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Research has identified two core difficulties many students have with fractions: first,
they often struggle with processing fraction magnitudes, and second, they rely on
natural number concepts in fraction problems [“Natural Number Bias” (NNB)]. Yet, the
relation between these two difficulties is not well-understood. Moreover, while most
studies of the NNB relied on analyses of whole samples, there is empirical evidence
that the occurrence of the NNB differs between student subgroups. In the present
study, we investigate individual students’ profiles of the occurrence of the NNB and
their ability to process fraction magnitude, using a dynamic assessment that utilizes
continuous diagrams on touchscreen devices. We analyze data of 234 low-achieving
6th-grade students from Germany who completed a symbolic fraction comparison task,
and a fraction magnitude estimation task with continuous circle and tape diagrams.
A cluster analysis on the comparison task revealed three distinct clusters: a Typical
Bias cluster (better performance on symbolic fraction comparison items congruent
to natural number-based reasoning), a Reverse Bias cluster (better performance on
items incongruent to natural number-based reasoning), and a No Bias cluster (similar
performance on congruent and incongruent items). Only students in the No Bias cluster
but not students in the other clusters demonstrated a distance effect in symbolic fraction
comparison, suggesting fraction magnitude processing. Linear mixed models on the
percent absolute error in the magnitude estimation task revealed significantly lower
percent absolute error for students in the No Bias cluster compared to students in the
other two clusters. Students in the No Bias cluster were significantly slower to solve
both fraction comparison and fraction magnitude estimation tasks than students in the
other clusters. The results of this study suggest that the occurrence of the natural
number bias and the ability to process fraction magnitude are closely related. The
continuous representations used in our digital assessment tools appeared to be suitable
for assessing both the natural number bias and fraction magnitude processing.

Keywords: natural number bias, comparing fractions, fraction magnitude, cluster analysis, individual profiles,
computer-based assessment
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INTRODUCTION

Plenty of research has shown that many students struggle with
learning of rational numbers, particularly of fractions (e.g., Behr
et al., 1983; Siegler et al., 2011; Lortie-Forgues et al., 2015).
Two major difficulties seem to be that students (1) are not
sufficiently able to understand and process fraction magnitudes,
and (2) rely on natural number principles when reasoning about
rational numbers, causing Natural Number Bias (see Ni and
Zhou, 2005 and see section “The Natural Number Bias as a Source
of Individual Errors in Solving Fraction Problems”). While both
difficulties have been discussed in the literature, there is still
little evidence about the relation between the two. Moreover,
most previous studies have used whole-sample analyses to study
students’ difficulties, while research about individual students’
profiles is scarce (but see Rinne et al., 2017; Gómez and
Dartnell, 2019; González-Forte et al., 2019). Another issue is
that the tasks that have been used to assess fraction magnitude
often allow the use of alternative strategies (e.g., number line
estimation task) that may not solely require processing of fraction
magnitude, or they actually require processing the magnitudes of
two fractions instead of one fraction (e.g., fraction comparison
task). Finally, performance on the fraction magnitude task
may be affected by the presence of a natural number bias.
The present study assesses individual students’ profiles (i.e.,
student subgroups) of natural number bias and investigates
how these profiles are related to students’ ability of processing
fraction magnitude.

The Natural Number Bias as a Source of
Individual Errors in Solving Fraction
Problems
Before students begin learning about rational numbers and
fractions, they have acquired intense knowledge about natural
numbers, both in informal contexts and in school contexts.
Although natural numbers are—from a formal mathematical
perspective—a subset of rational numbers, there are several
properties that apply within the domain of natural numbers
but not within the more general domain of rational numbers.
Accordingly, relying on properties that apply within the
natural numbers but not rational numbers in solving fraction
problems can lead to systematic errors, a phenomenon that
has been called Natural Number Bias (NNB, also referred to
as Whole Number Bias; see Ni and Zhou, 2005). Researchers
have studied the NNB in various dimensions, including the
dimensions of representation, operation, density, and size (for
an overview, see, for instance, Prediger, 2008; Van Hoof
et al., 2015, 2018; Obersteiner et al., 2019a,c): for example,
each natural number has a unique symbolic representation,
while each rational number has infinitely many symbolic
representations (e.g., 1/2 = 2/4 = 3/6 = 0.5, etc.). An example
regarding operation is that while multiplying natural numbers
always makes numbers bigger, this is not generally true for
rational numbers. Regarding density, although there are only
infinitely many numbers between any two natural numbers,
and every natural number has a unique predecessors and

successors, there are infinitely many numbers between any
two rational numbers, and rational numbers do not have
predecessors or successors.

In this study, we focus on the dimension of size or magnitude.
Processing the numerical magnitude of a natural number is fairly
straightforward considering the base-ten system, and comparison
tasks can be solved with digit-by-digit comparison strategies.
For example, 36 is larger than 28 because 3 (tens) is larger
than 2 (tens). In contrast, processing the numerical magnitude
of a fraction requires reasoning about the numerical relation
between two natural numbers, and considering this relationship
as another (rational) number. Comparing two fractions requires
comparison of two such relationships and considering each
fraction as one (holistic) number rather than considering the
numerator and denominator as two distinct numbers. Moreover,
these comparisons can be counterintuitive, because the fraction
with the larger natural numbers is not necessarily the larger
fraction (e.g., 7/8 > 2/3) but can also be the smaller fraction
(e.g., 3/5 < 2/3). When comparing two fractions, students often
rely on simple comparisons of natural number components—
the numerators and the denominators—and do not consider
the actual fraction magnitudes. Such natural number-based
reasoning would lead to correct responses in problems that
are “congruent” (i.e., in which the larger fraction is composed
of the larger natural numbers), and to incorrect responses in
problems that are “incongruent” (i.e., in which the larger fraction
is composed of the smaller natural numbers). Many studies found
that people are indeed more accurate (e.g., Vamvakoussi and
Vosniadou, 2004) and/or faster (e.g., Van Hoof et al., 2013) to
solve fraction problems that are congruent than problems that
are incongruent. This NNB in fraction comparison seems to be
very persistent. It has been documented in younger and older
students (e.g., Van Hoof et al., 2018) as well as in college students
(e.g., DeWolf and Vosniadou, 2011), university students (Gómez
et al., 2017) and—in some types of problems—even in academic
mathematicians (Obersteiner et al., 2013).

