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In educational research, the amount of learning opportunities that students receive

may be conceptualized as either an attribute of the context or climate in which that

student attends school, or as an individual difference in perception of opportunity among

students, driven by individual factors. This investigation aimed to inform theory-building

around student learning opportunities by systematically comparing 11 theoretically

plausible latent and doubly latent measurement models that differed as to the locus

(i.e., student- or school-level) and dimensional structure of these learning opportunities.

A large (N = 963) and diverse sample of high school students, attending 15 different

high schools, was analyzed. Results suggested that student learning opportunities

are best conceptualized as distinct but positively correlated factors, and that these

doubly latent factors occurred at the student level, although with a statistical correction

for school-based clustering. In this way, student learning opportunities may be best

described as individual perceptions, rather than an indicator of school climate or context.

In general, these results are expected to inform current conceptualizations of student

learning opportunities within schools, and function as an example of the substantive

inferences that can be garnered from multi-level measurement modeling.

Keywords: high school students, classroom climate, multi-level measurement models, perceptions of learning,

creative thinking

Students attend school, in large part, in order to receive opportunities to learn. This fundamental
premise undergirds much of modern educational thought (e.g., Dewey, 1902/2010; Cromley
et al., 2016; Alexander, 2017). Presumably, however, some schools or teachers offer more or less
opportunity for learning to their students, and certain students, for a variety of reasons, have greater
or less ability to seek out and benefit from those opportunities (Dinsmore et al., 2014; Wilhelm
et al., 2017). Given this generally complex conceptualization of student learning opportunities, is
this construct better hypothesized as a context- or climate-driven attribute of schools, or is it more
appropriately conceived of as an individual difference among students? In other words, are learning
opportunities something that wholly occur within a school climate such that students within
those schools receive relatively interchangeable learning opportunities, or are student learning
opportunities heterogeneous at the individual level in a way that should define the construct as
occurring within students, and not schools? In this article, this conceptual question is empirically
investigated through the systematic comparison of “doubly latent” (Marsh et al., 2012; Morin et al.,
2014) measurement models that posit differing dimensional structures and school- or student-level
specifications of student learning opportunities.
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Dumas Learning Opportunities

THE LOCUS OF LEARNING
OPPORTUNITIES

It is often overlooked within the educational psychology
literature that conceptualizing a construct as occurring at the
individual student or school level is predicated upon a number
of theoretical decisions concerning the nature of the constructs
being analyzed (Stapleton et al., 2016b). For instance, in
educational psychology it is typical to engage in theory-building
investigations in which the latent structure of a given construct is
examined (e.g., Finch et al., 2016), and rich discussions about the
dimensionality of various cognitive (e.g., Dumas and Alexander,
2016) and motivational (Muenks et al., 2018) constructs are
ongoing in the field. However, it is not yet typical to conduct
analogous inquiries into the locus, or level specification (e.g.,
student or school level), of any given construct (Morin et al.,
2014).

Currently in the field, measured constructs, such as those
quantified through item-response or factor analytic models,
are typically assumed to exist at the individual student level,
and investigations that formerly posit classroom- or school-
level measurement models are comparatively rare, and those
that do exist are very recent (e.g., Oliveri et al., 2017). In
contrast, researchers interested in explaining student outcomes
through the analysis of data collected across multiple schools or
classrooms tend to assume that the outcomes they are predicting
have a multi-level structure and therefore the construct of
interest exists separately at the individual and aggregate level
(Coelho and Sousa, 2017). However, recent methodological work
with educational data (e.g., Morin et al., 2014; Stapleton et al.,
2016a) has shown that both of these typical frameworks in
educational research rest on tenuous assumptions about the locus
of the construct of interest. Specifically, whether a particular
construct occurs, for example, at the individual student level,
at the school level, or both, is an empirical question that
should be answered before further theorizing or analysis. For
example, it may be that, within educational research, multi-
level modeling is currently “unnecessarily ubiquitous” (McNeish
et al., 2017) because many of the constructs being modeling
principally occur at the student-level. In contrast, because the
multi-level loci of latent constructs are rarely considered as part
of theory building in the field, it may be that the contextual
and climatic aspects of learning environments are also being
systematically overlooked in the field (Lüdtke et al., 2009).
This investigation seeks to address both of these simultaneous
issues by incorporating multi-level measurement modeling into
a theory-building enterprise, therefore potentially identifying
the most meaningful conceptualization of student learning
opportunities.

Understanding the learning opportunities in which students
participate in school lies close to the heart of educational research
(e.g., Dewey, 1902/2010), however, the level (e.g., individual
student or school level) at which those opportunities actually
occur has never been systematically investigated. Although
such a gap is currently not uncommon among social-science
research, areas, it may be particularly problematic for educational
psychology because it means that it is not currently known, for

example, whether the learning experiences of students within
schools are heterogeneous such that learning opportunities
should only be measured or described at the individual, and not
aggregate, level. Conversely, it may also be that school-level
efforts to engage students in learning opportunities create student
learning opportunities that are an attribute of the school, not
of individual students. Still, learning opportunities may be
meaningfully conceptualized at both the individual student and
school levels, but the meaning of the construct across those
levels may differ in important ways. In this way, the actual
locus of the construct of student learning opportunities is an
open theoretical and empirical question. Here, three loci at
which student learning opportunities may theoretically occur are
posited: (a) the individual student (b) the level of school context,
and (c) the level of school climate. Each of these possible loci are
now further discussed.

Student Level Construct
Following in-step with typical latent variable research (e.g.,
Dumas and Alexander, 2016), student learning opportunities
may be conceptualized as occurring at the individual student
level, and not at any aggregated level above that. This
conceptualization rests on a belief (or an empirical observation)
that student heterogeneity within schools is too great to
validly aggregate student-level opportunities to the school level
(Stapleton et al., 2016a). There are a number of literature-
based reasons why student learning opportunities may be
conceptualized at the student level. For example, learning
opportunities may be principally driven by psychological
individual differences among students such as motivation
(Muenks et al., 2018), cognitive functioning (Fiorello et al., 2008),
or mindset (Lin-Siegler et al., 2016). Additionally, heterogeneity
in student prior knowledge, parental involvement, or other
individual differences could create a situation in which student
learning opportunities can only be understood at the individual,
rather than aggregate level.

Moreover, if student learning opportunities are
conceptualized as wholly occurring at the student level,
multi-level modeling of the effects of such opportunities at
the school level, or even simply averaging measured quantities
associated with the construct within a school, may be invalid
(Marsh et al., 2012). Explanations of what outside variables (e.g.,
student motivation) effect learning opportunities would also
need to be forwarded at the individual student, and not aggregate,
level. Currently, for those researchers engaged in structural-
equation-modeling of student psychological attributes, such a
theoretical landscape is familiar, because these theory-building
investigations typically, although not always, take place at the
student level (e.g., Ardasheva, 2016).

It should also be noted that a theoretical conceptualization of
learning opportunities as an individual student level construct
does not preclude the use of some methodological adjustments
(e.g., linearization; Binder and Roberts, 2003) that are designed to
correct for sampling error brought on by a cluster-based research
design. Currently, measurement models that simultaneously
account for measurement error through the use of multiple
observed indicators to estimate latent variables, as well as
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account for sampling error through the use of either statistical
adjustments or amulti-level design are referred to as doubly latent
(e.g., Marsh et al., 2012; Morin et al., 2014; Mahler et al., 2017).
This terminology reflects the fact that these models account for
two major sources of error in construct estimation: measurement
and sampling error. In this way, student learning opportunities
may be modeled in a doubly latent way at either the student
(using a linearization correction) or school (using a two-level
model) level.

School Contextual Construct
If student learning opportunities were conceptualized as a school
contextual construct, this would indicate that the construct exists
at both the individual student and school level, and that the
school-level construct represents the aggregation (e.g., average)
of individual level measurements (Stapleton et al., 2016b).
Existing literature suggests that such a conceptualization may
be meaningful, in that many student level individual differences
drive variance in learning opportunities, but students within
schools tend to be homogenous enough on those individual
differences that the learning opportunities students experience
within any one school can be validly aggregated (e.g., Mahler
et al., 2017). Within current research practice (e.g., Muthén and
Satorra, 1995; Zhonghua and Lee, 2017), this pattern of variance
within- and between-schools typically results in an intraclass
correlation coefficient [ICC(1)] above 0.05, implying that the use
of multi-level models may be warranted.

In addition, methodological researchers sometimes refer
to such a construct as configural because this theoretical
conceptualization implies that the measurement properties (e.g.,
loadings) associated with the construct at the school level are
equivalent to those at the student level (Stapleton et al., 2016a). In
this way, the school contextual construct has the same theoretical
meaning as the student level construct, except that it is capable of
beingmeasured at the school-level as well. Therefore, aggregation
procedures such as multi-level models or simply averaging
quantities across students within the same school are valid for
contextual constructs.

