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Conceptual descriptions and measures of information and entropy were established in the
twentieth century with the emergence of a science of communication and information.
Today these concepts have come to pervade modern science and society, and are
increasingly being recommended as topics for science and mathematics education. We
introduce a set of playful activities aimed at fostering intuitions about entropy and describe
a primary school intervention that was conducted according to this plan. Fourth grade
schoolchildren (8–10 years) played a version of Entropy Mastermind with jars and colored
marbles, in which a hidden code to be deciphered was generated at random from an urn
with a known, visually presented probability distribution of marble colors. Children
prepared urns according to specified recipes, drew marbles from the urns, generated
codes and guessed codes. Despite not being formally instructed in probability or entropy,
children were able to estimate and compare the difficulty of different probability
distributions used for generating possible codes.
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INTRODUCTION

Information is a concept employed by everyone. Intuitively, the lack of information is uncertainty,
which can be reduced by the acquisition of information. Formalizing these intuitive notions requires
concepts from stochastics (Information and Entropy). Beyond the concept of information content
itself, the concept of average information content, or probabilistic entropy, translates into measures of
the amount of uncertainty in a situation.

Finding sound methodologies for assessing and taming uncertainty (Hertwig et al., 2019) is an
ongoing scientific process, which began formally in the seventeenth and eighteenth centuries when
Pascal, Laplace, Fermat, de Moivre and Bayes began writing down the axioms of probability. This
early work set the foundation for work in philosophy of science and statistics toward modern
Bayesian Optimal Experimental Design theories (Chamberlin, 1897; Good, 1950; Lindley, 1956;
Platt, 1964; Nelson, 2005). Probabilistic entropy is often defined as expected surprise (or expected
information content); the particular way in which surprise and expectation are formulated
determines how entropy is calculated. Many different formulations of entropy, including and
beyond Shannon, have been used in mathematics, physics, neuroscience, ecology, and other
disciplines (Crupi et al., 2018). Many different axioms have been employed in defining
mathematical measures of probabilistic entropy (Csiszár, 2008). Examples of key ideas include
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that only the set probabilities, and not the labeling of possible
results, affects entropy (these are sometimes called symmetry or
permutability axioms); that entropy is zero if a possible result has
probability one; and that addition or removal of a zero-
probability result does not change the entropy of a
distribution. An important idea is that entropy is maximum if
all possible results are equally probable. This idea traces back to
Laplace’s recommendation for dealing formally with uncertainty,
known as the principle of indifference:

If you have no information about the probabilities on the results
of an experiment, assume they are evenly distributed (Laplace,
1814).

This principle is fundamental for establishing what is called
the prior distribution on the results of experiments before any
additional information or evidence on these results leads to an
eventual updating of the prior, typically by means of Bayesian
inference. However, in most experimental situations there is
already some knowledge before the experiment is conducted,
and the problem becomes how to choose an adequate prior that
embodies this partial knowledge, without adding superfluous
information. One and a half centuries later, Jaynes in 1957
observed that Entropy is the key concept for generalizing
Laplace’s attitude, in what is today called the Max-Ent principle:

If you have some information about a distribution, construct
your a priori distribution to maximize entropy among all
distributions that embody that information.

Applying this principle has become possible and extremely
fruitful since the discovery of efficient, implementable algorithms
for constructing Max-Ent distributions. These algorithms began
being developed already in the early twentieth century without
rigorous proofs. Csiszár (1975) was the first to prove a
convergence theorem of what is now called the “iterative
proportional fitting procedure”, or IPFP, for constructing the
Max-Ent distribution consistent with partial information.
Recently computers have become powerful enough to permit
the swift application of the Max-Ent Principle to real world
problems both for statistical estimation and pattern
recognition. Today maximum-likelihood approaches for
automatically constructing Max-Ent models are easily
accessible and used successfully in many domains: in the
experimental sciences, particularly in the science of vision; in
language processing; in data analysis; and in neuroscience (see,
for instance, Martignon et al., 2000). The real-world applicability
of the Max-Ent Principle is thus an important reason for
promoting teaching information, entropy, and related concepts
in school.

