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The success of education with technology research is in part because the field draws

upon theories and methods from multiple disciplines. However, drawing upon multiple

disciplines has drawbacks because sometimes the methodological expertise of each

discipline is not applied when researchers conduct studies outside of their research

training. The focus here is on research using methods drawn largely from psychology,

for example, evaluating the impact of different systems on how students perform. The

methodological concerns discussed are: low power; not using multilevel modeling;

dichotomization; and inaccurate reporting of the numeric statistics. Examples are drawn

from a recent set of proceedings. Recommendations, which are applicable throughout

the social sciences, are made for each of these.

Keywords: EdTech, statistical methods, crisis in science, power, multilevel modeling, dichotomization

Spending on EdTech is around 19 billion dollars per year (Koba, 2015). Research on using computer
technology within education began soon after microcomputers began appearing in universities
(e.g., Suppes, 1966). Given the amount of accumulated wisdom in the field and the amount of
investment, it is a concern that the current EdTech landscape has been likened to the Wild West
(Reingold, 2015), with schools buying systems without convincing evidence of their efficacy. There
are many issues that researchers in the field can address to better serve schools (Wright, 2018). One
issue is what to call the field. I have been using the phrase Education with Technology (EwT) for
research on education and educational outcomes when using technology. I use EdTech to refer to
the technology companies that sell technology aimed specifically at the education market.

There is some excellent research examining the effectiveness of technology for learning. For
example, decades of high-quality research by Anderson and colleagues (e.g., Anderson et al., 1985;
Ritter et al., 2007) on the Cognitive Tutor has shown the successful application of cognitive science
to education software (see https://www.carnegielearning.com/). Two important aspects of this
success story are: (1) the applications developed alongside the theory (ACT-R) that Anderson
had developed for cognition, and (2) the successful application to the classroom took decades of
rigorous research. The focus of this paper is to improve the quality of existing research in order to
allow more progress to occur.

Four concerns of researchmethods were chosen. These were picked both because examples were
found where there are concerns and recommendations exist for improvement that can be easily
accommodated. Many other topics, covering different design and analytic methods (e.g., robust
methods, visualizations), could also have been included, but having four seems a good number so
that each receives sufficient attention. The four concerns are:
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Wright Concerns for EwT

1. Power analysis (the sample size can be too low to have an
adequate likelihood of producing meaningful results);

2. Multilevel modeling (the units are not independent, which is
assumed for traditional statistical tests, and this usually means
that the p-values are lower than they should be);

3. Dichotomizing (continuous variables are turned into
dichotomous variables at arbitrary points, like the median,
thereby losing information);

4. Inaccurate statistical reporting (sometimes because of typos,
sometimes because of reading the wrong output, the reported
statistics are incorrect).

CHOOSING EXAMPLES

The field of EwT was chosen for three reasons. First, it offers
valuable potential for education, though the impact has failed to
live up to the potential/hype (see Cuban, 2001; Reingold, 2015).
There are several possible reasons for this (e.g., Wright, 2018),
one of which is that the methods and statistical procedures used
in empirical studies leave room for improvement. Second, it is an
area in which I have been working. Third, as a multidisciplinary
field, different researchers bring different expertise. It may be that
a research team does not have someone trained in psychology and
social science research methods (e.g., Breakwell et al., 2020). As
someone who is trained in these procedures, I hope to bring my
skills to this field.

Some examples will be used both to show that these issues arise
and to illustrate the problems. It is important to stress that in
any field it is possible to find illustrations of different concerns.
Papers from the 2017 Artificial Intelligence in Education (AIED)
conference in Wuhan, China, were examined. This conference
is a showcase for mostly academic researchers developing and
evaluating new procedures and technologies. The papers are
published in five categories: papers, posters, doctoral, industry,
and tutorials. Only the papers and posters are examined here:
the doctoral papers often sought advice on how to conduct the
planned research; the industry papers often described a product
or were a case study using a product; and the tutorials gave
accounts of what their audiences would learn.

According to their website1, only 36 of the 121 papers
submitted for oral presentations were accepted as oral
presentations. Thirty-seven of these were accepted as posters
(and 7 of 17 papers submitted for posters were accepted). Of the
138 total submissions, 80 were accepted as a paper or a poster
(58% acceptance rate). There were 36 papers and 37 posters
in the proceedings, so not all accepted posters appeared in the
proceedings. The main difference between oral presentations and
posters for the proceedings is that authors of oral presentations
were allowed 12 pages of text for their papers and authors of
posters were allowed only four pages of text. In many cases it
was difficult to know what methods and statistical techniques
were used, particularly for the posters, presumably because the

1http://www.springer.com/cda/content/document/cda_downloaddocument/

9783319614243-p1.pdf?SGWID=0-0-45-1609692-p180928554 (accessed May

5, 2018).

authors had to make difficult choices of what to include because
of the length restrictions.