School Climate Construct
In contrast to school contextual constructs, which have the same
meaning as student level constructs but represent an aggregation,
school climate constructs have a distinctly different theoretical
meaning at the school level than at the student level (Marsh
et al., 2012). For example, some existing literature suggests that
student learning opportunities may be best conceptualized as a
climate construct, because schools may make concerted efforts
to provide particular learning opportunities to all students, and
those opportunities therefore exist within the school climate and
not at the individual level (McGiboney, 2016).

Indeed, for a climate construct, individual students within the
same school should be entirely interchangeable in terms of their
learning opportunities, because they attend school within the
same learning climate (Cronbach, 1976). Such a belief may seem
intuitively unlikely to be true; however, it is a commonly held
belief in educational research. For example, research endeavors
that attempt to quantify effects on student performance or beliefs

that are wholly attributable to teachers or schools (e.g., Fan et al.,
2011) either implicitly or explicitly posit climate constructs at
the aggregated level. Methodologically, climate constructs are
often referred to as shared constructs, because they represent an
aspect of experience that is shared equally by individuals within
that climate (i.e., individuals are interchangeable), and require
that the measurement parameters of the shared construct be
freely estimated at the school level, and not be equivalent to
those at the student level (Stapleton et al., 2016b). A climate
construct is differentiated from a contextual construct such that
a climate construct is defined as a separate attribute than what is
being modeled at the student-level: an attribute that is shared,
or experienced equally, among members of a particular group
(e.g., school), and not a more general second-level aggregation
of a student-level attribute (i.e., a contextual construct). In
a theoretical way, contextual, and climate constructs may be
distinguished in that a contextual construct is an aggregate of the
student-level attributes, while a climate construct is an attribute
of the environment (e.g., school) itself. Given this different
definition, it may be hypothesized that the existence of a salient
climate construct would result in a higher intraclass correlation
coefficient (ICC) than would a contextual construct [e.g., ICC(1)
>0.25 for a large effect; Schneider et al., 2013]. However, given
the relative novelty of such investigations in the literature, it may
not be possible at this point to forward a particular value of ICC
that differentiates a contextual from a climate construct: instead
the two conceptualizations must be distinguished by a more
nuanced examination of measurement parameters (i.e., loadings)
at second-level of a latent measurement model.

It is critical to note here that none of these different loci of
student learning opportunities—student level, school context, or
school climate—specifically formulate the construct of learning
opportunities as either stable or variable across time. Although
the loci of the constructs tested here (e.g., context vs. climate)
hold critical implications for understanding student learning
opportunities, it is not possible based on a comparison of
these theoretical models to determine how stable learning
opportunities may be (or students may perceive them to be)
across years, semesters, or even smaller time increments such
as weeks or days. In this way, the analysis presented within
this investigation is capable of informing an understanding of
student learning opportunities at a single measurement time-
point, but is not capable of supporting inferences about how
those opportunities change over time. For such inferences to
be supported, data would need to be collected with alternative
methodologies such as experience sampling (Zirkel et al., 2015),
and modeling paradigms that are capable of handling multi-
level and longitudinal data [e.g., dynamicmeasurementmodeling
(DMM); Dumas and McNeish, 2017] would need to be applied.

With these three possible loci of student learning
opportunities described, it is also necessary to specifically
delineate the areas of learning in which student opportunities are
of interest within this study. Although the actual latent structure
of student learning opportunities is considered an empirical
question in this examination, the following section specifically
describes the conceptual specification of the construct utilized
here.
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SPECIFYING THE CONSTRUCT OF
STUDENT PERCEIVED LEARNING
OPPORTUNITIES

In specifying the general construct of perceived opportunities for
learning, nine general areas in which student opportunities for
learning typically occur were identified: a) relational thinking,
(b) creative thinking, (c) communication, (d) collaboration,
(e) learning to learn, (f) teacher feedback, (g) meaningful
assessments, (h) interdisciplinary learning, and (i) real-world
connections. This list is not intended to be an entirely exhaustive
sampling of every learning opportunity students receive in
school. Instead, it is intended to provide a reasonable sampling of
the learning opportunities that high school students may perceive
themselves to be receiving in school. Each of these general areas
are now reviewed in more detail.

Relational Thinking
Student opportunities to engage in cognitive activities in which
they analyze ideas by examining their component parts, relate or
combine multiple ideas, or solve novel problems with existing
skills, were here deemed to be learning opportunities. Such
cognitive activities are termed here opportunities for relational
thinking, because they are designed to allow for the development
of relational ability in students. Indeed, a rich understanding
of the development and relevance of relational thinking already
exists within the educational and psychological literature (e.g.,
Dumas et al., 2013, 2014), with the proximal link between
such relational skills and higher-order thinking skills being well-
established (Goswami and Brown, 1990; Richland and Simms,
2015).

Creative Thinking
In-class opportunities for students to pose original solutions
to existing problems, create new ideas, or generally use their
imagination—opportunities for creative thinking—have been
linked to the development of future creativity and divergent
thinking ability (Sternberg, 2015; Gajda et al., 2017). Indeed, links
between student creative thinking and success in a number of
complex cognitive tasks have been described in the literature
(e.g., Clapham et al., 2005; Dumas et al., 2016). Therefore,
the degree to which students have the opportunity to engage
in creative thinking in school was considered an indicator of
learning opportunities in this study.

Communication
Opportunities for communication require students to interact
with one another to give presentations, share opinions, or discuss
ideas (Farrell, 2009). Moreover, asynchronous interaction among
students through expository or persuasive writing may also be
considered an opportunity for communication (Drew et al.,
2017). Because communicative abilities are widely regarded as
critical for future school and career success across a number of
domains of learning (e.g., Beaufort, 2009; Roscoe andMcNamara,
2013), opportunities to practice and develop such abilities were
included here.

Collaboration
Differentiated from communication, in which students share
or discuss ideas, collaboration refers to activities in which
multiple students share responsibility for the quality of the work
produced, or work together to achieve a goal (Pegrum et al.,
2015). The contributions of opportunities for collaboration to
student learning, as evidenced by existing literature, are two-
fold. First, collaborative opportunities such as working with other
students on an experiment or assignment have been shown to
aid students in developing specific skills related to collaboration
and the coordinating of activities among individuals (e.g., turn-
taking, division of labor; Cortez et al., 2009; Wilder, 2015).
Second, collaboration among students, including the reviewing
and discussing of shared work, has also been shown to improve
individual students’ conceptual understanding of knowledge
being learned within the class domain (e.g., science; Murphy
et al., 2017).

Learning How to Learn
While the four of student perceived learning opportunities
already identified tend to be predicated on students’ use
of cognitive strategies, opportunities to engage in scaffolded
metacognitive thinking—as when a teacher asks a student to
reflect on their thinking processes—are also linked to learning
outcomes in the literature (Peters and Kitsantas, 2010; Pilegard
andMayer, 2015). Here, suchmetacognitive activities are referred
to as indicators of student opportunities to learn how to learn.

Receiving Feedback
Although it is likely that some kind of teacher contribution
would be involved in each of the other components of
learning opportunities so-far specified, evidence also suggests
that teachers who give more specific feedback across learning
contexts may better support the development of higher-order
thinking in students, and therefore better facilitate learning
(Burnett, 2003; Van den Bergh et al., 2014). So, it may be prudent
to include the specificity of teacher feedback about student work,
the regularity with which students receive feedback, and students’
chances to revise their work in response to that feedback,
generally termed opportunity to receive feedback as an aspect of
the student perceived learning opportunity construct. Moreover,
peer (e.g., Patchan et al., 2016) or parental (e.g., Vandermaas-
Peeler et al., 2016) feedback on student work has also been shown
to support learning, and therefore was deemed relevant here.

Assessments
In contrast to the components of perceived learning opportunity
already identified, which tend to occur during instructional
time, student opportunities for meaningful assessment, occur
while a student is being assessed. Importantly, evidence suggests
that assessments that prioritize rote memorization of class
material may discourage higher-order thinking among students
(Geisinger, 2016), but regular assessments that require students
to explain their thinking, evaluate sources of information, or
even build a portfolio of different types of work, may do more
to encourage learning (Schraw and Robinson, 2011; Greiff and
Kyllonen, 2016).
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Interdisciplinary Learning
Also implicated as an opportunity for learning is the degree
to which teachers combine ideas or concepts from different
domains or disciplines into their teaching and assignments
(Robles-Rivas, 2015). For example, instances where science and
mathematics, or literature and history, are explicitly taught
together indicate student opportunities for interdisciplinary
learning. Further, instances where students are prompted to use
knowledge previously learned in one domain (e.g., algebra) to
solve problems in another (e.g., chemistry), are also considered
instances of interdisciplinary learning (Zimmerman et al., 2011).