In most earlier studies, the NNB was assessed as the average
performance difference between congruent and incongruent
problems across the whole sample. Such an analysis may
mask individual profiles that may deviate from the pattern
of performance found on the group level. In fact, studies
that did use a person-centered approach identified individual
differences in bias patterns (Rinne et al., 2017; Gómez and
Dartnell, 2019; González-Forte et al., 2019): while a fairly large
number of students showed a strong typical NNB, i.e., better
performance on congruent than incongruent items (Gómez
and Dartnell, 2019), other students showed no NNB or even
a reverse NNB, i.e., better performance in incongruent than
congruent comparison items. Students showing a reverse NNB
seem to consider the fractions with smaller components to
be the larger fraction. An interpretation for that pattern
is that these students have a partial—yet still incomplete—
understanding of fraction magnitude. As Rinne et al. (2017,
p. 14) argue, these students may “recognize that larger numbers
can somehow lead to smaller fraction magnitudes, but they
do not fully understand the relationship between numerator
and denominator.”
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González-Forte et al. (2019) showed that profiles derived from
accuracy and response time measures (as reported in the studies
above) were highly consistent with students’ verbal explanations
they gave in interviews when asked to compare fractions. This
suggests that quantitative person-oriented statistical approaches
may also be apt for characterizing individual students’ reasoning.

While the studies mentioned above have identified individual
differences in NNB profiles, Rinne et al. (2017) studied how
these profiles develop within individuals over time. In their
longitudinal study, they found that some students changed their
bias patterns between grade four and grade six. Most students
shifted from a typical NNB to either a reverse NNB or normative,
correct reasoning. The authors suggest that NNB patterns—the
typical and the reverse—might be usual steps within a learning
trajectory from natural numbers to fraction concepts.

In sum, person-centered approaches are necessary to identify
meaningful individual differences in NNB patterns. A related—
and still open—question is to what extent students with different
bias patterns also differ in terms of magnitude processing.

Assessing Fraction Magnitude
Processing
There are multiple ways to interpret the meaning of a fraction,
for instance, as a ratio, part of a whole, division, or measurement
(e.g., Behr et al., 1983). Fraction magnitude refers to the
aspect that a fraction represents one numerical value. To
assess whether people are able to activate fraction magnitude,
researchers have sought to use tasks that actually require fraction
magnitude processing. Two frequently used tasks are symbolic
fraction magnitude comparison and number line estimation
(e.g., Schneider and Siegler, 2010; Schneider et al., 2018a).
Performance on both of these tasks was found to correlate
with mathematical competence (Schneider et al., 2018b, see also
Schneider et al., 2018a for a detailed review of number line
estimation regarding fractions, and Schneider et al., 2017 for
a detailed review of numerical magnitude processing). Yet, to
our knowledge, research comparing the performance between
symbolic magnitude comparison and number line estimation
regarding fractions is sparse (Schneider et al., 2018b; but see
Hamdan and Gunderson, 2017, for evidence of a transfer
between number line training and fraction comparison task,
suggesting that there is a relation between both tasks at a whole
population level).

In the first frequently-used task to assess fraction magnitude
processing—symbolic fraction comparison—people are asked
to decide which of two fractions represents the larger number.
The distance effect is the effect that the smaller the numerical
distance between the two to-be-compared fractions, the
more difficult the item. The size of this effect is often used
as an index of magnitude processing (see Schneider et al.,
2017). There is empirical evidence that such a distance
effect may be present both regarding accuracy (e.g., Sprute
and Temple, 2011) and response times (e.g., Meert et al.,
2010). However, empirical evidence is still missing whether
a distance effect is present in students showing an NNB.
When utilizing symbolic fraction comparison to assess

fraction magnitude processing, the following issues should
be considered.

As the comparison task involves two fractions by design, the
use of certain comparison strategies such as benchmarking may
make a distance effect less likely to occur. Benchmarking refers
to the use of transitive thinking to compare the two fractions
of interest to a third number (Post et al., 1986; Clarke and
Roche, 2009). When comparing the size of one proper fraction
(those smaller than 1, e.g., 8/9) and one improper fraction
(those larger than one, e.g., 7/6), one may easily compare both
fractions to 1 (i.e., use a transitive benchmarking to 1 strategy)
by simply noticing whether the numerator or the denominator
of the respective fraction is bigger, instead of directly comparing
the two fraction magnitudes. Although such a strategy relies on
fraction magnitude processing to some extent (i.e., noticing that
fractions are smaller or larger than 1) comparison items that
afford benchmarking to 1 are probably easier to solve regardless
of the distance between the two fractions. Thus, participants
applying such a benchmarking to 1 strategy may rely on fraction
magnitude processing and yet not show a distance effect.

Furthermore, the assumption that students activate fraction
magnitudes in fraction comparison tasks may not hold for
comparison tasks with common components (e.g., 5/8 vs. 3/8,
or 4/9 vs. 4/7). In these tasks, students may rather rely on
processing the natural number magnitudes of the non-common
components (Obersteiner and Tumpek, 2016). This possible
absence of fraction magnitude processing in items with common
components may play an important role in distinguishing
between students’ response patterns in comparing fractions with
and without common components: for instance, Gómez and
Dartnell (2019) found that there are students who show a
persistent typical NNB when comparing fractions with common
components (e.g., 4/15 vs. 4/6) but no NNB when comparing
fractions without common components (e.g., 5/6 vs. 8/19). Thus,
it may be argued that those students process fraction magnitude
only when the fractions do not have common components. This
suggests that fraction magnitude processing in symbolic fraction
comparison might be dependent on specific problem features (see
Obersteiner et al., 2020).

