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Research on Bayesian reasoning suggests that humans make good use of available
information. Similarly, research on human information acquisition suggests that Optimal
Experimental Design models predict human queries well. This perspective contrasts
starkly with educational research on help seeking, which suggests that many students
wait excessively long to ask for help, or even decline help when it is offered. We
bring these lines of work together, exploring when people seek help as a function of
problem state in the Entropy Mastermind code breaking game. The Entropy Mastermind
game is a probabilistic version of the classic code breaking game, involving inductive,
deductive and scientific reasoning. Whether help in the form of a hint was available
was manipulated within subjects. Results showed that participants tended to ask for
help late in the game play, often when they already had all the necessary information
needed to crack the code. These results pose a challenge for some versions of Bayesian
and Optimal Experimental Design frameworks. Possible theoretical frameworks to
understand the results, including from computer science approaches to the Mastermind
game, are considered.

Keywords: help-seeking, Bayesian reasoning, mathematical games, Optimal Experimental Design theory,
information-seeking behavior

INTRODUCTION

Help seeking is an important aspect of the learning process in allowing an individual to advance
their understanding (Nelson-Le Gall, 1985), and develop their independent skill and abilities
(Newman, 1994). Once an individual reaches an impasse – a situation where no progress is
possible – the initiation of help seeking behavior can be valuable for allowing them to move beyond
their impasse (Price et al., 2017).

Interestingly, research also suggests that people often do not effectively utilize opportunities for
help or even ignore them altogether (Aleven et al., 2003). Educational research has suggested that
many students do not know when to ask for help and tend to wait, trying to work something out
for themselves for a relatively long time before asking for hints (Aleven and Koedinger, 2000). In
an analysis of students’ help seeking behavior through completing computer tasks, a clear pattern
emerged: students would attempt a task, they would be provided with feedback and the offer of
help, and then they would decline the help (du Boulay et al., 1999). These findings highlight the
importance of establishing when people ask for help and what factors may influence the help
seeking process.

In this paper, we bring the phenomena of help-seeking and theoretical models of cognition
together, in the context of a mathematical game. Although many types of models of reasoning
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and decision making processes exist (Roberts, 1993; Smith,
2001), we largely focus on probabilistic Bayesian models.
Bayesian models posit that humans make sense of the world
by reasoning inductively about how alternative hypotheses give
rise to observable data. A common assumption is that people
are motivated to find the best explanation to explain the
available data (Chater et al., 2006; Kharratzadeh and Shultz,
2016). In studies of human information acquisition in this
framework, it has frequently been found that people have
good intuitions about which pieces of information are most
informative (Oaksford and Chater, 1994; Nelson, 2005; Coenen
et al., 2018). It is also important to keep in mind that people
are constantly presented with large amounts of information, of
which only some is useful, and must appropriately identify what
information is useful in order to respond and act appropriately
(Hopfinger and Mangun, 2001).

In psychology, mathematics style games and game-like
experimental designs have been influential in models of human
decision making and reasoning. Chess (Burgoyne et al., 2016)
is perhaps the most famous example. One game that has been
suggested for use in teaching scientific reasoning is the popular
code breaking game Mastermind (Strom and Barolo, 2011). The
game was originally designed as a two-player board game in
1970 by Mordecai Meirowitz. Theoretically, Mastermind can be
viewed as a kind of concept learning game, with connections
to work by Bruner et al. (1956), Wason (1960) and others. One
might also relate the deductive logical aspects of the game to
logical reasoning tasks such as Wason’s (1968) Selection Task
and THOG (Wason, 1977) experimental paradigms. Recent work
on Deductive Mastermind (Gierasimczuk et al., 2012, 2013;
Zhao et al., 2018) uses versions of the game in which the
participant is given all the information to uniquely infer the
hidden code. Mastermind can also be viewed as a problem-
solving task (e.g., Simon and Newell, 1971; Newell and Simon,
1988) and analyzed accordingly.