Reflecting the multidisciplinarity of the field, the papers
differed in their approaches. Some papers were primarily focused
on statistical procedures to classify student responses and
behaviors. Others were demonstrations of software. The focus
here is on research that usedmethods common to what Cronbach
(1957) called the experimental and correlational psychologies.
Of the 63 full papers and posters, 43 (68%) involved collecting
new data from participants/students not simply to show the
software could be used. Some of these were described as “user
studies” and some as “pilot studies.” It is important to stress that
while examples will be shown to illustrate concerns, some aspects
of these studies were good and overall the conference papers
are high-quality. For example, those evaluating the effectiveness
of an intervention tended to use pre- and post-intervention
measures and compare those in the intervention condition with
a control condition.

The methods—both the design of the study and the statistical
procedures—were examined for concerns that a reviewer might
raise. Four concerns are discussed here and recommendations
are made. These were chosen both by how much they may affect
the conclusions and how easily they can be addressed. While
these comments are critical, the purpose of the paper is to be
constructive for the field. Only a couple of examples are shown
for each concern. These were picked because of how well they
illustrate the concern. Before doing this, some background on
hypothesis testing is worth providing. Some statistical knowledge
about this procedure is assumed in this discussion. At the end of
each section specific readings are recommended.

CRISIS IN SCIENCE AND HYPOTHESIS
TESTING

Educational with Technology research is not done in isolation.
While the theme of this paper is to look at how EwT researchers
deal with some issues, there is a crisis within the sciences
more broadly that requires discussion. The crisis is due to
the realization that a substantial proportion (perhaps most)
of the published research does not replicate (Ioannidis, 2005;
Open Science Collaboration, 2015). This occurs even in the top
scientific journals (Camerer et al., 2018). This has led to many
suggestions for changing how science is done (e.g., Munafò et al.,
2017). For discussion see papers in Lilienfeld and Waldman
(2017) and a recent report by Randall and Welser (2018).
Unfortunately using traditional methods, which have been shown
to produce results that are less likely to be replicated, are ones
that can make the researchers’ CVs look better (Smaldino and
McElreath, 2016).

One aspect that many are critical of is the use and often mis-
use of hypothesis testing. It is worth briefly describing what this
is. In broad terms, a scientist has a set of data, assumes some
model H for the data, and calculates the distribution of different
characteristics for plausible samples assuming this model is true.
Suppose some characteristics of the observed data are far away
from the distribution of plausible samples. This would be very
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rare if your assumed model were correct. “It follows that if the
hypothesis H be true, what we actually observed would be a
miracle. We don’t believe in miracles nowadays and therefore we
do not believe in H being true” (Neyman, 1952, p. 43). There are
some problems with this approach. If we only react when the data
would require a miracle to have occurred if H is true, scientific
findings would accumulate too slowly. Instead, for most research
situations a threshold below miracle is needed to allow evidence
to accumulate, but then it is necessary to accept that sometimes
errors occur because of this lower threshold. Neyman (1952, p.
55) called this “an error of the first kind” (emphasis in original).
What is important here is that the possibility of error is not only
recognized, but quantified.

Hypothesis testing is usually done by testing what is called
the null hypothesis. This is usually a point hypothesis and that
there is no effect of the independent variable, no difference
between groups, or no association. It is often denoted as H0. As
a single point, it can never be true. This creates a conceptual
problem: the procedure assumes a hypothesis that is always
false (Cohen, 1994).

The conditional probability is usually called the p-value or
sometimes just p. Calculating the p-value for different problems
can be complex. Traditionally most researchers have accepted a
5% chance of making a Type 1 error when the null hypothesis
is true. This is called the α (alpha) level and if the observed
conditional probability is less than this, researchers have adopted
the unfortunate tradition of saying it is “significant.” Unfortunate
because finding p < 5% does not mean the effect is “significant”
in the English sense of the word. If comparing the scores for two
groups of students, finding a “significant” effect in a sample only
provides information that the direction of the true effect in the
population is likely the same as observed in the sample. Recently
there has been a move to use different α levels. In some branches
of physics it is set much lower (see Lyons, 2013) for discoveries
because the cost of falsely announcing a discovery is so high
that it is worth waiting to claim one only when the data would
have had to arise by almost a “miracle” if the null hypothesis
were true. Some social scientists think it is appropriate to have
a lower threshold than this (Benjamin et al., 2018), but others
have pointed out problems with this proposal (e.g., Amrhein and
Greenland, 2018; McShane et al., 2019). For current purposes 5%
will be assumed because it remains the most used threshold.

There are other problems with the hypothesis testing
approach and scientific practices in general. Alternatives have
been put forward (e.g., more visualization, pre-registering
research, Bayesian models), but each alternative has limitations
and can bemis-used. The remainder of this paper will not address
these broader issues.

Background Reading
The report by the Open Science Collaboration (2015), while
focusing on psychology research, discusses topics relevant to
those applicable to the EwT studies considered. Cohen (1994)
presents a good discussion of what null hypothesis significance
testing is and is not.