Most important for the present study, it seems possible that
students showing a persistent NNB might not use fraction
magnitude processing when comparing two fractions, since they
do not view fractions as holistic symbols but as distinct numbers
in the specific task of symbolic magnitude comparison. This
makes the assessment of fraction magnitude processing in
students who show a persistent (typical or reverse) NNB a
particular challenge: in these students, the absence of a distance
effect in the fraction comparison task may suggest that they do
not process fraction magnitude when comparing two fractions,
but it does not answer the question to what extent they are at all
able to process magnitudes of individual fractions. Assessing the
extent of fraction magnitude processing in students with diverse
NNB patterns (i.e., typical or reverse) is relevant because the
study by Rinne et al. (2017) suggests that NNB patterns may go
hand in hand with qualitatively different levels of understanding
of fraction magnitudes. Therefore, different approaches seem
necessary to assess the potentially gradual differences in fraction
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magnitude processing in low-achieving students that exhibit an
NNB (whether typical or reverse). This motivates the use of tasks
aiming at processing the magnitudes of single fractions.

The second frequently-used task to assess fraction magnitude
processing is number line estimation. In this task, participants
are asked to place fractions on an empty number line where
only the start and end points but no other numbers are
marked. Accordingly, number line estimation requires assessing
the magnitude processing of one single fraction at a time.
The relevant measure is the percent absolute error, which is
the deviation between the student’s estimated position and the
correct position of the given fraction divided by the length of the
number line (see Schneider et al., 2018a).

Although number line estimation tasks have often been used
in research, some researchers have argued that this task may
also not be a pure measure of fraction magnitude. One reason
is that number line estimation tasks can be solved by dividing
the number line and counting the resulting pieces, a strategy
that is not directly based on fraction magnitude (i.e., “fractions
as measures,” see Kieren, 1976; Novillis-Larson, 1980; Bright
et al., 1988; also referred to as “line segmentation,” see Schneider
et al., 2018b). Another reason is that one can use strategies
such as rounding, counting or proportional reasoning (Jeong
et al., 2007; Boyer et al., 2008; Boyer and Levine, 2015). On
the other hand, one could argue that these latter strategies also
require the processing of fraction magnitude to some extent
(Schneider et al., 2018a).

Some of these issues may be overcome by using various
visual representations that are more intuitive and less formal
than number lines, such as circle and tape diagrams (e.g.,
Carraher, 1993). Such visual representations can be used in
continuous or discretized forms. Continuous representations
are diagrams with no given partition (e.g., continuous circle
or tape diagram, Hoch et al., 2018b; see also Jeong et al.,
2007; Boyer et al., 2008; Boyer and Levine, 2015; DeWolf
et al., 2015). Discretized representations are “subdivided into
equal-sized units . . . to render them measurable by counting”
(DeWolf et al., 2015, p. 128). Discretized representations do not
seem to be appropriate to assess fraction magnitude processing
because they are more likely to activate counting schemes
and encourage people to “ignore the perceptual relation of
the relevant quantities” (Jeong et al., 2007, p. 238). They may
thus distract individuals from processing fraction magnitude
(DeWolf et al., 2015). Continuous diagrams, on the other
hand, do not allow for counting (Jeong et al., 2007; Boyer
et al., 2008; Boyer and Levine, 2015)—because there are no
countable pieces—and may force students to rely more strongly
on fraction magnitude. Visual representations may be presented
in dynamic formats, for example, on touchscreen devices
(Reinhold et al., 2020; see also Boyer et al., 2008), which allows
students to respond with gestures (i.e., drag and drop, see
section Magnitude Estimation Task). Compared to paper–pencil
assessment, touchscreen devices may prevent students from using
procedural part-whole strategies (e.g., calculating the angle of
the segment in a circle diagram, or adding auxiliary lines to the
representation) that do not rely on fraction magnitude processing
(Reinhold, 2019).

The Present Study
In this study, we use a person-oriented approach to compare
performance between (1) a symbolic fraction comparison task
and (2) estimations of single fraction magnitudes.

We investigate individual profiles of NNB, and the interplay
between an NNB and fraction magnitude processing. As assessing
gradually different fraction magnitude processing in students
showing a persistent NNB may be a particular challenge (see
section “Assessing Fraction Magnitude Processing”), and neither
one of those frequently-used tasks should be considered a pure
measure of magnitude processing (Schneider et al., 2018b), we
chose a research approach that involves two different types
of assessment.

The study has two specific aims. The first aim is to replicate
individual profiles of NNB in symbolic fraction comparison
(typical bias, reverse bias, no bias; Rinne et al., 2017; see also
Gómez and Dartnell, 2019; González-Forte et al., 2019) in low-
achieving students shortly after they have been introduced to
fractions in school. We expect to find clusters with typical NNB,
with reverse NNB, and without an NNB. We also investigate
the relationship between individual students’ NNB profiles and
fraction magnitude processing assessed by the distance effect.
We expect students without NNB to elicit a distance effect
and students with NNB patterns not to elicit a distance effect,
because the former students would be better able to process
fractions magnitudes than the latter. The second aim is to explore
the relationship between individual students’ NNB profiles and
their fraction magnitude processing abilities utilizing continuous
diagrams in a dynamic assessment on touchscreen devices.
We expected to find differences in the percent absolute error
between different NNB profiles with students showing no NNB
demonstrating lower percent absolute error.