Here we use a computer-based, single-player version of the
Mastermind game. In the computer-based game, the aim is
to guess the secret code generated by the computer using as
few guesses as possible. For each guess made by the player
they receive feedback regarding the colors and positions of
the items in their guess. The player is then expected to learn
from the feedback and to use that feedback to make another
guess which will add to the amount of information they have
about the code. From their guesses the player then tries to
deduce the correct color and position of every item in the
code. We use an app-based version of Entropy Mastermind, a
recently developed, customizable computer-based version of the
game (Schulz et al., 2019). Figure 1 displays the gameplay and
feedback in more detail.

Can probabilistic models explain how people’s knowledge
and beliefs develop when they play Mastermind? Are people’s
queries optimal, or at least highly informative? Bayesian models
suggest that humans are rational about learning and inference
and will use information to ask questions that will maximize their
knowledge (Eberhardt and Danks, 2011). However, Bayesian
models have been criticized on a number of theoretical and
practical points (Jones and Love, 2011), and human probabilistic

FIGURE 1 | Example of the app version of the Entropy Mastermind game.
Participants make guesses by dragging the colors into the gray circles in the
order they choose and then click the make guess button. This generates the
feedback displayed on the right-hand side in the form of either a black circle,
white circle or cross. A cross means that the item in the code is wrong in both
position and color, a white circle means that the item is correct in color but not
position and a black circle means that the item is correct in both position and
color. The position of the feedback does not correspond with the position of
the items in the guess. The first three lines of this example demonstrates that
there are no orange colors in the code but there are two green and two blue.
Guess number four shows that only two of the colors are in the right place
and guess number five shows that none of the items are placed correctly. This
information was used to decipher the correct position of the colors as shown
in guess six.

reasoning can deviate from Bayesian accounts (Eddy, 1982).
One perplexing phenomenon, not yet related in the literature
to Bayesian reasoning, is that when acquiring and processing
information, people can feel they are at an impasse, are “stuck”
(Weisberg, 2015), and be unsure of how to proceed.

The primary aim of this study was to provide the first
quantitative empirical investigation of help-seeking as a function
of problem state, using the Mastermind code-breaking game.
Theoretically, from a purely information-theoretic perspective,
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help would be most informative at the beginning of the game,
when the largest number of codes are possible, and the underlying
entropy in the probability distribution corresponding to the
true code is highest. In other words, in the beginning of the
game, help (in the form of a hint, as we describe below) would
tend to provide much more information, as quantified in bits
or otherwise, than help later in the game. On the other hand,
alternate models that are not purely information-theoretic– for
instance, because they take into account the agent’s resource
limitations– may find help more valuable later on in the game.
This applies to both resource-rational models that operate within
the Bayesian framework (Griffiths et al., 2015) as well as heuristic
models in computer science (e.g., see Cotta et al., 2010, for an
evolutionary algorithm-based approach that maintain less than a
complete representation of the problem state).

When will people ask for help when playing Mastermind? Will
people ask for help when from a mathematical perspective help
is most needed, i.e., early on in the game? Or will people first
seek help when they feel stuck (at an impasse), perhaps late in the
game? We also consider the points at which people ask for help,
and how receiving help influences game play. To investigate these
issues across a variety of experimental conditions, the difficulty
of the game (1296 possible codes, with 4 items and 6 colors;
or 4096 possible codes, with 6 items and 4 colors) and whether
or not it was possible to obtain extra help were manipulated
within participants.

Two specific research hypotheses were examined:
Hypothesis (1): The point at which an individual will ask for

help will be predicted by the number of possible codes remaining,
and the number of previous guesses made.

Hypothesis (2): Participants will need fewer guesses to
complete the code in the help condition compared to the normal
gameplay condition.

MATERIALS AND METHODS

Participants
We aimed to recruit 20 participants through the University
of Surrey’s participation website SONA. The experiment was
expected to take around 60 min to complete, thus participants
were each compensated two lab tokens for their time (if
applicable) and entered into a prize draw for one of two £50
Amazon vouchers. (University of Surrey Psychology students can
earn lab tokens by participating in experiments, which they can
then spend to obtain participation in their own experiments).
Participants gave informed consent, following University of
Surrey procedures.

Materials
The experiment took place in a laboratory room at the University
of Surrey. The participant was given a laptop on which the
Mastermind app was installed and displayed. The laptop was
connected to a second screen so that the experimenter could
observe game play and also had access to a statistics output box
showing the number of possible codes remaining, the entropy of
the set after each guess, and the true code. Next to the computer

was a bell that participants were asked to ring in the help
condition, when they felt stuck and would like to receive a hint.