Today there is agreement in Germany that the concepts of
“information”, “bit”, and “code” are relevant and should be
introduced in secondary education, and that first intuitions on
these concepts should be fostered even earlier in primary
education (Ministerium für Kultus and Jugend und Sport,
2016). However, this is not easy. Given that mathematically
simpler ideas, for instance of generalized proportions, can
themselves be difficult to convey (see, for instance, Prenzel
and PISA Konsortium Deutschland, 2004), how can one go
about teaching concepts of entropy and information to
children? Our work is guided by the question of how to

introduce concepts from information theory in the spirit of
the “learning by playing” paradigm (Hirsh-Pasek and
Golinkoff, 2004). We describe playful exercises for fostering
children’s intuitions of information content, code, bit and
entropy. In previous work (Nelson et al., 2014; Knauber et al.,
2017), described in Asking Useful Questions, Coding and
Decoding, we investigated whether fourth graders are sensitive
to the relative usefulness of questions in a sequential search task
in which the goal is to identify an unknown target item by asking
yes-no questions about its features (Nelson et al., 2014). The
results showed that children are indeed sensitive to properties of
the environment, in the sense that they adapt their question-
asking to these properties. Our goal is now to move on from
information content to average information content, i.e., entropy;
we develop a more comprehensive educational intervention to
foster children’s intuitions and competencies in dealing with the
concepts of entropy, encoding, decoding, and search (for an
outline of the success of this kind of approach, see Polya,
1973). This educational intervention is guided and inspired by
the Entropy Mastermind game (Özel 2019; Schulz et al., 2019).
Because the requisite mathematical concept of proportion largely
develops by approximately fourth grade (Martignon and Krauss,
2009), we chose to work with fourth-grade (ages 8–10) children.
The intervention study we present here is in the spirit of (Bruner,
1966; Bruner, 1970) enactive-iconic-symbolic (E-I-S) framework.
In the E-I-S framework, children first play enactively with
materials and games. Then they proceed to an iconic (image-
based) representational phase on the blackboard and on
notebooks. Finally, they work with symbolic representations
again on the blackboard and notebook.

INFORMATION AND ENTROPY

Information, as some educational texts propose (e.g., Devlin,
1991, p.6), should be described and taught as a fundamental
characteristic of the universe, like energy and matter. Average
information, i.e., entropy, can be described and taught as a
measure of the order and structure of parts of the universe or
of its whole. Thus, information can be seen as that element that
reduces or even eliminates uncertainty in a given situation
(Attneave, 1959). This description is deliberately linked with
the physical entropy concept of thermodynamics. The more
formal conceptualization of this loose description corresponds
to Claude Shannon’s information theory (Devlin, 1991, p.16).

Thus, a widely used educational practice, for instance in basic
thermodynamics, is to connect entropy with disorder and
exemplify it by means of “search problems”, such as searching
for a lost item. This can be modeled using the concept of entropy:
a search is particularly complicated when the entropy is high,
which means that there is little information about the
approximate location of the searched item and the object can
therefore be located at all possible locations with approximately
the same probability. At the other extreme, if entropy is low, as for
a distribution that is 1 on one event and 0 on all others, we have
almost absolute certainty. Another educational approach is to
describe information as a concept comparable to matter and
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energy. In this approach matter and energy are described as
carriers of information.

A slightly more precise way of thinking about information is
by imagining it as transported through an information channel. A
communication system, also called channel, can be described by
its four basic components, namely a source of information, a
transmitter, a possible noise source, and a receiver. This is
illustrated in Figure 1.

What is the information contained in a message that is
communicated through the channel? This depends on the
distribution of possible messages. An important approach to
information theory, understood as a component of the science
of communication, was formulated by Shannon in the late
forties (Shannon and Weaver, 1949). We illustrate this approach
as follows:

The basic idea behind Shannon’s information is inspired by
the “Parlor game”, the classical version of the “GuessWho?” game
we play today see Figure 2, below, which was well-known at the
beginning of the 20th century. In this game a player has to guess a
certain item by asking Yes-No questions of the other player, who
knows what the item is. Consider an example: If the message
describes one of the locations of a chess board then the player
needs 6 questions to determine the field, if the questions she asks
are well chosen. The same applies for guessing an integer between
1 and 64 if the player knows that the numbers are all equally

probable. The first question can be: “Is the number larger than or
equal to 32?”. According to the answer, either the interval of
numbers between 0 and 31 or the interval between 32 and 64 will
be eliminated. The next question will split the remaining interval
in halves again. In 6 steps of this kind the player will determine
the number. Now, 6 is the logarithm in base 2 of 64, or –log2 (1/
64). This negative logarithm of the probability of one of the
equally probable numbers between 1 and 64 allows for many
generalizations. Shannon’s definition of information content is
illustrated in Figure 2:

Here the event with probability p has an information content
of -log p, just like one square of the chess board has an
information content of −log (1/64) � 6.