MATERIALS AND METHODS

Sample
The sample consisted of N = 234 6th-grade students (42% female)
from 16 classrooms in eight German secondary schools. The
schools were of type Hauptschule, which is the lowest school track
of secondary school in the German school system. Students in this
school track demonstrate below average performance at the end
of primary school (i.e., grade 4) in mathematics, language, and
science, and show typically low performance in secondary school
mathematics (Götz et al., 2013; Sälzer et al., 2013; Reinhold et al.,
2020). Thus, we expected to find patterns of NNB in the present
sample of low-achieving students. The data was collected within
the research project ALICE:fractions (Hoch et al., 2018a; Reinhold
et al., 2020), 8 weeks after students received the first introduction
to fraction magnitudes in school. Note that according to their
curriculum, students had been formally introduced to fractions
at the beginning of grade six only.

Material
We used two different scales, the fraction comparison task
including both congruent and incongruent fraction pairs, and the
magnitude estimation task featuring continuous diagrams.
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Fraction Comparison Task
To solve the fraction comparison tasks students had to pick
the larger of two fractions that were presented in symbolic
representation (Figure 1). Since we expected students to have
fairly low competencies with fractions, all fractions had one-
digit numerators and one-digit denominators. There were nine
items with congruent fraction pairs and 11 items with incongruent
fraction pairs (see section “The Natural Number Bias as a Source
of Individual Errors in Solving Fraction Problems”). Reliabilities
for accuracy on both the congruent and the incongruent
comparison scales were high (Cronbach’s αcon = 0.87, 95% CI
[0.85,0.90], αinc = 0.94, 95% CI [0.92,0.95]). Items varied in
the distance between the two fractions (Table 1), but there was
no significant difference in mean distance between congruent
(M = 0.31, SD = 0.32) and incongruent (M = 0.27, SD = 0.22)
items, t(13.88) = –0.30, p = 0.77. Both the congruent and the
incongruent scale contained items where either both fractions
were proper (e.g., 2/5 vs. 5/7) or where one fraction was
proper and the other fraction was improper (e.g., 2/3 vs. 5/4).
Response Time (RT) was measured as the time between the
item was displayed on the screen of a touchscreen device and
the participant chose the fraction by tapping on the screen.
Reliabilities for RTs were sufficiently high as well (αcon = 0.82,
95% CI [0.79,0.86] and αinc = 0.84, 95% CI [0.81,0.87]). All items
are displayed in Table 1.

Magnitude Estimation Task
In the magnitude estimation task, students had to mark a fraction
on a continuous visual representation, which was either a circle or
a tape diagram (varying across the task, see Figure 2). Students
hat to drag a colored segment from 0 to the desired value within
the given representation using finger movement. There were 16
fractions, and each fraction was presented in both representation
formats, resulting in a total of 32 items (Table 2). Both the
order of the given diagram and the order of the 16 fractions,
was randomized for each student. We measured the Percent
Absolute Error (PAE) as the absolute deviation from the given

TABLE 1 | Items used in the fraction comparison task.

Item Congruent Item Type Distance

1/4 vs. 6/5 1 1 0.950

2/3 vs. 5/4 1 1 0.583

2/5 vs. 5/7 1 0 0.314

2/5 vs. 7/8 1 0 0.475

3/7 vs. 2/5 1 0 0.029

3/8 vs. 1/3 1 0 0.042

4/5 vs. 6/7 1 0 0.057

4/6 vs. 1/3 1 0 0.333

6/8 vs. 7/9 1 0 0.028

5/8 vs. 4/3 0 1 0.708

6/7 vs. 3/2 0 1 0.643

8/9 vs. 6/5 0 1 0.311

1/3 vs. 2/8 0 0 0.083

2/3 vs. 5/8 0 0 0.042

2/5 vs. 3/9 0 0 0.067

2/9 vs. 1/3 0 0 0.111

3/7 vs. 2/3 0 0 0.238

3/8 vs. 2/3 0 0 0.292

4/9 vs. 2/3 0 0 0.222

4/9 vs. 3/4 0 0 0.306

Congruent: 0 = item incongruent, and 1 = item congruent to natural number
thinking; Item Type: 0 = item contains one proper and one improper fraction, and
1 = item contains two proper fractions; Distance: numerical value representing the
distance between the two given fractions in the item.

value, and Response Time (RT) as the time between the item
was displayed and the student pressed the “ok” button after
marking the fraction.

Procedure
The responsible local education authority approved the study.
School principals, classroom teachers, students and their parents
were informed about the goal of the study and the procedure.

FIGURE 1 | Example fraction comparison task as displayed in the digital assessment environment. Original item in German, translated into English for the purpose of
this article.
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FIGURE 2 | Example magnitude estimation tasks as displayed in the digital assessment environment (top) circle diagram; (bottom) tape diagram. Original item in
German, translated into English for the purpose of this article.

They all gave informed consent. Participation for students was
voluntary and without reimbursement.

Students were presented all tasks on a 10.5-inch iPad. All items
had to be solved using the touchscreen with finger input. They
were first presented the fraction comparison task, where they
had to mark the larger fraction by touching it (Figure 1). After
that, the students were presented the magnitude estimation tasks
(Figure 2), first with circle diagrams and then with tape diagram,
or in the reverse order (randomly assigned). Item order in all
three assessments was randomized.

For each task, process data (i.e., task characteristics, student
input, and response time) were recorded and saved on the iPad
using WebStorage.

Data and Statistical Analyses
Because students’ off-task behavior generated outliers that may
affect the results (Kovanoviæ et al., 2015), we preprocessed
response time data (Goldhammer et al., 2014; Hoch et al., 2018a):
response times that deviated more than two standard deviations
from the mean of the corresponding task type (i.e., fraction
comparison task and magnitude estimation task) were considered
as outliers and were replaced by that bound (i.e., two standard
deviations above or below the mean).

To achieve the first aim of this study, we applied a
cluster analysis on the fraction comparison tasks based
on three dimensions: the accuracy in incongruent tasks
(ACCinc), the accuracy in congruent tasks (ACCcon), and

TABLE 2 | Items used in the magnitude estimation task.