Design
The experiment used a within-subjects design with two
experimental conditions: normal game play and help offered.
Some participants completed the “normal game play” condition
first before being offered a short break and were then asked
to complete the “help offered” condition of the experiment.
The remaining participants completed the conditions
in reverse order.

In each condition participants played four games. The first
two games involved completing an easy (4-item) code made
up of six equally probable colors (thus containing 6ˆ4 = 1296
possible codes), and the second two games involved completing
a difficult (6-item) code made up of four equally probable colors
(thus containing 4ˆ6 = 4096 possible codes). Uniform probability
distributions across the possible colors were used in all games;
each item in the code was drawn with replacement. Note that
from one game to the next, for a particular (e.g., 4-item) code
length, the difficulty– with respect to any particular guessing
strategy– may vary. However, because games are generated at
random with equal probability, experimental condition (help
available or not) should not be confounded with idiosyncracies
of individual games’ difficulty.

Procedure
Before the experiment, the experimenter showed the participant
the Entropy Mastermind game and explained the rules and
gameplay. Participants were asked to complete a short quiz to
ensure that they understood the rules and were then asked to play
a simple version of the game (3-item code generated with white,
blue, and green appearing with equal probability) to ensure that
they understood.

After this, the experimenter explained that the aim of the game
was to complete the code with the smallest possible number of
guesses. For each game the experimenter recorded: the true code,
how many guesses the participant needed to complete the code,
and the point at which the code could have been deciphered
according to the participant’s guesses and the feedback given.
Participants had up to 18 guesses to break the code in each
game. If the participant was unable to decipher the code within
the 18 guesses available, the total number of guesses needed was
recorded as 19 guesses, for the purposes of statistical analyses.

In the “help” condition, participants were told to ring the
bell when they felt stuck, and that the experimenter would offer
them help, by telling them the color and position of one item in
the code of their choice. There was no limit on the number of
times participants could ask for help per game. Thus, it would be
allowed, if a participant wished, to ask for help multiple times,
from the beginning until the code was solved. In each instance
that help was asked for, the experimenter recorded: the guess
number, the specific guess and feedback of the previous line, the
number of possible codes remaining, the Shannon entropy of the
probabilities of the possible codes at that time, and which item of
the code the participant asked the experimenter to tell them.

Frontiers in Education | www.frontiersin.org 3 September 2020 | Volume 5 | Article 533998

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/
https://www.frontiersin.org/journals/education#articles


feduc-05-533998 September 20, 2020 Time: 11:5 # 4

Taylor et al. Help Seeking in Entropy Mastermind

RESULTS

Seventeen participants (13 female, 4 male) completed the
experiment. Fifteen of these participants reported their ages as
ranging from 18 to 52 (median 22, mean 20). Full demographic
information is provided together with the study data at https:
//osf.io/q5rct/.

Each participant had both help available and easy conditions.
In each condition each participant played four games: two games
involved looking for an easy (4-item) code and two games
involved a difficult (6-item) code. Therefore a total of 136 games
of Mastermind were played, including 68 games each in the help
available and normal gameplay conditions, by the 17 participants.
Note that due to experimenter error the order of conditions–
within a particular game length– in which help was offered was
not randomized throughout the experiment. Rather, the first
ten participants completed two games of each code length of
normal gameplay, followed by two games of each code length of
help-available game play. The remaining participants completed
the help offered games first followed by the games of normal
gameplay. Visual inspection of the data suggested no differences
according to the order in which conditions were completed.

The number of guesses needed to complete the code
aggregating across four and six item codes in each condition were
as follows: normal game play condition (M = 10.66, SD = 2.51);
help condition (M = 9.28, SD = 2.15). A paired samples t-test
shows a marginally significant difference for the number of
guesses needed to complete the code in the help condition vs. the
normal gameplay condition [t(16) = −2.05, two-tail p = 0.056].
A 95% bootstrap confidence interval for the difference in number
of queries suggested that the availability of help reduced the
number of queries between [0.12, 2.68] guesses per game.