The next step is to examine the expected information content
of a distribution on a finite partition of events. This best-known
formulation of average information is what Shannon called
entropy. One of the fundamental outcomes of information
theory was the derivation of a formula for the expected value
of information content on the background of a probabilistic
setting delivered by the information source. For a given
probability distribution p and partition F, the Shannon
entropy is

H(F) � −∑
n

i�1
pi log2 pi

FIGURE 1 |Diagram of an information channel (this is an adaptation of the standard diagram that goes back to Shannon andWeaver, 1949; fromMartignon, 2015).

FIGURE 2 | Generalizing the paradigm for defining information (from Martignon, 2015).
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Shannon entropy is habitually written with the above formula;
note that it can be written equivalently as follows:

H(F) � −∑
n

i�1
pi log2 pi � ∑

n

i�1
pi ( − log2 pi) � ∑

n

i�1
pi log2(1/pi)

The final formulation of Shannon entropy can bemore helpful for
intuitively understanding entropy as a kind of expected
information content, sometimes also called expected surprise
(Crupi et al., 2018). Shannon entropy can be measured
in various units; for instance, the bit (an abbreviation of
binary digit; Rényi, 1982, p. 19) is used for base 2 logarithms;
the nat is used for base e logarithms. A constant multiple can
convert from one base to another; for instance, one nat is log2(e) ≈
1.44 bits.

We have previously conducted studies that established
that children have intuitions about the value of information,
and that children can adapt question strategies to statistical
properties of the environments in question (Nelson et al.,
2014; Meder et al., 2019). Although probabilistic models of the
value of information are based on the concept of entropy, a
number of simple heuristic strategies could also have been used
by children in our previous work to assess the value of questions.
Many heuristic strategies may not require having intuitions about
entropy per se.

In this paper we explore whether primary school students have
the potential to intuitively understand the concept of entropy
itself. We emphasize that in primary school we do not envision
using technical terms such as entropy or probability at all; rather,
the goal is to treat all of these concepts intuitively. Our hope is
that intuitive early familiarization of concepts related to entropy,
coding, information, and decoding may facilitate future formal
learning of these concepts, when (hopefully in secondary school)
informatics and mathematics curricula can start to explicitly treat
concepts such as probability and expected value. A further point
here is that one does not need to be a mathematician to be able to
use the Entropy Mastermind game as an educational device in
their primary or secondary school classroom.

The learning environments we propose are based on
enactive playing either with jars and colored cubes or with
cards. As a concrete example consider a jar like the one
illustrated in Figures 3A–C. Mathematically, the average

information or entropy of the distribution of colors in the
jar in Figure 3A is.

If a jar contains only blue cubes, as in Figure 3B, then pblue � 1
and the entropy of the distribution is defined as 0. The entropy
is larger in a jar with many different colors, if those colors are
similarly frequent, as in Figure 3C: Here the entropy of the

distribution of the jar is −4 (1 /

4 log 1 /

4) � − log(1 /

4) � 2.

A theorem of information theory closely related to
Laplace’s Principle (see Information and Entropy) states
that maximal entropy is attained by uniform distribution.
A key question is whether primary-school children can learn
this implicitly, when it is presented in a meaningful gemified
context.

ASKING USEFUL QUESTIONS, CODING
AND DECODING

Jars with cubes of different colors make a good environment
for guiding children to develop good strategies for asking
questions. This can happen when the aim is to determine
the color of a particular cube. A more sophisticated learning
environment is also just based on jars with colored cubes
where children are led to strategizing at a metacognitive level
on how the distribution of colors in a jar relates to the difficulty
in determining the composition of the jar. The concepts
behind the two learning environments just described are
information content and entropy. Both activities, asking
good questions and assessing the difficulty determining the
composition of a jar, are prototypical competencies in dealing
with uncertainty.

As we mentioned at the beginning of the preceding section, the
game “Guess Who?” is tightly connected to the concepts of
information content and entropy. In that game, just as when
guessing a number between 1 and 64 (see Information and
Entropy) by means of posing yes-no questions, a good strategy

FIGURE 3 | Three jars with three different distributions and corresponding entropies.
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is the split-half heuristic, which consists of formulating at each
step yes-no questions whose answers systematically divide the
remaining items in halves, or as close as possible to halves.

