could even decide to take the uncertainty in both the item and 
the testlet parameters into account in ATA, and to model both 
kinds of uncertainty. The result would be that more uncertainty 
would be present in the ATA models, and, as a consequence, the 
resulting tests would be assembled based on a more conservative 
estimate of the measurement precision. The precise implementa-
tion, however, is a topic of further research. Another limitation of 
the study is that we only varied the number of testlets for which 
uncertainty plays a role. Besides, all results are based on a single 
item pool. The AR item pool is well balanced and consists of 100 
testlets. Many operational item pools are, for example, much 
smaller. Because of this, our results can only be generalized to 
a certain level. In small item pools, for example, the differences 
between methods will be smaller, since more often the same set 
of testlets will be selected by the various methods.

Overall, it can be concluded that robust test assembly can be 
applied to prevent overestimation of the information in the test 
due to testlet effects. It results in a lower bound for the true infor-
mation for all candidates in the final test. In this way, robust ATA 
provides test developers with the tools to handle testlet effects 
during test assembly, and it gives a greater level of certainty as to 
the true quality of the resulting test.
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