Fraction 1/5 1/3 2/6 3/8 2/5 4/10 3/5 6/10 5/8 2/3 4/6 3/4 6/8 4/5 8/10 7/8

Numerical value 0.20 0.33 0.33 0.38 0.40 0.40 0.60 0.60 0.62 0.67 0.67 0.75 0.75 0.80 0.80 0.88
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the average response time (RT). As response time did not
differ significantly between incongruent and congruent
tasks on the student level, we used the combined average
measure to reduce collinearity in the cluster analysis.
Since cluster analysis is sensitive for outliers we used the
logarithm of RT and standardized all three measures before
clustering. We used a two-step clustering approach, utilizing
hierarchical clustering with Ward’s method to identify the
appropriate number of clusters according to the majority rule
(Charrad et al., 2014). Clusters were then defined with the
k-means algorithm (Sharma, 1996; Backhaus et al., 2018).
We then used generalized linear mixed models (GLMMs)
to estimate effects of congruency, distance, and item type
(i.e., one fraction being improper vs. both fractions proper)
on students’ probability to give correct responses in the
fraction comparison task, for each cluster separately. In this
specific case, GLMMs have several advantages over other
statistical methods (e.g., handling of unbalanced designs,
see Brauer and Curtin, 2018, and handling dichotomous
data, see Anderson et al., 2010). The models contained fixed
effects for the predictor variables Congruent (0 = incongruent,
and 1 = congruent), Distance (numerical value representing
the distance between the two given fractions in the item,
centered at grand mean), and Type (0 = item contains
two proper fractions, 1 = item contains one proper and
one improper fraction). The models allowed for random
intercepts for Students, Classrooms (to account for the
nested data structure), and Items. We give estimates as log-
odds which can be transformed to estimated probabilities
for giving a correct response. As a consequence of the
coding and centering, the Intercepts describe the estimated
probability of getting a correct response from an average
student within the cluster on an incongruent item of
average difficulty that consists of two proper fractions with
an average distance.

To achieve the second aim of this study, we firstly
validated the circle and tape diagram scales as a single
magnitude estimation scale by conducting a confirmatory
factor analysis. Secondly, we compared the results from
the magnitude estimation task between students belonging
to different clusters—using both, percent absolute error and
reaction time, as units of analyses. To that end, we used linear
mixed models (LMMs) with the resulting Clusters as fixed
effect and random intercepts for Students, Fractions, Task type
(0 = circle diagram; 1 = tape diagram; to account for different
representations), and Classrooms (to account for the nested
data structure).

All data preprocessing and analyses were conducted in
R (R Core Team, 2008). For cluster analysis, we used
the NbClust package (Charrad et al., 2014) and the stats
package (R Core Team, 2008). For confirmatory factor
analysis, we used the lavaan package (Rosseel, 2012). For
GLMMs and LMMs, we used the lme4 package (Bates
et al., 2015), and for calculating post hoc Tuckey contrasts
between the clusters, we used the multcomp package
(Hothorn et al., 2008).

FIGURE 3 | Cluster centers of the three Student Types, resulting from the
cluster analysis of 254 students based on two solution rates and the
logarithmized combined average time on task for students’ responses in items
on the fraction comparison task.

RESULTS

Identifying and Validating Different
Student Profiles in Fraction Comparison
We were interested in individual profiles of NNB. The cluster
analysis revealed three different profiles. A total of 12 out of 23
stopping rules (among them the Calinski-Harabasz stopping rule
and the Silhouette plot) suggested a three-cluster structure, with
other cluster structures suggested by only one to three stopping
rules. As students are nested within classrooms, the relation
between clusters and classrooms is of interest for interpreting the
results. A chi-square test showed a significant relation between
clusters and classrooms, X2(30, N = 254) = 57.79, p < 0.01. For
that reason, we allowed for a Classroom random intercept in all
GLMMs and LMMs to account for the nested data structure.

We describe those different clusters of students with regard to
their absolute values on ACCinc, ACCcon, and RT. To illustrate
the description, cluster centers for the three types of students are
displayed in Table 3 and depicted in Figure 3.

Students in the Typical Bias cluster showed high accuracy in
congruent items (M = 0.91) and low accuracy in incongruent
items (M = 0.07) (Figure 3). One-sample t-tests against
µ = 0.5 showed that both accuracy rates differed significantly
from chance level (Table 3). In the GLMM model, the effect
of congruency was significant, while distance and type were
not significant (Table 4), suggesting that students in this
cluster relied on natural number thinking and did not process
fraction magnitudes. Relative to the total sample, students in
this cluster were relatively fast in responding to the tasks
(Figure 3), presumably because they did not even try to
solve symbolic fraction comparison tasks by processing fraction
magnitude but relied solely on simple comparisons of natural
number components.
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Students in the Reverse Bias cluster showed a response
pattern opposite to those in the Typical Bias cluster (Figure 3).
These students demonstrated high and significantly above-
chance solution rates in incongruent items, M = 0.81, and
fairly low and significantly below-chance solution rates in
congruent items, M = 0.21 (Table 3). Again, the effect of
congruency was significant and the effects of distance or type
were not (Table 4). Overall, students in this cluster were
also fairly fast in their responses (Figure 3). The results
suggest that these students may already have developed a
partial—yet still incomplete—understanding of fractions and
have overgeneralized their knowledge that larger numbers can
lead to smaller fraction.

Students in the No Bias cluster showed a response pattern
that was not affected by an NNB (Figure 3). These students
demonstrated medium but significantly above-chance solution
rates in both incongruent items, M = 0.60, and congruent
items, M = 0.64 (Table 3). The GLMM shows that there
was no significant effect of item congruency (Table 4). In
contrast to students in the two biased clusters, students in
this cluster showed a significant effect of distance, with the
estimated probabilities of being correct increasing with the
distance between the two fractions (Table 4). In addition,
there was a significant effect of type, with higher accuracy for
items containing two proper fractions than for items containing
one proper and one improper fraction (Table 4). On average,
students in this cluster took three times as long as both
other clusters to solve comparison items (Figure 3), which
could be an indicator that these students were aware of the
cognitive demand of fraction comparison. The results suggest
that these students have started to develop an understanding of
fraction magnitudes.