Consider the following arrangement of cards for playing the
“Guess Who?” game in Figure 4:

Which is the best sequential question strategy in this game?
This can be solved mathematically: it is the one illustrated by
the tree in Figure 4, where branches to the right correspond to

the answer “yes”, while branches to the left correspond to the
answer “no”:

We have previously investigated children’s intuitions and
behavior in connection with these fundamental games. Some
studies investigated whether children in fourth grade are able to
adapt their question strategies to the features of the environment
(Nelson et al., 2014; Meder et al., 2019). Other studies investigated
a variety of tasks, including number-guessing tasks and

FIGURE 4 | The grid of the Person Game used in the study reported in (Nelson et al., 2014); the stimuli are reprinted with permission of Hasbro. The optimal
question strategy (from Nelson et al., 2014).
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information-encoding tasks (Knauber et al., 2017; Knauber,
2018).

The Foundation of the Present Study:
Asking Good Questions About the
Composition of Jars Containing Cubes of
Different Colors
The common feature of the study using the “Guess Who?” game
and the study presented here is the investigation of question-
asking strategies. We exemplify question-asking strategies
analogous to those used in the Guess-Who game using jars
filled with colored cubes. One of the cubes is drawn blindly, as
in Figure 5, blindly and the goal of the question asker is to find
out which cube it was. Importantly, only binary yes/no questions
are allowed. Figure 5 shows a jar and its corresponding question-
asking strategy, visualized as tree.

AN EDUCATIONAL UNIT USING ENTROPY
MASTERMIND FOR FOSTERING
INTUITIONS ABOUT ENTROPY
We now describe a novel game-based mathematics intervention
for fostering children’s intuitions about entropy and probabilities
using Entropy Mastermind. Entropy Mastermind (Schulz et al.,
2019) is a code breaking game based on the classic game
Mastermind. In Entropy Mastermind a secret code is
generated from a probability distribution by random drawing
and replacement. For example, the probability distribution can be

a code jar filled with cubes of different colors. The cubes in the jar
are mixed, an item drawn and its color noted. Then, the item is
put back into the jar. The jar is mixed again, another item is
drawn, its color noted and the item is put back into the jar. The
procedure is repeated until the code (for example a three-item
code) is guessed correctly. This code is the secret code the player,
also referred to as code braker, has to guess. To guess the secret
code, the code breaker can make queries. In each query, a specific
code can be tested. For each tested code, the codebreaker receives
feedback about the correctness of the guessed code. Depending on
the context and version of the game, the feedback can be given by
another player, the general game master or the teacher or, in the
case of a digital version of the game, the software. The feedback
consists of three different kinds of smileys: A happy smiley
indicates a guessed item is correct in kind (in our example the
color) and position (in our example position 1, 2 or 3) in the code;
a neutral smiley indicates that a guessed item is the correct kind
but not in the correct position; and a sad smiley indicates that a
guessed item is incorrect in both kind and position. The feedback
smileys are arranged in an array. Importantly, the order of smileys
in the feedback array is always the same: happy smileys come first,
then neutral and lastly sad smileys. Note that the position of
smileys in the feedback array are not indicative of the positions of
items in the code. For example, a smiley in position one of the
feedback array could mean that position one, two or three of the
guess is correct. To figure out which feedback item belongs to
which code item is a crucial component of the problem-solving
process players have to engage in when guessing the secret code.

But where does entropy come into play in Entropy
Mastermind? Between rounds of the game (one round refers to

FIGURE 5 | A jar filled with colored cubes and the corresponding illustration of a question asking strategy and the associated probabilities.
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a code being generated, the process of guessing until the correct
code is guessed) code jars may differ in their composition. For
example, in one round of the game the probability distributionmay
be 99 blue: 1 red and in another game it may be 50 blue: 50 red.
Under the assumption that exactly two colors comprise the code
jar, the entropy of the first code jar is minimal, whereas the entropy
in the second code jar is maximal. Children experience different
levels of entropy in the form of game difficulty. Empirical data from
adult game play shows that in high entropy rounds of the game
more queries are needed to guess the secret code than in the low
entropy rounds (Schulz et al., 2019).