Real-World Connections
One historical critique of educational practice is that it tends to
be divorced from the out-of-school contexts in which students
are expected to later apply their knowledge gained in school
(e.g., Dewey, 1902/2010). Indeed, in the research literature,
much has been written about the authenticity of school-work
(Swaffield, 2011; Ashford-Rowe et al., 2014), with a growing
body of empirical research demonstrating that utilizing real-
world examples, encouraging students to draw information from
sources outside of school, and allowing students to pursue topics
that interest them and that relate to their outside-of-school life,
all positively influence student learning outcomes (e.g., Hazari
et al., 2010; Yadav et al., 2014). Therefore, student opportunities
for real-world connections is here considered to be a component
of student learning opportunities.

DIMENSIONALITY OF STUDENT
PERCEIVED LEARNING OPPORTUNITIES

Although current literature supports the inclusion of each of the
previously reviewed areas of student learning opportunities, it
does little to suggest the actual underling latent structure of these
components, especially in high school students. For example,
each of the reviewed areas of student learning all generally pertain
to learning opportunities, and therefore they may represent
a single underlying latent dimension. Indeed, previous theory
suggests that younger students, such as those in a k-12 setting,
are more likely than higher education students to indicate latent
constructs that are undifferentiated, or unidimensional (Lonigan
and Burgess, 2017). In contrast, students may indicate that
each of the areas of learning opportunity represent a separate
factor of a multidimensional learning opportunity construct.
Such a result may seem reasonable, given that the various areas
of learning opportunity included here may be perceived as
occurring separately in schools. However, if each of the areas of
student learning opportunity represents a distinct latent factor,
the further question remains: are those dimensions unrelated,
or correlated at some particular strength? If the underlying
latent factors of student learning opportunity are related, than
the strength of those latent correlations (or doubly latent
correlations if sampling error is taken into account) may offer
clues as to the co-occurance of the various learning opportunities
within schools. Further, a combination of these dimensional
specifications, in which a single general learning opportunity

dimension is present in the data as well as specific dimensions
pertaining to each learning opportunity area, is also a possibility.
Such a latent structure would allow for the inference that the areas
of opportunity co-occur enough so as to form a single perception
of learning, but also retain an individualized aspect such that
students perceive the areas to be specifically differentiated in
important ways.

GOALS OF THE CURRENT STUDY

Given the existing gaps in the field’s understanding of student
perceived learning opportunities already reviewed here, this
investigation aimed to address a number of specific empirical
research questions regarding the conceptualization of the
construct. Specifically, the following research questions are
posited:

1. At the observed variable level, can student perceived learning
opportunities be quantified reliably?

2. At the observed variable level, how much variance in student
perceived learning opportunities is accounted for at the school,
rather than individual student, level?

3. What is the appropriate latent dimensionality of student
perceived learning opportunities?

4. What is the appropriate doubly latent locus, or level
specification, of student perceived learning opportunities?

5. Using a doubly latent measurement model, can student
perceived learning opportunities be quantified in a reliable and
valid way?

METHOD

Participants
Participants were 963 11th and 12th grade students attending
fifteen public high schools in Southern California. Please
see Table 1 for a full demographic breakdown of the
sample, aggregated across schools. In overview, the overall
sample featured a slight majority of females (54.52%), and
Hispanic/Latino(a) students (52.87%). Participants were highly
diverse in terms of the educational attainment of their parents
(see Table 1 for details). In addition, 62.80% of this sample
qualified for free/reduced price lunch, and 21.29% were classified
as English Language Learners (ELLs). The response rate for
this study was 76.00%, indicating that a heavy majority of
eligible students returned parental consent forms and chose
to participate on the day of data collection. Also appearing
in Table 1 are the intraclass correlations coefficients (ICCs)
corresponding to each demographic variable. This statistic
describes the portion of total variance in the demographic
variable that is occurring at the school, rather than individual
student level, and is analogous to an R-square value but typically
slightly lower (Bartko, 1976). As can be seen, nearly all of
these demographic variables featured relatively weak ICCs,
indicating the schools sampled in this study were not overly
homogenous within-school in terms of student demographics.
One possibly unsurprising exception is parental education level,
which displayed an ICC of moderate strength (ICC = 0.31),
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TABLE 1 | Demographics of sample aggregated across schools.

Variable Group N Percentage

of sample

Intra-class

correlation

Sex Male 438 45.48 0.01

Female 525 54.52

Ethnicity White 228 23.69 0.06

African American/Black 109 11.33

Hispanic/Latino(a) 509 52.87

Asian/Pacific Islander 82 8.53

Other 34 3.54

Prefer not to respond 1 0.01

English Language

Learner (ELL)

status

Not ELL 758 78.71 0.08

[-15pt] ELL 205 21.29

Individualized

Education Plan

(IEP)

Yes 62 6.44 <0.01

[-15pt] No 901 93.56

Education level of

most educated

parent

Less than High School 192 19.93 0.31

[-15pt] High School 180 18.66

Some College 160 16.60

Completed College 201 20.94

Prefer not to

respond/unknown

230 23.87

Total – 963 100.00

indicating that, of the demographic variables collected here,
parental education level was the most unevenly distributed
among the schools.

Measure
In order to address the research questions present in this
investigation, a measure of student perceived learning
opportunities was created for this study. Importantly, if an
item existed on an established and publically usable measure of
student learning opportunities that the research-team was aware
of that suited the purposes of this study, then that item was used
to inform the development of this measure. Existing measures
from which items were adapted were the National Survey of
Student Engagement (NSSE; Tendhar et al., 2013), Measures of
Effective Teaching (MET; Kane et al., 2013), and the Consortium
on Chicago School Research’s Survey of Chicago Public Schools
(Chicago Consortium on School Research, 2015). After an
initial pool of items was created or identified, a preliminary
content validation pilot study was utilized to further inform the
development of items and scales.

Content Validation and Preliminary Pilot
With a corpus of possible items adapted or composed by the
research team, a small content validation pilot study was pursued
in order to preliminarily ascertain the suitability of the items.
It should be noted that this pilot study is not the main focus
of this article, but it is briefly described here as it pertains to
the development of the measure. In this preliminary pilot study,
a small number (N = 60) of high school students attending
public school in Southern California completed the set of initially

TABLE 2 | Mean, standard deviation, internal consistency, and intraclass

correlation of measure scales.

Scale N of

Items

Possible

points

Mean SD Cronbach’s

alpha

Intra-class

correlation

Learning opportunity 62 248 174.17 35.45 0.97 0.17

Relational thinking 4 16 11.92 2.93 0.78 0.07

Creative thinking 5 20 13.94 3.97 0.88 0.08

Comm. 12 48 32.58 8.16 0.90 0.21

Collab. 9 36 26.75 5.69 0.93 0.20

Learn to learn 4 16 12.76 2.61 0.78 0.08

Feedback 6 24 17.17 4.2 0.84 0.13

Assess 9 36 25.29 5.95 0.86 0.14

Interdisc. learning 4 16 9.31 3.05 0.82 0.05

Real-world connect. 9 36 24.43 6.21 0.84 0.07

All items on the measure have 4 response categories coded 1 through 4. No items are

reverse-coded.

conceived items. Those students who participated in the pilot
study were given the opportunity to voice concerns about the
content, wording, and directions for the items. After pilot data
were collected, initial checks of classical difficulty and reliability
statistics were utilized with these pilot data in order to identify
items that were clearly not functioning well. The main useful
aspect of this preliminary pilot study was in the dropping, adding,
or rewording of items in order to maximize the content validity
(based on student feedback) of the measure.

After these edits to items were completed, this measure
contained a total of 62 polytomously scored Likert-type items
organized into 9 scales, each designed to tap self-reported
student perceived opportunities for a different dimension of
learning. Each of the polytomously scored items featured four
response categories. The scales of the measure were as follows:
Student opportunities for (a) relational thinking, (b) creative
thinking, (c) communication, (d) collaboration, (e) learning
to learn, (f) teacher feedback, (g) meaningful assessment,
(h) interdisciplinary learning, and (i) real-world connections.
Numbers of items on each individual scale ranged from 4 to
12 (median = 6). Please see Table 2 for specific numbers of
items within each scale. It should be noted that, regardless
of the psychometric properties that a given item displayed on
previous scales, in other published work, or in the this pilot
study, in order to ensure that every item functioned well in
this particular context, with this target population, and among
the other items on the scale, the functioning of all of the items
included on the measure were here investigated afresh within
the full sample, and those findings are presented as a first phase
within the Results section of this paper. Moreover, the fully
developed measure, with complete citation information as to the
sources of individual items, is included with this article as an
Supplementary Materials.