Error and Response Time in Magnitude
Estimation
For the following analyses, we had to exclude 20 students
(i.e., 7.9% of the sample) because their data on the magnitude
estimation task were not saved due to a software problem. We
do not believe that this reduction affected the results because
the distribution of the remaining 234 students over the three
NNB clusters (n = 101 Typical Bias, n = 67 Reverse Bias, and
n = 66 No Bias) did not differ significantly from the whole sample,
X2(2,234) = 0.32, p = 0.85.

TABLE 4 | Parameter estimates for the generalized linear mixed models for getting
a correct response in items in the fraction comparison task, reported for each
cluster separately.

Typical Bias Reverse Bias No Bias

Fixed effects Estimate SE Estimate SE Estimate SE

Intercept −2.74*** 0.22 1.54*** 0.14 0.76*** 0.32

Distance −0.49 0.73 −0.12 0.50 1.62*** 0.45

Congruent 5.13*** 0.27 −2.93*** 0.16 0.05 0.14

Type (one fraction
improper)

0.23 0.44 −0.04 0.29 −1.00*** 0.26

Random effects Variance SD Variance SD Variance SD

Student 0.08 0.29 0.00 0.00 0.46 0.68

Classroom 0.02 0.13 0.00 0.04 0.03 0.17

Item 0.13 0.36 0.02 0.15 0.03 0.17

Typical Bias: 2016 observations, 105 students, 16 classrooms, 20 items; Reverse
Bias: 1399 observations, 75 students, 16 classrooms, 20 items; No Bias: 1379
observations, 74 students, 16 classrooms, 20 items. Estimates are given as log-
odds. Levels of significance: ***p < 0.001.

Validating the Scales
Our hypothesis was that the magnitude estimation items assessed
the same construct regardless of the specific representation
format (circle or tape). Yet, a confirmatory factor analysis
showed that a model with two different latent factors for each
representation (circle or tape) fit the data significantly better
than a model with one latent factor (regardless of the specific
representation), X2(1) = 104.8, p < 0.001. However, Cronbach’s
Alpha for the unidimensional magnitude estimation scale was
high for both the Percent Absolute Error (PAE, α = 0.92, 95% CI
[0.91,0.94]) and Response Time (RT, α = 0.86, 95% CI [0.84,0.89]).
As for our analysis differences between both representations
are not of particular interest, we chose the unidimensional
magnitude estimation scale for further analyses, but we allowed
for a Task Type random intercept in the following LMMs to
account for variance due to the specific representations.

Differences Between Student Profiles
On average, PAE was 14.4% (SE = 1.1). The estimated marginal
mean of RT was 8.06 s (SE = 1.35). We were interested in how
students in the different NNB clusters differed in these values.
Parameter estimates from the LMMs are given in Table 5.

TABLE 3 | Cluster centers for the three clusters regarding fraction comparison.

Accuracy Response time

Incongruent Congruent

Cluster N M SD t M SD t M SD

Typical Bias 105 0.07 0.12 −37.67*** 0.91 0.12 35.06*** 2.55 1.00
Reverse Bias 75 0.81 0.21 12.66*** 0.21 0.19 −13.15*** 2.37 0.81
No Bias 74 0.60 0.29 2.94** 0.64 0.21 5.55*** 6.25 2.60

N = Cluster size, M = Mean value, SD = Standard deviation, t = One-sample t-test against µ = 0.5. Time on task is given in seconds. Levels of significance: ***p < 0.001,
**p < 0.01.
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TABLE 5 | Parameter estimates for the linear mixed models for percent absolute
error and response time in items on the in the magnitude estimation task.

Percent absolute Response time (RT)
error (PAE)

Fixed effects Estimate SE Estimate SE

Intercept 0.108*** 0.013 9.17 1.41
Cluster
No Bias (baseline) – – – –
Typical Bias 0.058*** 0.013 −1.50** 0.50
Reverse Bias 0.040** 0.014 −1.70** 0.54

Random effects Variance SD Variance SD

Student 0.005 0.073 7.93 2.82
Classroom 0.000 0.018 1.04 1.02
Item 0.001 0.024 0.31 0.56
Task type 0.000 0.005 3.51 1.87

7262 observations, 234 students, 16 classrooms, 16 fractions, 2 task types.
Percent absolute error: estimates are given as the total deviation from the given
value. Time on task: estimates are given in seconds. Levels of significance:
***p < 0.001, **p < 0.01.

Regarding PAE, the random effects in the full model seemed
neglectable. Students in the No Bias cluster showed a PAE of
10.8%, 95% CI [8.2, 13.4], which was significantly lower than
the PAE of students in the Typical Bias cluster (PAE = 16.6%,
95% CI [14.3, 18.9]), p < 0.001, and significantly lower than the
PAE of students in the Reverse Bias cluster (PAE = 14.8%, 95%
CI [12.3, 17.3]), p < 0.05 (Table 5). No significant difference
between students in the Typical Bias cluster and the Reverse Bias
cluster was found, p = 0.32. Thus, students in the No Bias cluster
yielded the most accurate estimations of fraction magnitude in
the magnitude estimation task.

Regarding RT, the students in the No Bias cluster (RT = 9.17,
95% CI [6.40, 11.94]) took significantly longer to estimate the
magnitude of the given fractions than students in the Typical Bias
cluster (RT = 7.68, 95% CI [4.94, 10.41]), p < 0.01, or the Reverse
Bias cluster (RT = 7.48, 95% CI [4.72, 10.24]), p < 0.01 (Table 5).
Again, no significant difference between students in the Typical
Bias cluster and the Reverse Bias cluster was found, p = 0.93.
Thus, in line with the results from the fraction comparison tasks,
students in the No Bias cluster invested more time in solving the
items than students in both biased clusters.