The research question guiding the present work is whether fourth
grade students’ intuitions about the mathematical concept of entropy
can be fostered by a classroom intervention using Entropy
Mastermind. In the following section we present a road map for a
pedagogical intervention on entropy and probabilities for fourth
graders. In An Implementation of “Embodied Entropy Mastermind”
in Fourth Grade we will then report first results on the effectiveness of
Entropy Mastermind following precisely this road map from an
intervention study.

The Entropy Mastermind intervention consists of two
instruction units, each consisting of two regular hours of class.
The first unit is designed to give children the opportunity to
familiarize themselves with the rules of the game. The goal of
this first unit is to convey the important properties of entropy via
game play. Although these properties connect strongly to specific
axioms in mathematical theories of entropy (Csiszár, 2008),
technical terms are not explicitly used in the first unit. The
jargon should be accessible and not intimidating for children at
elementary school level. Students play the game first in the plenary
session with the teacher and then in pairs. Themain goal of the first
unit is to convey to students an understanding of maximum
entropy and minimum entropy. The associated questions
students should be able to answer after game-play include:

• Given a number of different code jars (differing in entropy),
with which jar is it hardest to play Entropy Mastermind?

• With which jar is it easiest to play Entropy Mastermind?
• Students also get the task to generate differently entropic code
jars themselves by coloring black-white code jars themselves,
so as to answer: Which color distribution would you choose
to make Entropy Mastermind as easy/hard as possible?

The second unit is devoted to an in-depth discussion of the
contents developed in the first unit. In addition, other aspects of
the entropy concept are included in the discussion. For example,
how do additional colors affect the entropy of the jar? What role
does the distribution of colors play and what happens if the secret
code contains more or less positions?

An important method to evaluate the effectiveness of
interventions are a pre- and a post-test of the skills or
knowledge intended to train in the intervention. In our first
intervention using the Entropy Mastermind game the pre- and
post-test were designed in the following way: In the pre-test we
recorded to what extent the children already had a prior
understanding of proportions and entropy. As entropy is
based on proportions and children have not encountered the

game yet (and thus may not be able to understand questions
phrased in the context of EntropyMastermind), testing children’s
knowledge of proportions in the pretest sets a baseline for the
assessment of learning progress through game-play.

In the post-test the actual understanding of entropy was
assessed. The post-test allows for phrasing questions in the
Entropy Mastermind context, where more detailed and
targeted questions about entropy can be asked.

Again, the key goals are for children to learn how to maximize or
minimize the entropy of a jar, how to identify the minimum and
maximum entropy jar among a number of jars differing in
proportions, how entropy is affected by changing the number or
the relative proportions of colors in the jar, and that the entropy of a
jar does not change if the color ratios remain the same but the colors
are replaced by others. The data collected in the pre- and post-test
were first evaluated to see whether the tasks were solved correctly or
incorrectly. In addition, the children’s responses were qualitatively
analyzed in order to develop categories for classifying children’s
answers. The aim of this analysis was to find out whether the given
answers were indicative of a deeper understanding of entropy and
whichmisconceptions arose. In addition, an analysis of the children’s
solutions was conducted, which was developed within the framework
of the teaching units, in order to establish how the strategies for
dealing with entropy had been developed during the unit.

INSTRUCTION ACTIVITY

Implementing Entropy Mastermind as an activity in the
classroom can be done in at least two ways: by means of an
“embodied approach” having children play with jars and cubes of
different colors or with a more digital approach, in which they
play with an Entropy Mastermind app. We describe here a
roadmap for a classroom activity based on playing the “jar
game”, which is a physically enactive version of Entropy
Mastermind. The different steps of the intervention are
presented as a possible road map for implementing the
embodied Mastermind activity.

First Unit: Introducing Entropy Mastermind
The first step for the teacher following our roadmap is to
introduce the modified Entropy Mastermind game by means
of an example. The teacher uses a code jar, and several small
plastic cubes of equal size and form, differing only in color. She
asks a student to act as her assistant.

The teacher and (his/)her assistant demonstrate and explain
the following activity:

The teacher (the coder) verifiably and exactly fills a 10 × 10
grid with 100 cubes of a specific color (green) and puts them into
a fully transparent “code jar” so that the children can see the
corresponding proportions. Then she fills the 10 × 10 grid again
with 100 cubes of the same color and places them also into the jar.
Finally she fills the 10 × 10 grid with cubes of another color
(yellow). The teacher notes that it can sometimes be helpful to
look at the code jar when all the cubes are inside, before they get
mixed up. After the cubes have been put in the code jar, they get
mixed up.
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Drawing Cubes to Generate a Code
The teacher can work with a worksheet dedicated to codes and
coding, which she/he projects on the whiteboard.