Of the 68 games where help was available to participants, help
was accepted in 25 games a total of 38 times. Help was requested
much more frequently in the six-item-code games, as in the four-
item-code games. For a four-item code, help was accepted in 8
games a total of 8 times; for a six-item code help was accepted
in 17 games a total of 30 times. A paired t-test confirmed that
participants had a greater tendency to ask for help in 6-item
games than in 4-item games [t(16) = 3.10, two-tail p = 0.007].
A bootstrap 95% confidence interval for the difference in number
of times each participant requested help in the 6-item games,
minus in the 4-item games, was [0.53, 2.12], corroborating the
descriptive statistics and the t-test results.

For the 4-item code, participants always guessed the true
code within the 18 guesses. In 14 of the games with the 6-item
code, participants did not guess the code within the 18 guesses
allowed. The 14 instances of not being able to complete the 6-
item code were split across 8 participants; the maximum number
of games a single participant was unable to complete was 4. In all
games where the participant was unable to complete the code, the
code had already been mathematically determined based on the
feedback from the prior 18 guesses.

Histograms were produced to relate the points when help was
asked for to the number of possible codes remaining (Figure 2)
and the number of previous guesses made so far (Figure 3)
at the point when help was asked for. Visual inspection of the

FIGURE 2 | Histogram showing the distribution of the number of remaining
possible codes at the points in which help was asked for. For purposes of
plotting this histogram, if there were more than 10 possible codes remaining,
the number was truncated to 10.

FIGURE 3 | Histogram showing the distribution of the number of guesses
made so far at the points in which help was asked for.

histogram displaying the number of possible codes remaining
(Figure 2) showed that participants had a strong tendency to ask
for help when the code was already determined, and they had
already received the necessary information to decipher the code.
Interpreting the relationship between the number of guesses
made so far to the tendency to ask for help (Figure 3) is more
difficult, because help tended to be asked for only very late in
the game, and the number of guesses varied by game and code
length. Figure 3 does however suggest that people did not tend
to ask for help early in the game, at which point (from a purely
mathematical standpoint) help would be most valuable. To test
whether help is asked for at a random point in the game, the point
at which help was asked for was coded in terms of the quartile
of the total number of queries in each individual game. Figure 4
shows a histogram displaying this analysis. Visual inspection of
this histogram (Figure 4) showed that participants tended to ask
for help late in the game, with most help being asked for in the
fourth quartile of gameplay.
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FIGURE 4 | Histogram showing the distribution of the number of previous
guesses as represented by quartile of game play at the point that help was
asked for.

A chi square test of independence was conducted to assess
whether the quartile of gameplay was a statistically significant
predictor of when people asked for help. This test compared the
observed number of times help was asked for in each quartile of
gameplay with the number of times we would expect help to be
asked for in each quartile of gameplay if participants asked for
help with equal probability in each quartile. The chi square was
conducted on the combined data for both four and six item codes
to ensure that the assumption of cell frequencies above five was
met. The analysis showed a strong association between quartile of
gameplay and when help was asked for, χ2(3) = 30.29, p < 0.001,
suggesting that the stage of gameplay is a significant predictor of
when people ask for help when playing the mastermind game.

Game Strategies
Participants appeared to adopt one of two qualitatively different
strategies when playing the mastermind game. We think of these
strategies as the “systematic strategy” and the “random strategy.”
The systematic strategy involved testing each color to find out
how many items of the code consisted of that color. (Note that
participants’ frequent use of the systematic strategy effectively
rules out chance responding, despite the fact that people needed
more queries than strategies characterized in the computer
science literature). After the first query, in the systematic strategy,
the participant would then either use a color not included in the
code (if applicable) or another color to decipher the position of
all the items of one color in the code. This strategy was used until
all items in the code had been deciphered; a stylized example is
displayed in Figure 5. The other strategy appears to be much
more random; a stylized example is displayed in Figure 6. In
this strategy participants would test a number of colors in each
guess and did not appear to have any set ways of deciphering the
specific position of each color.