Exemplar Items
In most of the developed scales, students were directed to “Think
about your English, Math, Science, and Social Studies classes this
school year. For how many of these classes is each statement
true” Response categories then represented the number of classes:
none, one, two, three or more. In other cases (i.e., the feedback
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and assessment scales) students were specifically directed to
think of their teachers in each given class, and the Likert
response categories then represented numbers of teachers for
which students judged the statement to be true. In yet other cases
(i.e., interdisciplinary learning), students were directed to think
of how often they engaged in certain learning activities across
multiple classes, and the response categories were therefore a
frequency scale consisting of: never, some, most or all of the time.

As previously mentioned, specific items were composed
to tap various identified dimensions of student learning
opportunities. Although the full measure is included as an
Supplementary Materials, some exemplar items are presented
here. For instance, on the relational thinking scale, questions like
I combine many ideas and pieces of information into something
new and more complex, were featured. For creative thinking,
items such as I am encouraged to come up with new and different
ideas, were included. Items such as I share my opinions in class
discussion, and I work with other students on projects during class,
were included on the communication and collaboration scales,
respectively. For the learning to learn scale, items likeMy teacher
asks me to think about how I learn best, were used to tap the
construct, while on the feedback scale, items such as My teacher
gives me specific suggestions about how I can improve my work,
were utilized. Items like My teacher gives us points on a test
or homework for how we solved a problem, not just whether we
got the right answer, were used to tap student opportunities for
meaningful assessment. Moreover, items such as I work on a
project that combines more than one subject (for example, science
and literature), were utilized on the interdisciplinary learning
scale, while the real-world connections scale included items like
We connect what we are learning to life outside the classroom.

Procedures
As part of a larger on-going research endeavor, the learning
opportunity measure was administered to students within
their regularly scheduled class time. This study was approved
by institutional-review-board (IRB) of the institution where
the study took place, and followed all ethical guidelines of
the American Psychological Association (APA). Parents of all
students for whom data were collected in this study signed
informed consent forms, and informed assent was also provided
by participating students on the day of data collection. During
data collection, students’ teachers were present, as well as a
member of the research team. In order to be sure students
understood the nature of Likert-type items, an example item
not included on the measure was demonstrated to students
before they began. Because class-time was being utilized to
facilitate data collection, all students whose parents had provided
consent completed the study materials. However, data on this
learning opportunity measure was only analyzed for students
who were enrolled in at least three core courses (i.e., English,
math, social studies, and science). Ninety-four percent of the
consenting participants met this requirement, and formed the
analytic sample within this study.

The measure was typically administered using pencil and
paper survey forms, but in a small minority of classrooms
(i.e., 4) in which computers were available to students, the

measure was administered electronically. Such a procedural
choice was intended to alleviate data collection tasks for
teachers participating in this study, and previous findings in
the educational research literature (e.g., Alexander et al., 2016)
suggest surveys being electronically administered during class
time does not unduly alter student responses as compared to
paper and pencil surveys. In addition, students who were absent
on the data collection day were offered an online make-up survey
which could be completed in school or from a home computer
(but not from a smartphone or tablet). Flexible data collection
strategies such as this one have been shown to improve survey
response rates, especially of low-income and minority students
(Stoop, 2005), therefore improving the validity of statistical
inferences drawn from survey data with diverse populations of
students. After students completed the measure, they supplied
demographic information and submitted their survey packets,
either on paper or electronically.

RESULTS

Observed Score Description
At the composite level, the average score in this sample was
174.17, out of a possible 248 points. Because the four polytomous
response categories for each item were coded 1–4 in the dataset,
this possible total number of points is calculated by multiplying
the number of items on the measure (i.e., 62) by the number of
response categories (i.e., 4) on the items. Moreover, composite
learning opportunity scores appear to be approximately normally
distributed (See histogram in Figure 1), although perhaps with
a slight ceiling effect constricting variability at the upper end of
the composite distribution. Histograms for the composite scores
from each of the nine scales of the measure are also available in
Figure 1.

Reliability
At the composite level, scores exhibited a high level of classical
reliability (α = 0.97). Such a high level of classical reliability
at the composite level indicates that the items tended to
correlate positively with one another, but does not indicate
unidimensionality (Cho and Kim, 2015). Numbers of items,
total possible points, average scores, standard deviations, and
Cronbach’s alpha reliability coefficients for each of the scales
of the perceived learning opportunity measure are available in
Table 2. In general, each of these scales exhibited a satisfactory
level of classical reliability, with the least reliable scales (i.e.,
Creative thinking and Learning to Learn) exhibiting a Cronbach’s
alpha of 0.78. Not surprisingly, these scales are also those with the
smallest number of items (i.e., 4 items). In contrast, the two scales
with the highest classical reliability were Collaboration (α= 0.93;
9 items) and Communication (α = 0.90; 12 items). Classical
reliability statistics for each of the other scales fell in the range
of 0.80–0.90.

Intraclass Correlations
Also depicted in Table 2 are ICCs corresponding to each of
the scales of the measure. As with the demographic variables
in Table 1, the ICCs describe the proportion of variance in the
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FIGURE 1 | Frequency distribution of raw total scores as well as the nine scales of the measure.
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scale that occurs at the school, as opposed to the student, level.
Because these data will form the basis of substantive inferences
in this investigation, the scale ICCs are highly relevant to the
research questions. For example, one currently utilized rule-
of-thumb (e.g., Muthén and Satorra, 1995; Zhonghua and Lee,
2017) is that measures that exhibit an ICC >0.05 are possible
candidates for multilevel measurement modeling, and may be
tapping constructs at a level above the individual (i.e., school
level). As can be seen, every scale of the measure has an ICC of
at least 0.05, and some (e.g., Opportunities for Communication,
ICC = 0.21) have ICCs that are much stronger. Importantly
however, these ICCs do not necessarily indicate that the locus of
the construct being tapped in this study is indeed at the school
level, only that there is empirical reason to investigate such a
possibility (both statistically and theoretically) at this point.

Scale Correlations
Scores on each of the nine scales of the measure correlated
positively and statistically significantly with scores for every
other scale, as well as with total learning opportunity composite
scores. A full matrix of these correlations is available in Table 3.
As can be seen, correlations among the scales range from
r = 0.35 between Learning to Learn and Interdisciplinary
Learning to r = 0.78 between Creative Thinking and Real-world
Connections, with most of the inter-scale correlations falling
between 0.50 and 0.70. In general, the correlations between the
scales and the composite scores (i.e., scale level discrimination
coefficients) are higher than the inter-scale correlations and
range from 0.69 between Interdisciplinary Learning and the
Learning Opportunity composite, and 0.86 between Real-world
Connections and the Learning Opportunity composite.

Conceptual Model Comparison
In order to ascertain both the dimensionality and appropriate
level-specification of student perceived learning opportunities,
11 different multilevel and multidimensional item-response
theory models were fit. As previously explained, latent-variable
measurement models that simultaneously feature multiple
dimensions and a multilevel structure are referred to in extant

literature as “doubly latent” (Marsh et al., 2012; Morin et al.,
2014; Khajavy et al., 2017; Mahler et al., 2017) because these
models account for both the measurement error present in
the items given to participants, as well as the sampling error
produced by clustered data. The 11 theoretically plausible models
compared here are organized into three groups, depending on
their multilevel specification. First, models that only account for
measurement error at the student level, and do not include any
mechanism to account for clustering, are referred to as naïve
analyses because they ignore the clustered nature of the data (i.e.,
are singly latent). Second, models that use a linearization method
to provide cluster-robust estimates of model fit statistics as well
as model parameter variances in order to account for cluster-
based sampling error are referred to as design-based analyses
(Muthén and Satorra, 1995; Binder and Roberts, 2003; Stapleton
et al., 2016a). Third, in this investigation, models that feature a
two-level specification to estimate latent variables at the school
level and latent variables or a saturated covariance structure at
the student level are referred to as two-level analyses (Stapleton
et al., 2016b). Importantly, regardless of the level-specification
and dimensionality of each of thesemodels, they all accounted for
the polytomous nature of item responses using a graded-response
modeling framework, modeling three threshold parameters and
one loading for each of the items. It should be noted that all latent
variable modeling for this analysis was conducted using Mplus
8, using a robust diagonally-weighted least squares estimator
using a diagonal weight matrix (ESTIMATOR = WLSMV in
Mplus) to account for the categorical nature of the polytomous
item responses (DiStefano and Morgan, 2014). Example Mplus
code utilized in this study is also available with this article as
Supplemental Material.