CONCERN #1: POWER ANALYSIS AND
SMALL SAMPLES

The hypothesis testing framework explicitly recognizes the
possibility of errantly rejecting the null hypothesis. This has
been the focus of much discussion because this can lead to
publications that are accepted in journals, but do not replicate.
Another problem is when research fails to detect an effect when
the true effect is large enough to be of interest. This is a problem
because this often limits further investigations. This is called a
Type 2 error: “failure to reject H0 when, in fact, it is incorrect,
is called the error of the second kind” (Neyman, 1942, p. 303).
As with Type 1 errors, the conditional probability of a Type 2
error is usually reported. Researchers specify theMinimumEffect
that they design their study to Detect (MED). The conditional
probability of a Type 2 error is usually reported as the probability
of failing to find a significant effect conditional on this MED and
is often denoted with the Greek letter β (beta). The statistical
concept power is 1–β and convention is that it should usually
be at least 80%. However, if it is relatively inexpensive to recruit
participants or if your PhD/job prospects require that you detect
an effect if it is as large as the MED, it would be wise to set your
power higher, for example 95% (this is the default for the popular
power package G∗Power, Faul et al., 2007, 2009).

Over the past 50 years several surveys of different literatures
have shown that many studies have too few participants to be
able to detect the effects of interest with a high likelihood (e.g.,
Sedlmeier and Gigerenzer, 1989). The problem of having too
few participants exists in many fields. Button et al. (2013), for
example, found about 30% of the neuroscience studies they
examined had power <11%. This means that these studies had
only about a one-in-nine chance of observing a significant effect
for an effect size of interest. It is important to re-enforce the fact
that low power is a problem in many disciplines, not just EwT.

Conventional power analysis allows researchers to calculate
a rough guide to how many participants to have in their
study to give them a good chance of having meaningful
results. Many journals and grant awarding bodies encourage
(some require) power analysis to be reported. The specifics
of power analysis are tightly associated with hypothesis
testing, which is controversial as noted above, but the general
notion that the planned sample size should be sufficient to
have a high likelihood of yielding meaningful information
is undisputed. If researchers stop using hypothesis testing,
they will still need something like power analysis in order to
plan their studies and to determine a rule for when to stop
collecting data.

Tables (e.g., Cohen, 1992) and computer packages (e.g., Faul
et al., 2007, 2009) are available to estimate the sample size needed
to have adequate power for many common designs. Simulation
methods can be used for more complex designs not covered by
the tables and packages (e.g., Browne et al., 2009; Green and
MacLeod, 2016).

Deciding the minimum effect size for your study to detect
(MED) is difficult. For many education examples a small
improvement in student performance, if applied throughout
their schooling, can have great consequences. For example,
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Chetty et al. (2011) estimated that a shift upwards of 1
percentile in test scores during kindergarten is associated with
approximately an extra $130 per annum income when the
student is 25–27 years old. When multiplied across a lifetime
this becomes a substantial amount. Researchers would like to
detect the most miniscule of effects, but that would require
enormous samples. The cost would not be justified in most
situations. It is worth contrasting this message with the so-
called “two sigma problem.” Bloom (1984) discussed how
good one-on-one tutoring could improve student performance
a large amount: two sigma (two standard deviations) or
from the 50th percentile to the 98th percentile. He urged
researchers to look for interventions or sets of interventions
that could produce shifts of this magnitude. Many in the
EwT arena talk about this as a goal, but for product
development to progress research must be able to identify much
smaller shifts.

The choice of MED is sometimes influenced by the observed
effects from similar studies. If you expect the effect to be X, and
use this in your power calculations, then if your power is 80% this
means that you have about a 4 in 5 chance of detecting the effect
if your estimate of the expected effect is fairly accurate. However,
if you are confident that your true effect size is X, then there is
no reason for the study. It is usually better to describe the MED
in relation to what you want to be able to detect rather than in
relation to the expected effect.

To allow shared understanding when people discuss effect
sizes, many people adopt Cohen’s (1992) descriptions of small,
medium, and large effects. While people have argued against
using these without considering the research context (Lipsey
et al., 2012), given their widespread use they allow people to
converse about effect sizes across designs and areas.

Two Examples
Two examples were chosen to show the importance of
considering how many participants are likely to complete the
study. The studies show the importance of considering what the
minimum effect size to detect (MED) should be. Overall, across
all 43 studies, the sample sizes ranged from <10 to 100.

Arroyo et al. (2017) compared collaboration and no
collaboration groups. They collected pre and post-intervention
scores and the plan was to compare some measure of
improvement between the groups. Originally there were 52
students in the collaboration group and 57 in the no collaboration
group. If they were using G∗Power (Faul et al., 2007, 2009) and
wanted a significance level of 5% and power of 80%, it appears the
MED that they were trying to detect was d = 0.54sd. This MED
is approximately the value Cohen describes as a medium effect.
This value might be reasonable depending on their goals. Only
47 students completed the post-test. Assuming 24 and 23 of these
students were in the two groups, respectively, the power is now
only 44%. They were more likely to fail to detect an effect of this
size than to detect one.