To address this quantitatively, we (NT) went through the
dataset and classified each of the 136 games according to whether
it seemed qualitatively closer to the “systematic” or “random”
strategy. It turns out that our qualitative understanding was

FIGURE 5 | Stylized example (not from actual gameplay) of the systematic
strategy when playing the Mastermind game.

almost perfectly predicted by whether the first query was all
the same color (systematic strategy) or not (random strategy).
Therefore, we operationally defined the systematic strategy as
starting with all the same color in the first query, and the random
strategy as everything else. Of the 136 games played, 71 were thus
classified as random and 65 as systematic.

There was no meaningful difference between the average of
9.74 queries required to identify the true code with a systematic
strategy, vs. the average of 10.12 queries for a random strategy
[t(134) = 0.54, n.s., two-tailed t-test]. However, because the code
length 4 games always occurred in the first part of the experiment,
and there was a slightly greater tendency to use a random strategy
with the code length 4 games, any harm from using the random
strategy might have been counterbalanced by the intrinsically
easier nature of the 4-item games.

A more meaningful measure may be the number of additional
queries required, beyond when the true code was mathematically
determined, for a person to identify the true code. We can in turn
ask whether this additional number of (zero-information-gain)
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FIGURE 6 | Stylized example (not from actual gameplay) of the random
strategy when playing the Mastermind game.

queries differed according to the strategy used. By this measure,
the code was more quickly identified by the participant when
a systematic strategy was used than when a random strategy
was used [t(134) = 2.27, p = 0.025, two-tailed t-test; 95% CI for
difference 0.23–3.13, by bootstrap sampling].

Interestingly, however, from a purely information-theoretical
mathematical standpoint, it appears that the random strategy is
more efficient than the systematic strategy. (Here it is important
to keep in mind that we mean the participants’ queries in games
in which the first query was not all of a single item, which could
differ from a theoretical strategy of picking among all feasible
codes with equal probability). The code was mathematically
determined with a smaller number of queries in games with
the random strategy, as compared to the systematic strategy
[t(134) = −4.17, p < 0.0001, two-tailed t-test; 95% CI for
difference 0.66 to 1.83, by bootstrap sampling].

It is thus something of a paradox that the most informative
queries for people are not those that lead mathematically to
identifying the true code in the most efficient manner. We
consider possible explanations below.

DISCUSSION

Help Seeking Behavior
Of the 68 games in which help was offered, help was accepted in
only 30 games. This supports the findings of previous research
that students don’t always utilize opportunities for help (Aleven
and Koedinger, 2000) or even recognize that help would be
beneficial (Aleven et al., 2003).

Some possible explanations for this finding draw upon
research around threat to identity and self-concept. For some
participants asking for or accepting help may be harmful to
their self-concept (Delacruz, 2011), thus discouraging them
from engaging in help seeking strategies, to the detriment of
their learning (Nelson-Le Gall, 1985). It is often the most able
learners who seek help when they reach an impasse, perhaps as
their academic self-concept is more robust, whereas those with
lower abilities appear to have a lower academic self-concept and
subsequently, less awareness of their need for help and/or less
willingness to accept help when offered (Wood and Wood, 1999).

Alternatively, stereotype threat should also be considered
as a possible explanation for the paucity of help seeking we
observed. It is possible that participants may have associated the
Mastermind game with mathematics, either through previous
knowledge, or through the language used by the experimenter,
for instance when mentioning “probabilities” while explaining
the game. It is thought that girls perform more poorly at tasks
associated with maths due to the activation of the stereotype
that boys are more competent at maths (Casad et al., 2017).
Our participants were mostly female; therefore, it is possible that
their help seeking behaviors were blocked due to believing that
Mastermind was a maths game.

Limitations
A caveat is that in the present study, although participants were
told that the aim of the game is to complete the code in as few
guesses as possible, there was no explicit external incentive for
doing so. It is thus possible that participants may have chosen
to continue figuring the code out for themselves because they
enjoyed playing the game.

A further consideration is that participants may have been
primed to ask for help due to the experimenter telling them help
was available if they felt stuck in the help condition. Participants
were allowed to ask for help at any point, however, and our results
are consistent with prior help seeking research.