Naïve Analysis
Within a single-level framework, the model-data fit of
theoretically plausible models that differed on their dimensional
specifications was systematically compared. Conceptual
path diagrams of each of these models are depicted in
Figures 2A–D. The first model that was fit to the data was
an uncorrelated model (Figure 2A), in which each of the scales

TABLE 3 | Observed correlations among administered scales.

Learning

opportunity

Relational

thinking

Creative

thinking

Comm. Collab. Learn to learn Feedback Assess. Interdisc.

learning

Real-world

connect.

Learning opportunity 1.00

Relational thinking 0.776 1.00

Creative thinking 0.817 0.571 1.00

Comm. 0.847 0.728 0.575 1.00

Collab. 0.865 0.654 0.654 0.714 1.00

Learn to learn 0.704 0.638 0.509 0.554 0.590 1.00

Feedback 0.853 0.582 0.705 0.608 0.724 0.624 1.00

Assess 0.852 0.576 0.652 0.637 0.677 0.583 0.758 1.00

Interdisc. learning 0.692 0.437 0.581 0.529 0.543 0.353 0.555 0.559 1.00

Real-world connect. 0.868 0.595 0.786 0.631 0.689 0.537 0.723 0.711 0.616 1.00

All correlations above are significant at p < 0.01.
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FIGURE 2 | Theoretically plausible models systematically compared at the student-level: (A) Uncorrelated; (B) Correlated; (C) Unidimensional and, (D) Bifactor

models. These dimensional specifications hold for both naïve and design-based analyses. Error terms are not depicted here for simplicity.
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of the learning opportunity measure was represented by its own
latent dimension, and these dimensions did not covary. If this
model fit best, learning opportunities would be best described
as consisting of nine orthogonal factors, each representing an
unrelated aspect of student opportunities for learning. The
second model that was fit to these data was a correlated model
(Figure 2B), in which each of the scales was represented by its
own latent dimension, but those dimensions were free to covary.
If this model were to fit best, student learning opportunities
would be thought of as comprising nine related scales, each
conceptually distinct but overlapping with the others.

The third model fit to these data was unidimensional
(Figure 2C). Conceptually antithetical to the uncorrelatedmodel,
this model posits that all the latent dimensions of student
perceived learning opportunity are perfectly correlated, or
conceptually that each of the scales measures a single student
attribute: general opportunities for learning. In contrast to
the first three models fit, in which each individual item
loaded on a single dimension, the fourth model (Figure 2D)
posits that each item loads on two separate dimensions: a
general opportunities for learning dimension and a scale-specific
residualized dimension. If this model, termed the bifactor model,
were to fit best, student responses to any given item would be best
described as indicating both a general opportunity for learning
and a specific opportunity in the dimension measured by that
particular item.

Further, if any of the naïve analysis models were to fit best of
all the models fit in this investigation (including the design-based
and two-level models) that would indicate that the clustered
nature of these data was not relevant to the measurement models,
and that opportunities for learning should not be conceptualized
as occurring at the school level. Instead, the constructs being
measured would be tapped entirely at the individual student level,
with no need to account for school clustering.

Design-Based Adjusted Analysis
Four different design-based adjusted models were fit in this
investigation, following the same dimensional specifications as
the naïve analysis. However, these models featured a linearization
technique (TYPE = COMPLEX in Mplus 8) to produce robust
model estimates (Stapleton et al., 2016a). In this way, these
models are also conceptually depicted in Figures 2A–D, and
when estimated had the same number of degrees of freedom as
the naïve models. However, because the estimation is adjusted
to account for the sampling error arising from the clustered
data, the fit statistics associated with each model differed from
the naïve models. If a design-based adjusted model fit best of
all the models compared in this investigation, than—over and
above the inferences made about construct dimensionality—it
will be clear that school-based clustering does affect the way
learning opportunities are distributed across students. However,
because these adjusted models do not specify the measurement
of separate constructs at the student and school level, should
a design-based model fit best (as opposed to a two-level
model), the inference could be drawn that the variance in
learning opportunities that was due to schools was not so great
that school-level measurement ias meaningful as student-level

measurement. However, the school-level cluster effect would
have been strong enough to require amodeling adjustment on the
standard errors, but not strong enough to require the modeling
of a separate school-level construct. In general, a design-based
adjusted model supports the inference that individual student
experience drives their perceived learning opportunities, but
that the estimation of that construct requires an adjustment for
school-based clustering.

Two-Level Analysis
Because the two-level models were fit after the naïve and adjusted
models, three two-level models were fit based on the previous
results. Conceptual path diagrams for these models are depicted
in Figures 3A–C. First, a configural correlated factor model
(Figure 3A) was fit to the data. In this configural model, nine
correlated factors (one for each scale of the measure) were fit to
the data at both the student and school level, and the loadings
were constrained to be equal across levels. For identification
purposes, the latent factors were standardized across both the
levels in the configural model. If this configural model were to fit
best, the constrained loadings allow for a particular substantive
inference: that school-level learning opportunities should be
conceptualized not as a separately defined construct from
student-level learning opportunities, but simply as an aggregate
(e.g., average) of the student-level responses (Stapleton et al.,
2016b). Some in the literature (e.g., Marsh et al., 2012; Morin
et al., 2014) have described such configural models as measuring
context constructs, in which the higher level (i.e., school)
measurement is an aggregation of individual measurement at a
lower (i.e., individual) level.

Next, a shared correlated factor model was fit to the data
(Figure 3B). Such a model featured saturated covariances among
the items at the student level, and nine correlated factors at the
school level. In this way, this shared model implies that student
learning opportunities are best conceptualized as occurring at
the school level, without meaningful measurement at the student
level. Such a conceptualization reflects what has been termed a
climate construct (Morin et al., 2014), in which students within
a cluster (i.e., school) have homogenous experiences such that
they are essentially interchangeable regarding the measurement
of their learning opportunities. Finally, another shared climate
construct model was fit, that posited a single dimension—general
opportunities for learning—at the school level (Figure 3C). Such
a model follows current findings that school level constructs
may be more likely than student level constructs to exhibit a
unidimensional structure (Marsh et al., 2012). Therefore, if this
unidimensional shared model were to fit best, student learning
opportunities would best be conceptualized as occurring at the
school-level, in a way that was undifferentiated by the dimension
of those learning opportunities.

Additionally, another critical difference in the two-level
models fit in this investigation (whether configural or shared),
in comparison to the naïve and design-based analyses, is that the
model mean structure (i.e., item thresholds) was fit only to the
school-level portion of the model, not to the student level. This
methodological feature is a necessity for two-level measurement
model identification (Stapleton et al., 2016a), but also holds
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FIGURE 3 | Theoretically plausible systematically compared at both student and school levels: (A) Configural Correlated; (B) Shared Correlated; and (C) Shared

Unidimensional Factor Model. Error terms are not depicted here for simplicity.

substantive considerations. For example, two-level measurement
models are not useful for modeling latent means at the individual
student level. Instead, if one of the two-level models were to fit
best in this study, then research questions about “how much” of
a particular learning opportunity is present must be posed at the
school, rather than the student level. Indeed, research questions
about quantitative differences in learning opportunities among
individual students within schools would be nonsensical from a
two-level perspective, because, if one of these models were to fit
best, this finding would indicate that within-school homogeneity
in student learning opportunity was high enough so as to make
comparisons only meaningful at the school level.

Model FIT Comparison
Relevant fit statistics corresponding to each of the 11 tested
models are available in Table 4, organized first by their
level specification (i.e., naïve, design-based, or two-level)
and dimensionality. Specifically, chi-square values, degrees of
freedom, comparative fit index (CFI), and root mean square error
of approximation (RMSEA) are depicted in this table. It should be
noted that because the robust diagonally-weighted least squares
estimator was utilized for this analysis, the model chi-square is
not calculated in the traditional way used with other estimators,
and therefore the chi-square statistic cannot be directly compared
across models, regardless of model nestedness. In evaluating the

Frontiers in Education | www.frontiersin.org 12 September 2018 | Volume 3 | Article 76

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Dumas Learning Opportunities

TABLE 4 | Fit statistics for model comparison.