Another example where the sample size decreased was
Al-Shanfari’s et al. (2017) study of self-regulated learning.
They compared three groups that varied depending on the
visualizations used within the software (their Table 1). One

hundred and ten students were asked to participate. This is
approximately the sample size G∗Power suggests for a one-way
Anova with α = 5%, power of 80%, and a MED of f = 0.3,
which is between Cohen’s medium and large effects. The problem
is some students did not agree to participate and others did not
complete the tasks. This left few students: “9 students remained
in the baseline group, 9 students in the combined group and 7 in
the expandable model group” (p. 20). Assuming the same α and
MED, the power is now about 22%. Even if the authors had found
a significant effect, with power this low, the likelihood is fairly
high that the direction of the effect could be wrong (Gelman and
Carlin, 2014).

Were these MEDs reasonable? The choice will vary by
research project and this choice can be difficult. As noted above,
in educational research, any manipulation that raises student
outcomes, even a minute amount, if applied over multiple years
of school, can produce large outcomes. Further, a lot of research
compares an existing system to one with some slight adaptation
so the expected effect is likely to be small. If the adaptation
is shown to have even a slight advantage it may be worth
implementing. If Arroyo et al. (2017) andAl-Shanfari et al. (2017)
planned to design their studies to detect what Cohen (1992) calls
small effects (d = 0.2 and f = 0.1), the suggested samples sizes
would have been n = 788 and n = 969. To yield 80% power to
detect a 1 percentile shift, which Chetty et al. (2011) noted could
be of great value, would require more than 10,000 students in
each group.

Recommendations
1a. Report how you choose your sample size (as well as other

characteristics of your sample). This often means reporting
a power analysis. Try to have at least the number of
participants suggested by the power analysis and justify
the MED you used. The expected drop out rate should be
factored into these calculations.

1b. If it is not feasible to get the suggested number
of participants,

- Do not just do the study anyway. The power analysis shows
that there is a low likelihood to find meaningful results so your
time and your participants’ time could be better spent. And do
not just change the MED to fit your power analysis.

- Use more reliable measurements or a more powerful design
(e.g., using covariates can increase power, but be careful, see
for example, Meehl, 1970; Wright, 2019).

- Combine your efforts with other researchers. This is one of
Munafò et al.’s (2017) recommendations and they give the
example of The Many Lab (https://osf.io/89vqh/). In some
areas (e.g., high-energy particle physics) there are often dozens
of authors on a paper. The “authors” are often differentiated by
listing a few as co-speakers for the paper, and/or having some
listed as “contributors” rather than “authors.”

- Change your research question. Often this means focusing
your attention on one aspect of a broad topic.

- Apply for a grant that allows a large study to be conducted.

Caveat: Power analyses are not always appropriate. Power
analysis is used to suggest a sample size. If you are just trying
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to show that your software can be used, then you do not need a
large sample.

Background Reading
Cohen (1992) provides a brief primer for doing power analysis
for many common research designs. Baguley (1994) and Lenth
(2001) provide more critical perspectives of how power analysis
is used.

CONCERN #2. MULTILEVEL MODELING

Two common situations where multilevel modeling is used
in education research are when the students are nested
within classrooms and when each student has data for several
measurements. For the first situation, the data for the students
are said to be nested within the classrooms and for the
second the measurements nested within the students. The
problem for traditional statistical methods is that the data
within the same higher level unit tend to be more similar
with each other than with those in other units. The data are
not independent: an assumption of most traditional statistical
procedures. Educational statisticians and educational datasets
have been instrumental in the development of ways to analyze
data in these situations (e.g., Aitken et al., 1981; Aitkin and
Longford, 1986; Goldstein, 2011). The approach is also popular
in other fields, for example within ecology (e.g., Bolker et al.,
2009), geography (e.g., Jones, 1991), medicine (e.g., Goldstein
et al., 2002), psychology (e.g., Wright, 1998), and elsewhere.
The statistical models have several names that can convey subtle
differences (e.g., mixed models, hierarchical models, random
coefficient models). Here the phrase “multilevel models” is used.

Suppose you are interested in predicting reading scores for
a 1,000 students in a school district equally divided among 10
schools from hours spent on educational reading software. Both
reading scores and hours spent likely vary among schools. If you
ran the traditional regression:

readingi = β0 + β1hoursi + ei (1)

It is assumed that the ei are independent of each other, but
they are not. There are a few approaches to this; the multilevel
approach assumes each of the 10 schools has a different intercept
centered around a grand intercept, β0 in Equation (1). The
method assumes these are normally distributed and estimates
the mean and standard deviation of this distribution. Letting the
schools be indexed by j, the multilevel equation is:

readingij = β0 + β1hoursij + uj + eij (2)

where uj denotes the variation around the intercept. Most of the
main statistical packages have multilevel procedures.