Educational Implications
Due to the strong links between help seeking behavior and
learning and educational attainment (Ryan et al., 1998), our
findings have strong implications for educational practice. The
findings show that when help is asked for, in many situations all
the necessary information had been obtained. Thus, help is not
needed for acquiring the necessary information but rather for
deciphering the information that had already been obtained. An
interesting direction for further research would be to investigate
the effects of different types of help. One possibility would be to
offer help in the form of highlighting aspects of previous queries
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and feedback to help the participant decipher the information,
rather than giving the position of a specific item in the code.
Another possibility would be to have help available from a
computer, rather than from a person.

The present study also supported previous research that
highlights that help is not always taken advantage of by
students, even though it would be beneficial to advance their
learning. Further research is needed to determine the influence
of stereotype threat, threat to self-concept, and other variables
on help-seeking behavior and to identify other factors that may
also be important. One idea for further studies is to investigate
whether rewarding participants for completing the code in
the fewest number of guesses (e.g., paying them according to
performance, or giving the participant with the fewest average
number of guesses £50) may lead to different patterns of help
seeking. These manipulations would clarify whether willingness
to ask for help can be increased if the stakes are high enough,
thus informing educational practices to improve help seeking and
overall student attainment.

Implications for Theory and Modeling
One theme in Bayesian modeling is that people will find the
best fitting hypothesis for the data available to them. When our
participants asked for help they typically already had all the
necessary information to complete the code. Why is this? It is
something of a paradox that despite being in possession of all of
the information needed to decipher the code, participants were in
many cases unable to do so.

Research on human queries and human assessments of
queries’ expected usefulness, in the Optimal Experimental Design
perspective (Baron et al., 1988; Oaksford and Chater, 1994;
Coenen et al., 2018) has usually found that people have a very
good, if not necessarily a perfect, sense of the relative usefulness
of possible queries. From this standpoint it is surprising that
participants tended to ask for help late in the game, rather
than early in the game, when help would– from a mathematical
standpoint– provide the most information. One crucial point
is that this research, in the vast majority of experimental tasks,
including Schulz et al.’s (2019) information-theoretic model of
Entropy Mastermind, uses the complete probability distribution
when modeling human behavior.

Interestingly, computer science approaches to Mastermind,
except for fairly small versions of the task (e.g., Knuth, 1976),
do not attempt to represent the full probability distribution over
possible codes. Here we focus on computer-science approaches;
for a more mathematical treatment of bounds on the efficiency
of possible solutions, see Doerr et al. (2013). Computer science
approaches typically focus on finding one or more possible
codes from the feasible set of codes that are consistent with the
queries and feedback to date. Berghman et al. (2009) use genetic
algorithms to find codes in the feasible set. Cotta et al. (2010)
use a similar approach, but specifically attempt to find feasible
codes that will maximize obtained information, thus building on
Bestavros and Belal’s (1986) ideas. Merelo et al. (2011) further
introduce the idea of endgames, namely looking for particular
game situations in which known strategies can be used. Merelo-
Guervós et al. (2013) combine an improved genetic algorithm

with an entropy-based fitness score to evaluate the usefulness of
possible queries.

If people (as we strongly suspect) are not fully representing
the possible codes in smaller versions (e.g., with 6ˆ4 = 1296
possible codes) of the game, it would be sensible in the future
to see whether these computer science approaches might offer
good insight into human behavior. For instance, unless guesses
are repeated, the proportion of feasible codes relative to possible
codes is guaranteed to decrease over the course of a game.
Of particular note will be to check whether these approaches
therefore take longer to find items to test in later stages of the
game, thus providing a possible resolution to the paradox of
humans’ greater tendency to ask for help when there is less
information (in terms of bits) to be obtained.

Model variants along these lines would very much be in the
spirit of boundedly Bayesian models (Griffiths et al., 2015; Lieder
and Griffiths, 2019), in which the focus is on keeping models
within the broadly probabilistic framework but incorporating
computational resource limitations. On other concept learning
tasks, for instance the Shepard et al. (1961) task, participants also
need many more learning trials than would be mathematically
required if they have perfect memory (Rehder and Hoffman,
2005); some models (Nelson and Cottrell, 2007) use conservative
(Edwards, 1968) belief updating to model this process. If
Mastermind is viewed as a concept learning task, then the fact
that some participants require additional queries, beyond those
mathematically necessary to infer the code, is not necessarily
surprising. As a point of comparison, Merelo-Guervós et al.
(2013) report a variety of algorithms that can solve a larger
version of the game than we used, namely with codelength 6 and
9 possible colors (i.e., with 9ˆ6 = 531,441 possible codes), with a
mean of less than 7 queries, achieving much better performance
than our participants.