Level specification Dimensionality df Chi-square CFI RMSEA

Naïve analysis: student level only Nine-Factor Uncorrelated 1,829 49536.37 0.17 0.16

Nine-Factor Correlated 1,793 6006.50 0.93 0.04

Unidimensional 1,829 10742.71 0.85 0.07

Bifactor 1,767 6683.42 0.92 0.05

Design-based analysis: student level model with

complex standard error estimation

Nine-Factor Uncorrelated 1,829 21621.81 0.17 0.11

Nine-Factor Correlated 1,793 2497.66 0.97 0.02

Unidimensional 1,829 3404.65 0.93 0.03

Bifactor 1,767 2623.61 0.96 0.02

Two-level configural model: student and school level

model with loadings constrained to be equal across

levels

Nine-Factor Correlated at both student and

school levels

3,710 6261.05 0.85 0.03

Two-level shared model: student and school level

model with loadings free across levels

Nine-factor Correlated at school level,

saturated observed covariances at student

level

3,489 30128.91 0.74 0.09

Two-level shared model: student and school level

model with loadings free across levels

Unidimensional at school level, saturated

observed covariances at student level

3,512 30960.74 0.77 0.09

In the estimation of the two-level models, some residual variances were constrained in order to avoid negative values.

fit of each of these models, the empirical model-data fit was
compared to commonly utilized standards for adequate fit (e.g.,
Hu and Bentler, 1999), which generally recommend CFIs above
0.95 and RMSEAs below 0.06. Moreover, the strength of the
model loadings were also taken into account, because strong
loadings increase statistical power to detect model-data mis-fit
(Kang et al., 2016).

Beginning with the naïve analysis models, as can be seen in
Table 4, the uncorrelated factor model fit the data very poorly,
making it clear that the relatedness of the dimensions of these
learning opportunities must be taken into account by the best-
fitting model. The next best fitting model was the unidimensional
model, although this model also did not fit the data adequately.
Based on commonly utilized fit criteria, both the correlated
factor model and the bifactor model appear to have adequate fit.
However, by every measure (i.e., chi-square, CFI, RMSEA) the
correlated factor model fit the data better than the bifactor model.
Also relevant, the correlated factor model retained more degrees
of freedom than the bifactor model, making it a more statistically
parsimonious explanation of student learning opportunities.

Within the design-based adjusted models, a similar pattern
emerged: the correlated factor model fit slightly better than the
bifactor model, while also retaining more degrees of freedom,
marking it as the best-fitting dimensional specification. However,
it is crucial to note that all of the design-based adjusted models fit
better than their dimensional counterparts in the naïve analysis,
making it clear that the school-based clustering of these data
must be taken into account when measuring student learning
opportunities. In particular, the adjusted correlated factor model
displayed very good fit, very much within widely used standards
for good model-data-fit (e.g., Hu and Bentler, 1999).

Among the two-level models, the configural model, which
featured constrained loadings across the student and school level
in order to depict school level measurement as an aggregate

of individual level data, displayed reasonable fit. However, both
of the shared models, which assume student level responses to
be interchangeable in order to quantify a school level climate
construct, fit relatively poorly. Indeed, each of the shared two-
level models fit worse than all of the naïve models, except for
the naïve uncorrelated model. This finding makes it clear that,
in these data at least, opportunities for learning are not school
climate or context variables, but can be more correctly described
as individual student perceptions. This substantive finding stems
from the statistical observation that student level heterogeneity
is too great to meaningfully quantify an entirely school-level
climate construct. Given this fit comparison, student learning
opportunities are best modeled with nine correlated factors at the
student level, featuring a design-based linearization adjustment
for school level clustering. Above and beyond the fit indices
previously discussed, the design-based adjusted correlated model
also featured small residual correlations (i.e., the difference
between observed and model predicted correlations among the
items). The vast majority of the residual correlations resulting
from this best-fitting model were below an absolute value of 0.05,
with many being below 0.01. In rare cases, residual correlations
were higher (e.g., 108 between items Real-world connections 1
and 8), implying that, among a small minority of the item-
responses being modeled here, some of their covariance may be
due to factors unexplained in the current modeling framework.
Such a finding implies that student learning opportunities are
very heterogeneous within schools, and therefore that construct
should best be understood through individual level measurement
of a school contextual construct.

Doubly Latent Model Parameters
After selecting the design-based adjusted correlated factor model
as the best fitting model, it is necessary to look closely at the
parameters estimated in the model, in order to ascertain whether
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such a model may be a reliable and valid tool for making
inferences about student perceived opportunities for learning.

Factor Correlations
Because the best fitting correlated factor model features
substantively interesting latent variable correlations, they are
presented in Table 5. Across the board, these correlations are
stronger than those at the observed variable level (Table 3),
although it should be noted that the composite score correlations
are not in this table because full-measure scores are not present
in the correlated factor model. At the lowest, correlations among
latent dimensions of were r = 0.492 between Learning to Learn
and Interdisciplinary Learning (as compared to r = 0.353 at
the observed variable level). At the highest, latent correlations
were r = 0.894 between both Feedback and Assessments as well
as Feedback and Collaboration. In general, latent correlations
among dimensions in the model were mostly between 0.60 and
0.90, indicating a relatively strong level of relation among the
constructs.

Response Category Thresholds
To account for the polytomous nature of item responses, three
separate threshold parameters were modeled for each item. These
thresholds, which are presented inTable 6, can be conceptualized
as the point on the underlying latent distribution in which
students become likely to respond to a particular polytomous
response category. As such, threshold parameters are on a
standardized scale in which a value of zero depicts the mean level
of a given underlying distribution. As can be seen in Table 6,
most of the administered items have a negative value for their
first threshold parameter, indicating that students are likely to
choose the second response category when they are below average
on the latent attribute. In contrast, most items have a positive
value for their third threshold, indicating that students are likely
to be above average on the latent attribute when they choose to
endorse the fourth response category. For the middle threshold
parameter, values close to average (i.e., 0) appear to be typical,
indicating that students move to endorse the third response
category, as opposed to the second, around the average of the
latent attribute distribution. Such a spread of threshold estimates

may be ideal, because it suggests that the items may be generally
worded in such a way as to capture the full range of each latent
attribute (Ostini and Nering, 2006).

Item Loadings and R-Squares
Standardized loadings and r-square parameters for each item
are also available in Table 6. As can be seen, most items
load on their corresponding latent dimension strongly and
positively, with the weakest being 0.42 (Collaboration 4) and
the strongest being 0.92 (Interdisciplinary learning 2). Although
this complete range is relatively wide, the large majority
of item loadings fell between 0.65 and 0.85. Such strong-
positive loadings suggest that the items are generally strongly
related to the latent constructs on which they load. Also
importantly, the r-square value associated with each item depicts
the amount of variance in the item that is explained by the
latent factors. The generally strong r-square values presented in
Table 6 imply that the correlated factor model is explaining a
statistically and practically significant amount of item variance.
Therefore, the constructs depicted in the correlated factor
model may be considered internally valid representations of the
underlying latent attributes being tapped (Lissitz and Samuelsen,
2007).

Construct Reliability
While item loadings and r-squares provide evidence of the
reliability of the administered items to tap latent constructs, these
functions do not encapsulate the reliability or reproducibility of
the latent constructs themselves. For this, coefficient H (Gagne
and Hancock, 2006), is needed. Coefficient H indicates the
degree to which a latent construct could be reproduced from its
measured indicators, and can be conceptualized as analogous to
an r-square value, if a latent variable were regressed on each of its
indicators (Dumas and Dunbar, 2014). Here, values ofH for each
of the latent dimensions are presented in Table 7. As can be seen,
the construct reliability of each of the latent constructs measured
in this study is strong, with the lowest beingH = 0.82 (Relational
Thinking) and the highest being H = 0.92 (Interdisciplinary
learning). It should be noted that, because H does not require
any strict assumptions about tau-equivalence of themeasurement

TABLE 5 | Latent correlations among model dimensions.

Relational

thinking

Creative

thinking

Comm. Collab. Learn to learn Feedback Assess. Interdisc.

learning

Real-world

connect.

Relational thinking 1.00

Creative thinking 0.708 1.00

Comm. 0.876 0.654 1.00

Collab. 0.770 0.760 0.787 1.00

Learn to learn 0.859 0.637 0.696 0.730 1.00

Feedback 0.714 0.826 0.624 0.855 0.797 1.00

Assess 0.730 0.766 0.731 0.790 0.761 0.894 1.00

Interdisc. learning 0.594 0.705 0.624 0.645 0.492 0.678 0.672 1.00

Real-world connect. 0.735 0.905 0.698 0.791 0.670 0.827 0.825 0.730 1.00

All correlations above are significant at p < 0.01.
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TABLE 6 | Model parameters for all administered items.