The R statistics environment (R Core Team, 2019) will be used
for this, and subsequent, examples2. It was chosen because of

2Power analyses (Concern #1) can also be conducted in R. There are function

in the base R package including power.t.test and specialized packages for more

involved designs including PoweR (Lafaye de Micheaux and Tran, 2016) and pwr

(Champely, 2018).

functionality (there are over ten thousand packages written for
R) and because it is free, and therefore available to all readers.
It can be downloaded from: https://cran.r-project.org/. Here the
package lme4 (Bates et al., 2015) will be used. To fit the model in
Equation (2) with a multilevel linear model you enter:

lmer(reading ∼ hours + (1|school))

Two Examples
The two examples were picked to illustrate the two main ways
that education data are often multilevel. The first is when the
students are nested within classrooms and this is one of the first
applications ofmultilevel modeling to education data (e.g., Aitkin
and Longford, 1986). The second is where the students have
several measurements. The measurements can be conceptualized
as nested within the individual. These are often called repeated
measures or longitudinal designs.

The textbook education example for multilevel modeling is
where students are nested within a class. Li et al. (2017) used
this design with 293 students nested within 18 classrooms. They
compared student performance on inquiry and estimation skills
using a linear regression. Inference from this statistic assumes
that the data are independent from each other. It may be that the
students in the different classrooms behave differently on these
skills and that the teachers in these classrooms teach these skills
differently. In fact, these are both highly likely. Not taking into
account this variation is more likely to produce significant results
than if appropriate analyses were done. Therefore, readers should
be cautious with any reported p-values and the reported precision
of any estimates.

Another common application of multilevel modeling is where
each student provides multiple data points, as with Price et al.
(2017) study of why students ask for a hint and how they use
hints. Their data set had 68 students requesting 642 hints. Hints
are nested within students. Students were also nested within
classes and hints within assignments (and hints were sometimes
clustered together), but the focus here is just hints being nested
within students. The authors state that “the number of hints
requested by student varied widely” (p. 316) so they were aware
that there was student-level variation in hint frequency. There
likely was also variation among students for why they requested
hints and how they used the hints. One interest was whether
the student did what the hint suggested: a binary variable. A
generalized linear multilevel model could be used to predict
which students and in which situations hints are likely to be
followed. Instead Price et al. rely mostly on descriptive statistics
plus a couple of inferential statistics using hints as the unit
of study, thereby ignoring the non-independence of their data.
Thus, their standard errors and p-values should not be trusted.
For example, they examined whether how much time was spent
looking at a hint predicted whether the hint was followed without
considering that this will likely vary by student. Following a
hint is a binary variable, and often a logistic regression is used
for this. The lme4 package has a function for generalized linear
multilevel regressions called glmer. Here is a model that they
could have considered.
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glmer(followHint ∼ time + (1|student),
family = "binomial")

While treating time as either a linear predictor of the probability
of following a hint, or linear with the logit of the probability, is
probably unwise, a curved relationship (e.g., a b-spline) could be
estimated and plotted within the multilevel modeling framework.
In R there is a function, bs, for b-splines:

glmer(follow ∼ bs(time) + (1|student),
family="binomial")

Recommendations
2a. When the data are clustered in some way so that information

about one item in a cluster provides information about
others in the cluster, the data are not independent. This is
an assumption of traditional statistical tests. The resulting p-
values will usually be too low, but sometimes they will be
too high, and sometimes the effects will be in the opposite
direction. Alternatives should be considered. If the non-
independence is ignored there should be justification and
readers should be cautious about the uncertainty estimates
(including p-values) of the results.

2b. There are alternatives to multilevel modeling. Some latent
variable (including item response theory [IRT]) and Bayesian
approaches can take into account individual variation and
are sometimes nearly equivalent. In some disciplines it is
common to estimate separate values for each school or
student, what is sometimes called the fixed effect approach.
There are arguments against this approach (e.g., Bell and
Jones, 2015), but sometimes estimation problems with
multilevel models mean the fixed effect is preferred (Wright,
2017).

2c. When the data have a multilevel structure, multilevel
modeling (or some other way to take into account the
non-independence of the data) should be used. There are
many resources available at http://www.bristol.ac.uk/cmm/
learning/ to learn more about these procedures. Several
multilevel packages are reviewed at http://www.bristol.ac.
uk/cmm/learning/mmsoftware/. Many free packages are
available in R and these are discussed at: http://bbolker.
github.io/mixedmodels-misc/MixedModels.html.

Background Reading
Goldstein (2011) provides detailed mathematical coverage of
multilevel modeling. Hox (2010) provides a detailed textbook
that is less mathematical. Field and Wright (2011) is an
applied introduction.

CONCERN #3. DICHOTOMIZING

Numerous authors have criticized researchers for splitting
continuous measures into a small number of categories at
arbitrary cut-points (e.g., Cohen, 1983; MacCallum et al., 2002).
Sometimes the cut-scores are chosen at particular points for
good reasons (e.g., the boiling and freezing points for water,
the passing score on a teenager’s driving test to predict parent
anxiety), but even in these situations some information is lost and

these particular breakpoints could be accounted for by allowing
discontinuities in the models used for the data.