A further potential connection between human psychology
and computer science approaches starts with research on
information foraging (Pirelli and Card, 1999). Information
foraging describes the decision-making process in problem
solving when the information is incomplete and the probabilities
are unclear (Murdock et al., 2017). Attempts to solve these types
of cognitive problems involve tradeoffs between “exploration”
of novel information and using or “exploiting” knowledge to
improve performance (Berger-Tal et al., 2014). How does this
relate to Mastermind? Mastermind, from a purely mathematical
standpoint involves a well-defined problem: both how the hidden
code is generated, and the processes by which one can find the
code, are known and disclosed to the player. (We refer here to
non-strategic versions of Mastermind). However, people may not
have this full information (such as a probability distribution over
several thousand possible codes) ready at hand. One possible
point of connection to information foraging theory is in the
search for new items to possibly test. Many computer science
models use genetic algorithms with populations of possible query
items which are thought or known to be in the feasible set. An
issue in the computer science literature is when to try to improve
the population of known query items through genetic algorithms,
and when to search for new items altogether. This parallels issues
of search in human memory (Hills et al., 2008), when people
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either try to exploit a current semantic region (e.g., to continue
finding feline animals, after they have found cat, lion, tiger, lynx)
or to explore for a new region altogether.

Then there is the paradox that among the two qualitative
strategies that we identified, namely the systematic strategy
and the random strategy, the systematic strategy was perhaps
more useful for human participants, but the random strategy
was clearly more useful from a purely information-theoretic
standpoint, leading to the true code being determined with fewer
queries. Our finding on this parallels earlier work by Laughlin
et al. (1982), who studied a reduced version of Mastermind
with 3 possible colors and 4 positions, entailing 3ˆ4 = 81
possible codes. They found that human players did better
when their first query was all of a single color, even though
computers could solve the game more quickly when the first
query had two items of one color, and one item of each of
two other colors. Why do we find these discrepancies between
theoretical usefulness (for computers) of particular strategies,
and those strategies’ actual usefulness to human game players?
What makes particular queries– or more precisely, particular
query-feedback combinations– easier or harder for people to
assimilate? Are there parallels between what queries are easier
or harder for people to assimilate, and what is easier or harder
for particular computer science approaches to the task? One
possibility to consider is that people may have their beliefs in
a psychological feature space, and may best assimilate query-
feedback combinations that are directly relevant to that feature
space. A prominent possibility here would be that people appear
to focus on figuring out the counts of each color (or type
of item), and all-same-color queries are easily suited to this
kind of belief update. A focus on psychological feature spaces
would be analogous to the successful (Bramley et al., 2017)
approach to causal learning. It would also be worthwhile to
investigate whether the epistemic logical model of inference in
Deductive Mastermind (Zhao et al., 2018), in which participants
are given a game state that uniquely identifies the true code,
also finds the random strategy to be more difficult than the
systematic strategy.

Finally, why is it that many (but not all) participants tended to
need several additional queries, beyond the point where the code
was mathematically determined? This is a kind of opposite result
to Wason’s (1960) finding that participants tended to prematurely
announce that they had figured out the hidden rule in his “2-4-
6” scientific inference task, suggesting that participants on that
task overestimated the information value of the information they
had received. For Mastermind, it seems that imperfect memory

or conservative belief updating (Edwards, 1968; Dasgupta et al.,
2020) needs to be incorporated into probabilistic task models.

Ultimately, whereas the focus of the present work was on
empirically characterizing help-seeking behavior in Entropy
Mastermind, we hope that it will be possible to build probabilistic
or other cognitively meaningful models of people’s behavior on
this task. Such models may also serve development of individually
customized, adaptive tutoring systems, which is a pressing issue
in cognitive science and educational research alike (Anderson
et al., 1995; Bertram, in press).
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