Scale Item Latent category thresholds Standardized loading R-square

Threshold 1 Threshold 2 Threshold 3

Relational thinking 1 −1.65 −0.92 0.03 0.75 0.56

2 −1.24 −0.53 0.45 0.69 0.48

3 −1.24 −0.50 0.49 0.78 0.61

4 −1.27 −0.37 0.54 0.77 0.59

Creative thinking 1 −1.31 −0.50 0.52 0.80 0.65

2 −1.22 −0.36 0.49 0.76 0.58

3 −1.15 −0.41 0.53 0.84 0.70

4 −1.04 −0.22 0.79 0.80 0.63

5 −1.04 −0.28 0.70 0.84 0.70

Comm. 1 −1.87 −0.90 0.05 0.67 0.45

2 −1.82 −0.68 0.32 0.74 0.56

3 −0.96 −0.46 0.21 0.61 0.37

4 −1.24 −0.47 0.37 0.68 0.46

5 0.22 0.76 1.13 0.61 0.38

6 −0.63 0.04 0.84 0.81 0.66

7 −0.82 −0.03 0.72 0.70 0.49

8 −1.42 −0.54 0.27 0.77 0.59

9 −0.41 0.22 0.92 0.69 0.47

10 −1.52 −0.66 0.23 0.77 0.60

11 −0.71 −0.04 0.61 0.71 0.49

12 −1.26 −0.18 0.61 0.74 0.54

Collab. 1 −2.24 −1.26 −0.21 0.66 0.43

2 −0.81 −0.09 0.67 0.65 0.42

3 −1.79 −0.92 0.01 0.61 0.37

4 −0.71 −0.14 0.57 0.42 0.18

5 −1.29 −0.45 0.49 0.79 0.62

6 −1.53 −0.69 0.18 0.74 0.56

7 −1.38 −0.55 0.36 0.83 0.68

8 −1.21 −0.47 0.41 0.81 0.65

9 −1.25 −0.48 0.41 0.76 0.58

Learn to learn 1 −1.37 −0.53 0.31 0.64 0.41

2 −1.96 −1.05 −0.02 0.76 0.59

3 −1.14 −0.48 0.36 0.75 0.56

4 −2.05 −1.28 −0.33 0.69 0.49

Feedback 1 −1.63 −0.71 0.29 0.70 0.49

2 −1.25 −0.43 0.44 0.74 0.55

3 −1.48 −0.69 0.26 0.74 0.55

4 −0.67 0.02 0.82 0.65 0.42

5 −0.94 −0.25 0.72 0.80 0.65

6 −1.44 −0.59 0.39 0.79 0.62

Assess. 1 −1.78 −0.81 0.19 0.76 0.57

2 −2.08 −1.14 −0.14 0.55 0.30

3 −1.35 −0.48 0.51 0.67 0.45

4 −0.43 0.17 0.87 0.63 0.39

5 −1.09 −0.25 0.61 0.74 0.54

6 −0.44 0.11 0.81 0.58 0.35

7 −1.36 −0.59 0.35 0.72 0.50

8 −0.61 0.05 0.51 0.71 0.51

9 −1.41 −0.45 0.33 0.70 0.49

(Continued)
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TABLE 6 | Continued

Scale Item Latent category thresholds Standardized loading R-square

Threshold 1 Threshold 2 Threshold 3

Interdisc. learning 1 −1.07 0.13 0.91 0.85 0.73

2 −1.22 −0.03 1.02 0.92 0.85

3 0.11 0.63 1.19 0.56 0.32

4 −1.14 0.23 1.02 0.85 0.72

Real-world connect. 1 −0.30 0.41 1.20 0.65 0.43

2 −1.37 −0.48 0.61 0.69 0.48

3 −1.26 −0.35 0.53 0.77 0.58

4 −1.31 −0.43 0.55 0.77 0.60

5 −1.01 −0.13 0.80 0.73 0.54

6 −1.32 −0.34 0.55 0.70 0.50

7 −0.92 −0.12 0.71 0.76 0.58

8 −1.27 −0.39 0.65 0.78 0.60

9 −1.45 −0.55 0.52 0.75 0.56

All loadings and R-square values above are significant at p < 0.01.

model (as Cronbach’s alpha does), it is likely a more accurate
depiction of the reliability of these constructs than other available
reliability measures (Gagne and Hancock, 2006; Cho and Kim,
2015). Importantly, alternative reliability metrics for non-tau-
equivalent measurement models do exist in the literature (e.g.,
Omega; McDonald, 1999) however, H is particularly suited
for the current context because the estimation of the item
loadings in this study allows the latent variables to be optimally
weighted, meaning that each item contributes information to the
latent variable in accordance with its loading. In contrast, other
modern reliability indices such as Omega assume a unit weighted
composite score in which each item contributes the same amount
of information to the composite score, but lower loading items
detract from the reliability (McNeish, 2017).

IMPLICATIONS AND CONCLUSION

This investigation has been a systematic comparison of a
number of theoretically plausible latent and doubly latent
models for conceptualizing high school students’ learning
opportunities. Associated with these models have been research
questions associated with both the underlying dimensionality
of this construct, as well as the locus of the construct at
the individual or aggregate level. As such, the results of this
investigation are able to offer a number of principal findings
that may deeply inform the conceptualization of student learning
opportunities—and specifically high school student perceptions
of these opportunities—in the future. Three specific principal
findings are offered here: (a) perceived learning opportunities
are multidimensional, (b) perceived learning opportunities occur
at the student-level, and (c) despite this individual student-level
locus, school-based clustering should still be statistically taken
into account when modeling these perceptions across multiple
schools.

Perceived Learning Opportunities Are
Multidimensional
As is seen from the fit of the various models to these
study data, perceived learning opportunities have a distinct
multidimensional latent structure. Specifically, given the study
results, the nine areas of perceived student learning opportunities
measured in this study should be conceptualized as separate
but related latent dimensions. Such a finding, at first blush,
may appear to be unsurprising given the diverse areas of
learning that were tapped by the measure utilized in this study.
However, it should be highlighted that in previous studies of
learning opportunities available to students, scores are sometimes
aggregated across areas of academic learning (e.g., Song et al.,
2017), a methodological choice that may not be valid given the
results of this study. Of course, although the latent structure of
the data in this study was multidimensional, this does not mean
that those latent dimensions are not positively, and even strongly,
related. Indeed, the nine-factor uncorrelated factor model, which
formally posited that each area of learning opportunity was
unrelated, fit the worst of any of the models included here. In this
way, it may be that examining only a single perceived learning
opportunity, without reference to the other diverse opportunities
available to students, would not provide a meaningful picture of
student learning opportunity.

Such a finding may be explained by the observation that
students who are more likely than others to receive more
opportunities for a given area of learning (e.g., opportunities for
relational thinking) are also more likely to receive opportunities
for other areas of learning (e.g., opportunities for creative
thinking). Moreover, it may also be that the perception of such
opportunities effect one another within students, or even that the
actual provision of these opportunities to specific students are
correlated. Indeed, there is evidence to suggest that students who
receive more opportunities for learning in one area are also more
likely to receive other opportunities as well (Wilhelm et al., 2017).
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TABLE 7 | Latent reliability of model dimensions.

Scale N of items Coefficient H

Relational thinking 4 0.84

Creative thinking 5 0.91

Communication 12 0.93

Collaboration 9 0.91

Learn to learn 4 0.81

Feedback 6 0.88

Assessment 9 0.89

Interdisc. learning 4 0.92

Real-world Connections 9 0.92

But, also given the modeling results here, the correlations among
these learning opportunities are far from one, indicating that
students perceive critical differences in the opportunities they
receive across the areas measured here.

Perceived Learning Opportunities Occur at
the Student-Level
Another critical research question posed in this investigation
concerned the actual locus of learning opportunities. In brief,
the question was posed: are student learning opportunities an
attribute of the school that provides those opportunities (i.e.,
a school context or climate construct), or are they an attribute
of the students that perceive those opportunities and receive
them? This question may be conceptualized as critically relevant
to understanding the educational endeavor within schools: are
individual learners the locus of learning opportunities, or are the
learning opportunities that those learners engage in determined
by schools? Such a conceptual question may be traced back to
educational thinkers such as Dewey (1902/2010), who grappled
with the issue of learning opportunity by positing an interaction
between students and the curriculum they experience.

At least in this particular investigation, the results strongly
implied that learning opportunities occur within students
and not at the school-level. This finding is predicated on
the observation that student level models (the design-based
analysis), on the whole, fit better than the two-level models
in this examination. However, it should be noted that the
two-level configural model—that is formulated to indicate a
school contextual construct that represents the aggregated (i.e.,
averaged) student level measurements—did display somewhat
satisfactory fit to the data (although not as good of fit as the
student level models). However, the two-level sharedmodels, that
are formulated to indicate school climate constructs in which
individual students are considered interchangeable indicators of
school climate, fit poorly. Taken together, these observed results
indicate that the learning opportunities that are provided to
students should not be conceptualized as wholly an attribute of
a school, but rather an individual student level perception.