Consider the following example. Figure 1A shows the
proportions of positive ratings for rigor and collaboration for
New York City schools in 2014–20153. The two variables are
not dichotomized and there is a clear positive relationship. Other
aspects of the data are also apparent, like the increased variance
for lower values (proportions tend to have larger variance near
50% than at the extremes) and also the non-linearity related
to 1.0 being the highest possible proportion. Non-linearity is
important to examine. Figures 1B–D shows that information
is lost when dichotomizing either variable. In Figure 1B the
x-variable (rigorous) has been dichotomized by splitting the
variable at the median, a procedure called a median split. The
median is 0.86. Therefore, this procedure treats 0.70 and 0.85 as
the same, and 0.87 and 0.99 as the same, but assumes there is
some leap in rigor between 0.85 and 0.87. In Figure 1C the y-
variable, collaboration, has been dichotomized. Here information
about how collaborative a school is—beyond just whether they
are in the top 50% of schools or not—is lost. In Figure 1D both
variables have been dichotomized. The researcher might conduct
a 2 × 2 χ2, but would not be able to detect any additional
interesting patterns in the data.

Two Examples
The examples were chosen to illustrate two issues with
dichotomization. The first was chosen because it uses a common,
but much criticized, procedure called a median split. The choice
of the example was also based on the authors providing enough
data so that samples could be created that are consistent with
the dichotomized data but lead to different conclusions if not
dichotomized. The second example involves the authors using
a complex method to dichotomize the data. This was chosen to
stress that using a complex procedure does not prevent the loss
of information.

Perez et al. (2017) allocated students either to a guided or to
an unguided learning condition, and then focused on those 74
students who performed less well on a pre-test. They transformed
the post-test score using a median split (they do not say how
values at the median are classified, but here it is assumed the
“high” group is at or above themedian).Table 1 shows the results.
Using a 2 × 2 χ2 with Yates’ correction the result is χ2

(1)
= 0.21,

p = 0.65, with an odds ratio of 1.37 (the null is 1.00) with a 95%
confidence interval from 0.50 to 3.81 (found using the odds.ratio
function in the questionr package, Barnier et al., 2017).While the
condition variable is a truly dichotomous variable—participants
were either in the guided condition or not—the post-test scores
vary. Dichotomizing the variable loses information about how
much above or below the median the scores were.

It is likely that Perez et al. (2017) were interested in whether
their manipulation affected post-test scores. If they had analyzed
their data taking into account information lost by dichotomizing,
they might have detected a statistically significant difference.
Suppose their post-scores were based on responses to 10 items.

3From https://data.cityofnewyork.us/Education/2014-2015-School-Quality-

Reports-Results-For-High-/vrfr-9k4d.
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FIGURE 1 | Data from New York City schools on the relationship between collaborative and rigorous ratings. (A) Shows the original variables. (B–D) Dichotomize the

variables thereby presenting less information. A slight random “jitter” has been added to the values of dichotomized variables so that it can be seen when multiple

schools have similar values.

TABLE 1 | The cross-tabulation table for (Perez et al., 2017) data.

Post-test score

Condition Below median At or above median %At or above median

Unguided 19 17 47%

Guided 17 21 55%

Total 36 38 51%

The data in Sample 1 in Table 2 are consistent with the
dichotomized values inTable 1. Perez et al. might have conducted
a Wilcoxon rank sum test, calculated here using the defaults of
R’s function wilcox.test. A t-test leads to similar results,
but readers might question the distribution assumptions of the
t-test for these data. The result for Sample 1 is W = 472.5, a p-
value of 0.02, with the guided condition performing better. The
researchers could have concluded an advantage for this approach.

However, Sample 2 of Table 2 is also consisted with the
dichotomized values. It hasW = 893.5, p= 0.02, but this finding
is in the opposite direction with the guided condition doing

worse. Perez et al.’s (2017) data might be like Sample 1, Sample
2, or neither of these.

The study by Li et al. (2017, their Table 2) was mentioned

earlier because multilevel modeling could have been used,

but their use of dichtomization is also noteworthy. They
recorded the number of inquiry skills and explanation skills

each student used, and conducted some preliminary statistics.
They dichotomize both variables (like Figure 1D). Rather than

using a median split on the total scores, they ran a K = 2

means cluster analysis on the individual items. The authors
label the clusters high and low. If evidence were presented that
people really were in two relatively homogeneous groups (using
for example, taxometric methods, Waller and Meehl, 1998)
then this could have been appropriate but if the constructs are
dimensions information is lost. They then test the association
that these dichotomized variables are associated and found
the Pearson χ2

(1)
= 6.18, p = 0.01. Interestingly, they also

calculated Pearson’s correlation using the continuous measures
(r = 0.53, p < 0.001). It is unclear why both were done
and, in relation to significance testing, it is inappropriate
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TABLE 2 | Possible datasets for the data in Table 1.