DISCUSSION

We were interested in individual profiles of NNB, and in the
interplay between an NNB and fraction magnitude processing. In
the following, we discuss the results regarding these two aspects.
We then discuss the assessment of fraction magnitude processing
with continuous diagrams on touchscreen devices, as well as
limitations of our study.

Individual Profiles With and Without a
Natural Number Bias
We found three distinct profiles of natural number bias
in fraction comparison, which is in line with results from

recent studies (Rinne et al., 2017; Gómez and Dartnell, 2019;
González-Forte et al., 2019). Students in the Typical Bias cluster
demonstrated a typical NNB (better performance on congruent
than incongruent comparison items), while students in the
Reverse Bias cluster showed an NNB in the opposite direction
(better performance on incongruent than congruent comparison
items). Relative to students in the Typical Bias cluster, students
in the Reverse Bias cluster seem to have changed their number
concepts regarding fractions: they seem to consider a fraction
larger when its components are smaller. These two profiles were
reported in several studies utilizing person-oriented approaches:
Rinne et al. (2017) found them in their longitudinal study with
students from grade 4 to grade 6 before and after systematic
fractions instruction in school; González-Forte et al. (2019) with
seventh graders; and Gómez and Dartnell (2019) with students
from grade 5 to grade 7.

In contrast, students in the No Bias cluster did not show
NNB patterns. They showed above-chance solution rates in
both congruent and incongruent fraction comparison tasks,
although solution rates were not very high overall. Again,
this cluster was found in other studies as well. For example,
Gómez and Dartnell (2019) reported a cluster of non-biased
students performing relatively low—yet above chance—in
symbolic fraction comparison with non-common components.
For students in our No Bias cluster, tasks were more difficult when
one improper fraction had to be compared to one proper fraction
than when both fractions were improper—a result that Rinne
et al. (2017) report for students in the best performing cluster
before initial instruction of fractions in school. This suggests
that students in our No Bias cluster were not yet able to use
benchmarking to 1 as an effective strategy (Clarke and Roche,
2009; Reinhold et al., 2018). In sum, students in the No Bias
cluster seemed to show a beginning development of a deeper
understanding of fractions.

It is noteworthy that students in the Typical Bias cluster
and the Reverse Bias cluster responded considerably faster than
students in the No Bias cluster. We interpret this as an indicator
that students in both biased clusters were not aware of the
difficulty in fraction comparison tasks—and as another empirical
evidence for the presence of the (reverse) NNB in specific student
profiles: it seems reasonable that responding based on (reverse)
NNB thinking—i.e., magnitude processing of natural numbers—
is faster than responding based on fraction magnitude processing
(Obersteiner et al., 2013; Van Hoof et al., 2013), especially at this
early level of fraction magnitude development.

Overall, the strong individual differences in NNB patterns
suggest that research on the NNB in particular and research on
the development of fraction knowledge in general should utilize
person-oriented approaches to account for individual differences
(see Rinne et al., 2017; Van Hoof et al., 2018; Gómez and Dartnell,
2019; González-Forte et al., 2019).

Natural Number Bias and Fraction
Magnitude
We found empirical evidence for a relation between the presence
of an NNB and fraction magnitude processing. This relation was
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found in both the symbolic fraction comparison task (distance
effects) and the magnitude estimation task with continuous
diagrams. Regarding the first relation (NNB and symbolic
fraction magnitude comparison) students in both clusters that
exhibited NNB (typical or reverse) did not show a numerical
distance effect in fraction comparison tasks, while students
in the No Bias cluster did. This result is in line with the
hypothesis that students who are affected by an NNB process
fraction components separately and struggle with processing
fractions as holistic magnitudes. Secondly, the results from the
magnitude estimation task with continuous diagrams showed
that the presence of NNB (both typical and reverse) was related
to a larger percent absolute error. Like in the symbolic fraction
comparison task, students in the No Bias cluster demonstrated
significantly longer response times in magnitude estimations than
students from both biased clusters. This seems counterintuitive
at first sight, but we suggest that students in the No Bias cluster
were at an advanced stage of fraction magnitude understanding,
but did not yet automatize fraction magnitude processing. In
future studies, one could include students at a higher level of
fraction understanding and test whether these students show
faster responses without biases.

Based on current literature and these findings, we suggest a
tentative model of competence in fraction magnitude processing
that could be empirically evaluated in further research: (1) On
the lowest level, students show a persistent NNB with no fraction
magnitude processing (e.g., clusters reported in our study, as well
as Rinne et al., 2017; Gómez and Dartnell, 2019; González-Forte
et al., 2019). (2) On the second level, students show a reverse bias
due to misinterpretation of fraction concepts, yet still no fraction
magnitude processing (e.g., clusters reported in our study, as well
as Rinne et al., 2017; Gómez and Dartnell, 2019; González-Forte
et al., 2019). (3) On a third level, students do not show an NNB
but demonstrate fraction magnitude processing—yet slow and
with low accuracy (e.g., clusters reported in our study, as well as
Gómez and Dartnell, 2019). (4) On the highest level, students do
not show an NNB (regarding accuracy) and are able to process
fraction magnitude accurately (e.g., clusters reported in Rinne
et al., 2017; Gómez and Dartnell, 2019; González-Forte et al.,
2019)—and quickly (e.g., academic mathematicians reported in
Obersteiner et al., 2013).

While our study does not yield evidence for a developmental
progression (as it is a cross-sectional study from a single
population), the results of the longitudinal study of Rinne
et al. (2017) may suggest a learning trajectory from level 1 to
level 4. This study showed that students do make gradually
transitions between those phases during formal fractions
instruction in school. Further research is needed regarding
students’ development. It seems of particular interest how
learning trajectories regarding fraction magnitude processing,
suggested for instance by Resnick et al. (2016), and learning
trajectories regarding an NNB, suggested for instance by Rinne
et al. (2017), fit together.