Perhaps, for those educational psychologists deeply engaged
in the study of individual differences in learning, this finding
will appear intuitive, because students’ ability to benefit from

learning opportunities in schools have been shown to be driven
by a number of student level attributes including cognitive
(Dinsmore et al., 2014), motivational (Muenks et al., 2018),
and metacognitive skills (Peters and Kitsantas, 2010). However,
within the larger literature of educational research, learning
opportunities do often appear to be conceptualized as occurring
wholly at the school, or possibly classroom (e.g., Wilhelm et al.,
2017), level. Indeed, many existing lines of argument concerning
the need for school level reform (McGiboney, 2016) or the
current imperative to evaluate schools or teachers through
the analysis of student level data (e.g., Ballou and Springer,
2015), either explicitly or implicitly posit student learning
as a construct occurring within schools or classrooms (i.e.,
a context or climate construct). Another common arena in
which student level learning perceptions are utilized to make
inferences at the classroom or school level is in the general
field of instructor educational evaluations, such as those typically
completed by university students. Although the current study
was completed high schools, it is clear that these data should
not be utilized to evaluate the learning climate of any of the
high schools in the dataset. If, as could be hypothesized, similar
results to the current study were to be found with university
data, than the current use of learning perception measures to
evaluate instructors, departments, or colleges, would be entirely
invalid because the critical assumption associated with climate
construct measurement—that students within the same climate
are fully interchangeable in their learning opportunities—would
not be met.

In general, the current practice in educational research of
modeling effects at both the individual student level, as well
as a higher level such as the classroom or school, assumes
that the constructs being modeled actually exist at both of
those levels (McNeish et al., 2017). In this way, the constructs
may be “split” into both an attribute of individual students
as well as a school level attribute, sometimes without much
explanation as to the construct meaning across these two levels.
The results of this investigation imply that, at least for the
multidimensional construct of student learning opportunity
measured here, such a theoretical conceptualization would be
inappropriate.

School-Based Clustering Must be Taken
Into Account
Despite the principal finding that student learning opportunities
appear to be a student-level, rather than school level construct,
it is also apparent from the findings of this study that, in cases
such as the present study in which student learning opportunities
are measured across a number of schools, that school level
clustering should be taken into account statistically. In this
study, a linearization method (TYPE = COMPLEX in Mplus
8) was utilized to account for the school level clustering in
these data within the design-based adjusted models. In contrast,
the naïve analysis did not take the school level clustering into
account in any way. Although both the naïve and adjustedmodels
conceptualize learning opportunities at the student level, the
adjusted analyses fit much better, on the whole, than the naïve

Frontiers in Education | www.frontiersin.org 17 September 2018 | Volume 3 | Article 76

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Dumas Learning Opportunities

analysis, and the best fitting model was the design-based adjusted
correlated factor model.

It may seem that the combination of findings in this study—
that learning opportunities occur at the student level, but
school-based clustering should be accounted for statistically—
contradict one another because one finding implies student
level measurement while the other implies school-based effects.
However, such a pattern of findings can be conceptually
explained in that, according to the results of this study,
school clustering does have an effect on student perceived
opportunities for learning, but the effect is not accounted for in
the measurement model utilized here. That is to say that all of
the latent variables posited in the correlated factor model occur
at the student level, but some other aspect of student responses,
external to the model, may occur at the school level. In the
nine factor model that was found to be best fitting, the school-
based clustering essentially appears to effect the error variance in
responses, which conceptually represent the reasons, other than
the latent variables in the model, why a student may perceive a
particular opportunity for learning.

Some general hypotheses for what these school-based effects
may represent include: a school based climate construct not
specified in the model such as faculty approachability or school
resource availability, or an individual difference among students
that is disproportionately distributed on average among schools.
For example, it is clear from this analysis (i.e., intraclass
correlations) that substantial differences on students’ parents’
education level existed across the schools present in this dataset,
and in addition, that variable was relatively homogenous within
schools. So, it may well have been that systematic differences
across schools on such socio-economic variables resulted in
the need to adjust the student-level models for cluster-based
sampling error (i.e., make them doubly latent). However, because
the student-level adjusted models fit better than the two-level
models, it is likewise clear that these across school differences
were not salient enough to negate the heterogeneity in student
perceived learning opportunities within schools.

Future Directions
As in nearly any published investigation in the social sciences,
the particular methodological and analytical choices made in this
study preclude some relevant and interesting inferences from
being made about student learning opportunities. Therefore,
a number of specific future directions may be forwarded
to address the issues that this study, with its particular
delimitations, could not. These future directions, to be discussed
in detail in the coming sections of this article include:
(a) investigation of a classroom effect on student learning
opportunities, (b) investigation of intra-individual variance in
reported opportunities for learning, and (c) taking a person-
centered approach to the investigation of patterns of learning
opportunities within and between students.

Classroom Effect
Throughout the entirety of this investigation, from the initial
formulation and selection of items to administer to students,
to the analysis of the resulting data using doubly latent

measurement models, the second-level of this analysis (above
individual students) was always considered to be the school
those students attended. This choice is reflected in the manner
in which the items specifically prompted students to consider
multiple of their courses or teachers when responding, making
a specific analysis of learning opportunity differences within
each of those subject-area classrooms outside the scope of this
study. In essence, the measure administered to participants in
this study may be thought of as specifically attempting to tap a
school-level context or climate construct: something which the
results of this analysis make clear was not achieved. However,
it may have been an equally reasonable methodological choice
to construct a measure that prompted students to think and
respond about multiple scenarios within the same classroom or
subject-area, which would have created the logical need to model
classrooms as the second-level variable in this study. Given such
an alternative methodological and measurement direction, it is
not yet known whether the detection and quantification of a
classroom level climate or context construct would have been
possible with these particular participating students, teachers,
and schools. At this point, such an investigation into the possible
classroom-level locus of student learning opportunities, such as
they are operationally defined here, necessarily remains a future
direction. However, a number of classroom-level doubly latent
investigations are currently extant in the educational psychology
literature (e.g., Marsh et al., 2012; Morin et al., 2014), allowing
for the inference that such a future direction may be tenable and
interesting going forward.

Stability of Learning Opportunity Over-time
As previously mentioned in the introduction to this study,
all of the analysis presented here considered only a single-
time point of student response data, and did not consider
possible intra-individual differences across time within students
on their perceived learning opportunities. Of course, it seems
very reasonable to hypothesize that students’ perceptions of
their learning opportunities would vary substantially as those
opportunities were presented to them, made motivationally
salient, or taken away as a possibility over time. Therefore,
such an analysis of time-varying intra-individual differences
in learning opportunity seem warranted and interesting as
a future direction to this research. From a methodological
perspective, such a data collection would necessitate utilizing
time-point as a second-level clustering variable in which
to nest individual students, possibly using a mixed-effects
modeling framework (e.g., McNeish and Dumas, 2017). Using
such a framework, interesting research questions could be
answered—especially if combined with the collection and
modeling of other psychological attributes such as motivational
or emotional states—about when and why student perceived
learning opportunities increased and decreased within students.
Indeed, it could very possibly be the case that the variance in
student perceived learning opportunities due to time would be
greater than the variance due to classroom or school, although
such a statement must remain a hypothesis for the time being,
until such a question can be investigated within a longitudinal
investigation.
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Person-Centered Approach
In addition to future directions that investigate the effect of
classroom- and time-nestedness on student perceptions of their
learning opportunities, it may also be interesting and fruitful
to take a person-centered approach to the analysis of student
response data in order to determine how learning opportunities
co-occur within individual or groups of students, even within
a single school. Such a person-centered approach is inherently
different form the construct-centered approach taken in this
study, because rather than identifying the relations among the
latent constructs across levels of the model, such an analysis (e.g.,
cluster analysis) would seek to identify sub-groups of students
who report differing patterns of learning opportunities. Then,
through the careful examination of the make-up of these groups
of students (especially if other psychological variables are also
measured), inferences could be made about the source of these
patterns of perceived opportunities. Given that person-centered
perspectives on learning-related variables have been previously
fruitful in the educational psychology literature (Harring and
Hodis, 2016), it is reasonable to expect that such an analysis may
be an interesting next step in this line of inquiry as well. Indeed,
such a mixture-modeling approach may also be combined with
classroom- or time-clustered models as well, in order to create
the richest possible understanding of student perceptions of their
learning opportunities in the future.

In general, the results of this study suggest that high school
students’ perceptions of their learning opportunities can be
described as a nine-dimensional construct that occurs within
students, and is not principally an aspect of their school.
However, given some systematic average student level differences

among schools (e.g., average student socioeconomic status) it
is necessary to statistically adjust student level measurement
models based on school based clustering, in order to most
reliably and validly quantify the construct. Given the critical
role that schools play in student academic development and
learning, this understanding is expected to be relevant to
future theorizing and empirical investigations wherever student
perceptions of their learning opportunities play a role. Moreover,
this study may contribute to a burgeoning awareness in the
field that theorizing constructs that occur across different loci
(e.g., student, school context, and school climate) requires careful
empirical consideration in order to inform theoretical construct
conceptualization.
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