Number correct

0 1 2 3 4 5 6 7 8 9 10 Mean

Sample 1 Unguided 6 6 2 2 2 1 4 5 4 2 2 4.39

Guided 0 2 1 4 5 5 4 2 5 4 6 6.18

Sample 2 Unguided 1 1 1 7 9 1 1 1 3 6 5 5.72

Guided 5 7 3 1 1 12 5 1 2 1 0 3.74

Those at or above the median for the sample are shown in bold. For the first sample this is 6, for the second it is 5.

to test the same hypothesis multiple times even if one
is inappropriate.

Recommendations
There are reasons to dichotomize. If the continuous variable
results in a dichotomy, and that dichotomy is of interest, then
dichotomizing can be useful. Sometimes it is useful to include a
dummy variable for whether a person partakes in some behavior
(e.g., having a computer at home; being an illegal drug user)
and the amount of that behavior (e.g., hours at home using the
computer; frequency of drug use). The concern here is when
dichotomization (or splitting into more than two categories) is
done without any substantive reason and where the cut-off points
are not based on substantive reasons. Sometimes continuous
variables are split into categories so that particular plots (e.g.,
barplots) and types of analyses (e.g., Anova, χ2 tests) can be used
as opposed to scatter plots and regression.

3a. If you believe a continuous variable or set of continuous
variables may be based on a small number of categorical
constructs, use appropriate methods (e.g., taxometric
methods, Waller and Meehl, 1998) to justify this.

3b. Consider non-linear and dis-continuous models. Dummy
variables can be included, along with quantitative variables,
in regression models if you believe there are certain
discontinuities in relationships.

3c. Do not dichotomize a variable just to allow you to use a
statistical or graphical procedure if there are appropriate and
available procedures for the non-dichotomized variables.

Background Reading
(MacCallum et al., 2002) provides a detailed and readable
discussion about why dichotomization should usually be avoided.

CONCERN #4. ERRORS IN NUMBERS

Humans, including myself, make typing mistakes.
There are several reasons why people distrust scientific results.

The easiest of these to address is errors in the numbers reported
in tables and statistical reports. These types of errors will always
be part of any literature, but it is important to lessen their
likelihoods. Some examples were chosen to show different types
of errors.

Some Examples
Pezzullo et al. (2017, p. 306) report the following F statistics:

F(1, 115) = 2.4579, p= 0.0375 “significant main effect”
F(1, 115) = 2.9512, p= 0.0154 “significant interaction”
The p-values associated with these F statistics should be

0.12 and 0.09, respectively. The authors have turned non-
significant findings into significant ones. There is no reason to
think that this was a deliberate fabrication. If the authors had
wanted to create significant effects where there was none, and
they wanted to conceal this act, they could have changed the
F-values too.

Some errors can be found with software like the freeware
statcheck (Nuijten et al., 2016). It reads statistical text and tries
to determine if the statistic and p-value match. If in R (with the
statcheck package loaded) you write:

statcheck("F(1,115) = 2.4579,
p = .0375")

it tells you that there may be some errors in the expression. The
software has been created to allow entire text to be analyzed,
parsing out the statistical material. Nuijten and colleagues
used this to analyze data from several American Psychological
Association (APA) journals. They found that about 10% of p-
values reported were incorrect. The package does not catch all
errors so should not be the only thing relied upon to check a
manuscript before submission (an analogy would be just using
a spellchecker rather than proofreading).

Another example is from Talandron et al. (2017, p. 377). They
were interested in the incubation effect where waiting to solve a
problem after failure can help to produce the correct response.
One of their key findings was “the average number of attempts
prior to post-incubation of all IE-True (M = 32, SD = 21) was
significantly lower than those of IE-False (M = 46, SD = 22)
[t(169) = 1.97, two-tailed p < 0.01].” The true p-value for t(169)
= 1.97 is 0.05.

The errors by Pezzullo et al. and Talandron et al. were
relatively easy to identify. Other errors can be more difficult to
notice. Sjödén et al. (2017, p. 353) analyzed data of 163 students
playing 3,983 games. They compared the number of games played
by each student with the student’s average goodness rating and
found “Pearson r = 0.146; p = 0.000.” The p associated with r
= 0.146 with n= 163 is, two-tailed, 0.06. The likely source of the
error is that the wrong n has been used either when looking up the
p-value manually or these student-level variables were repeated
for each game the student played in the data file and the authors
took the numbers from the statistics package without noticing
this problem.
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It is important to check the degrees of freedom carefully,
because errant degrees of freedom may mean the wrong statistic
is being reported. For example, Kumar (2017, p. 531) compared
student performance before and after some changes were made
to the software that he was examining. He reports no significant
main effect between these two groups. He then repeated the
analyses including a covariate: number of puzzles solved during
the task. He reports that the main effect is now significant: F(2,169)
= 3.19, p = 0.044. The 2 in the numerator of the degrees of
freedom is odd. There are only two groups so there should only
be 1 degree of freedom for the numerator if this is a test of
the difference between the model with the covariate and the
model with the covariate plus the single grouping variable that
distinguishes the two groups. If it is a typo and it is 1 then the
F and/or the p is wrong. From the description it appears that
the covariate also has only one degree of freedom. Because some
statistics software produces the F value for the entire model as
well as its components, it could be that Kumar took the statistic
from the wrong part of the output. He argues that the covariate
should have been associated with the outcome, so it would not
be surprising that the covariate plus the group difference were
statistically significant.