Regarding developmental progression, the role of the reverse
bias is not yet completely clear, as current research gives two
different explanations for that pattern. While Rinne et al. (2017)
argue that it might be due to overgeneralization of the fact that

larger numbers may represent smaller fractions, an alternative
explanation for the reverse bias pattern is that students use a
specific strategy to compare fractions, which is gap thinking.
In this strategy one would argue that the larger the difference
between the numerator and the denominator, the smaller the
fraction (González-Forte et al., 2019). Consistent application of
gap thinking in items with non-common components and proper
fractions would result in the reverse bias pattern because it always
leads to correct solutions in incongruent items (e.g., 2/3 > 4/9,
because 3 – 2 = 1 and 9 – 4 = 5), but it may lead to incorrect
solutions in congruent items (e.g., 1/3 > 5/9, because 3 – 1 = 2
and 9 – 5 = 4) (Gómez et al., 2017; see Obersteiner et al., 2020).
Considering the short response times of students in the Reverse
Bias cluster in our study, it seems unlikely that these students’
reasoning was based on gap thinking, which would require
two subtractions. However, further research seems necessary to
explore how use of specific strategies is related the occurrence of
bias patterns in fraction comparison (Obersteiner et al., 2019b).

It is also not very clear how instruction can best support
students in reaching higher levels in fraction magnitude
processing, although multiple recommendations on enhancing
students’ understanding of fractions exist (e.g., Behr et al., 1983;
Butler et al., 2003; Prediger, 2008; Obersteiner et al., 2019a;
Reinhold et al., 2020). Further research with longitudinal and/or
experimental designs is necessary to identify potential causal
effects of instruction on transitions between the suggested levels
of fraction magnitude processing. A particularly interesting
question is whether a reverse bias is a necessary step, or whether
it can be prevented by certain forms of instruction.

Moreover, the role of strategy-use and fraction magnitude
processing in the symbolic comparison task is still not completely
clear. A study of Fazio et al. (2016) showed that young adults
apply a variety of different strategies when comparing the
magnitude of two fractions. It is, however, less clear whether this
is also the case for students learning the concept of fractions (but
see Clarke and Roche, 2009). The study of González-Forte et al.
(2019) yields first evidence that students showing a typical NNB
do rely on component-based comparison strategies.

Assessing Fraction Magnitude With
Continuous Diagrams on Touchscreen
Devices
We argued that continuous diagrams presented on touchscreen
devices are a suitable way to assess fraction magnitude
processing. The results of our study support this argument. The
continuous magnitude estimation task yielded similar results
regarding fraction magnitude processing as the symbolic fraction
comparison task. However, the magnitude estimation task had
the advantage that it allowed for a continuous measure of
processing a single fraction’s magnitude (the percent absolute
error) even in students of the two bias clusters that did not show
a distance effect when comparing two fractions.

Further analysis of the data collected with our touchscreen
tool could give additional insights into the strategies that students
used to determine fraction magnitudes. In particular, finger
tracking data may provide detailed information about students’
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reasoning. Finger tracking—as used in previous studies (Dotan
and Dehaene, 2013; Faulkenberry et al., 2015)—is a fairly natural
way of input and may provide a more direct link between hand
motions and cognitive processes than mouse tracking.

While our study aimed at assessing fraction magnitude
processing, we suggest that our digital assessment tool can be
utilized as an effective tool for supporting students’ development
of fraction magnitude, when adequate feedback is implemented
(Reinhold et al., 2020).

Limitations
Our study included a sample of low-achieving students because
we wanted to study a sample with clear NNB patterns.
Accordingly, the NNB clusters that we identified may not
generalize to other samples. In students with higher mathematical
abilities, one would expect to find an additional cluster of students
who have higher solution rates and stronger distance effects
(comparable to the academic mathematicians in Obersteiner
et al., 2013; or the All Correct profile in González-Forte et al.,
2019). Future research could investigate whether the same
clusters can be found in another sample, and how students make
the transition from one cluster to another during development.
It would also be interesting to study how other factors (e.g.,
intelligence, prior informal learning experiences, the quality of
instruction) are related to memberships in the different clusters.

We argued that continuous representations may be better
apt to assess fraction magnitude processing than discretized
representations—especially in studies with students with NNB
response patterns. As noted, we cannot rule out that continuous
measures also encourage proportional reasoning (e.g., Jeong
et al., 2007; Boyer et al., 2008; Boyer and Levine, 2015).
However, we would argue that “these accounts [magnitude
processing and proportional reasoning] do not exclude each
other” (Schneider et al., 2018a, p. 1468) and that, on the contrary,
proportional reasoning could be foundational for fraction
magnitude processing. Future research could investigate in more
detail the relationship between fraction magnitude processing
and proportional reasoning. Likewise, studies could investigate
potential differences in the cognitive processes involved in
magnitude estimation on either circle or tape diagrams. In our
study, items in both representations proved to form a reliable
scale, although a factor analysis did suggest differences between
both representations.

In addition, further studies could systematically investigate the
differences in abilities required in estimation tasks with number
lines on the one hand and with continuous diagrams on the other.
It would also be of interest whether the used continuous diagram
stimuli show a mode effect between touch screen assessment and
a more traditional paper-based assessment. First evidence by Piatt
et al. (2016) suggest that there is no mode effect in number line
estimation tasks.

CONCLUSION

We found that a natural number bias (whether typical or
reverse) was associated with low fraction magnitude processing,

while the absence of bias was associated with moderate
magnitude processing in a sample of lower-achieving students.
We suggested a way of assessing magnitude processing of
individual fractions using continuous visual representations
on touchscreen devices that have particular advantages in
assessments with low-achieving students. Future research with
longitudinal designs and interventions is necessary to better
understand students’ fraction magnitude processing and bias
patterns, and the factors that influence the relationship
between the two.
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