Recommendations
4a. While packages like statcheck (Nuijten et al., 2016) can catch

some errors, they will not catch all errors. As the software
evolves, more (but not all) errors will be caught. This might
have the negative affect of people relying on it too much (like
not learning to spell because of the ubiquity of spellcheckers).
Given that only some errors will be caught it is important not
to treat this as if it is checking all numeric output. There will
always be the chance of some typographical errors, but it is
worth using modern technology to catch some errors.

4b. Procedures exist to include the statistical code in your word
processing document that reads the data and creates the
numeric output (and plots) directly. An example is the
package knitr (Xie, 2015). It allows you to write your paper
in LaTeX and have chunks of R (and many other statistical
packages), typing

names(knitr::knit_engines$get())

in R currently (Nov. 20, 2019) shows 41 languages,
including STATA, SAS, Java Script, and Python) embedded
within it. An author could write “The p-value was
\Sexpr{t.test(DV∼IV)$p.value}” in LaTeX and the p-value
would appear in the document. This has the additional
advantage that if an error in the data file is discovered and
fixed, then the tables, plots, and any statistics embedded in
the text can be automatically corrected.

4c. While the responsibility for checking numbers and words is
primarily the authors, the reviewing process for conferences
and journals could identify some of these errors and allow
the authors to correct them. Some journals already do this.
For example the Association of Psychological Science (APS)
uses statcheck both before manuscripts are sent for review
and it is required that authors submit a statcheck report with
their final submission (https://www.psychologicalscience.

org/publications/psychological_science/ps-submissions#
STATCHK). It may be worthwhile to have statistical and
methods reviews of submissions as is done in some medical
journals. Some of the issues are discussed in Altman (1998).
If there are not enough statistics reviewers, other reviewers
could be given guidelines for when to direct a submission
to a statistics/methods reviewer. Example guidelines are in
Greenwood and Freeman (2015).

Background Reading
The statcheck webpage (https://mbnuijten.com/statcheck/) has
links to sources showing show to use it. The web page for
knitr (https://yihui.name/knitr/) will also provide more up-to-
date information about at least that package than print sources.
For advice to journal and conference referees and editors, see
Greenwood and Freeman (2015).

SUMMARY

The crisis in behavioral science has led to several guidelines
for how to avoid some of the pitfalls (e.g., Munafò et al.,
2017). These include teaching more fundamentals and ethical
issues in statistics and methods courses, pre-registering research
design/analytic methods, using alternatives to hypothesis testing,
and more transparent methods for disseminating research
findings. These are issues within the current crisis in science.
Stark and Saltelli (2018) discuss an under-lying cause of why bad
science abounds: Cargo Cult Statistics. This is a phrase taken
from Feynman’s (1974) famous commencement address “Cargo
Cult Science,” which itself is taken from Worsley (1957). Stark
and Saltelli define the statistical variety as “the ritualistic miming
of statistics rather than conscientious practice” (Stark and Saltelli,
2018, p. 40). They describe how this miming is often the most
effective way to get papers published (have it superficially look
like other published papers) and having many publications is
necessary for career development in modern academia. It is
important to focus on both the broad issues like how research
organizations reward output and on the specific issues that have
created cargo cult statistics. The focus here is on how to address
the more specific issues.

The area examinedwas the field of Educationwith Technology
(EwT) and studies that might fit content-wise within applied
psychology. EwT was chosen because of its importance for
society. Its inter-disciplinarity means many of those conducting
research had their formal research training outside that of those
disciplines that tend to conducted studies on human participants.
The hope is that this paper provides some helpful guidance.

Four issues were chosen in part because they can be addressed
by researchers relatively easily: power analysis, multilevel
modeling, dichotomization, and errors when reporting numeric
statistics. Other issues could have been included (e.g., using
better visualizations, using more robust methods), and with all
of these issues, studies from many fields also show these (and
other) concerns.

A small number of underlying themes relate both to the
issues raised in this paper for EwT and to the crisis in science
more generally.
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1. Don’t get excited by a p-value.
2. Don’t think that because a paper is published that it

is replicable and certainly not that it is the end of the
story. The evidence reported in papers contributes to
the story.

3. Empirical science, done well, is difficult and time-consuming.
Time taken planning research is usually well spent.

4. The goals of science are different than the goals of many
scientists and are not perfectly aligned with the structures put
in place to reward scientists.
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