Guessing the Code:
The assistant, “the guesser”, determines the code by filling in each
square on the worksheet in the “Guess 1” position (see Figure 6):
For the first query, the guesser chooses yellow, yellow, yellow. The
idea that guesses should be minimized is emphasized by having
images of a 1 euro coin next to each guess; after a guess is made, the
teacher crosses out the corresponding 1 euro coin. The aim of the
game is to guess the code as quickly as possible using an efficient
question strategy. The coder gives feedback consisting of one smiley
face and two frowny faces (see Figure 6). The smiley face means
that one of the squares, we don’t know which one, is exactly right:
the right color and the right position. The two frowny faces mean

that two items in the true code match neither the color nor the
position in the guess. Now the guesser knows that the code contains
exactly one yellow cube. Because the only other color is green, the
code must also contain two green cubes. For the second query the
guesser chooses yellow, green, green, as in Figure 6. The feedback
for this guess is one smiley face and two neutral faces. Again, the
order of the feedback smileys does not correspond to positions in
the code; they only tell you how many positions in the guesses are
exactly right (smiley face), partly right (neutral face) or completely
wrong (frowny face). Explaining the feedback is a crucial point in
the classroom. The teacher must ensure that the feedback
terminology is understood. In guess 3 the guesser guesses the
rightmost location of the yellow cube, and is correct, obtaining
all smiley faces in the feedback. The guesser gets a score of 5, because
he had to pay for each of the 3 guesses (include the guess when he
had figured the right code out). There are 5 of 8 “Euros” left.

FIGURE 6 | The Worksheet for playing Entropy Mastermind, completed following an example as illustrated in Guessing the Code.
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This process is repeated with new code jars and recipes and
corresponding worksheets projected on the whiteboard until the
children understand the rules of the game.

Self-Guided Play: Entropy Mastermind in Pairs
The next step for the children is to play the game with small jars
against each other. They are grouped in pairs. A coin toss decides
which of the children in each pair is going to be the first guesser
and who is going to be the first coder.

Filling the Code Jar and Getting the Worksheets
The teacher asks the coder to come to the front. A coin flip
determines whether each pair starts with the 1:2 or 1:12
distribution. According to the distribution, the coder obtains a
previously filled-and-labeled small jar or cup, for example with 20
yellow cubes and 40 green cubes. Furthermore, the coder picks up
four corresponding worksheets, for the three-item-code-length game,
that are already labeledwith the corresponding recipe. The coder goes
back to her place in order to play with her partner (guesser).

Verifying the Proportions
Each pair takes the cubes out of their code jar, verifies that the
proportions are correct, puts the cubes back in, and mixes up the
cubes in the code jar.

Blindly Generating and Guessing the Code
The coder and guesser switch roles and repeat the steps described
in 4. They play the game twice more. Afterward the children turn
in the code jars and the completed worksheets. The teacher adds
up the scores (in euros) for all the children, who played the game
with the 1:2 and the 1:12 code jars. She presents the scores for
each of the two distributions and asks the children about the
connection between the scores and the distributions. We describe
this discussion in the following paragraph.

Discussion With the Children
The teacher leads the classroom discussion. The main topics/
questions are:Which jar was ‘easier’ and which jar was ‘harder’ to
play with? It should be clear that the scores are higher for the 1:12
jar than for the 1:2 jar, without using the word entropy.
Furthermore, the teacher asks: Imagine you could code your
own jar. You have two colors available. How would you choose
the proportions to make the game as easy as possible (minimum
entropy), and how would you choose the proportions to make the
game as hard as possible (maximum entropy)? This discussion is a
good opportunity to see whether children have figured out that
the hardest jar (maximum entropy) in the case of two colors has a
50:50 distribution, and that the easiest (minimum entropy) jar in
the case of two colors has all (or almost all--perhaps task
pragmatics require having at least one jar of each color) cubes
of the same color.

The following questions are intended to prepare students for
the next intervention, while also encouraging them to intuitively
think further about the concept of entropy intuitively:

•What would happen if there were more than two colors in the
code jar?

• Would this make it easier or harder to guess the code?
• Would it depend on the proportions of each color?
•Would it be easier or harder to play if a code jar weremadewith
small scoops or with large scoops, but using the same recipe?

• Would it be easier or harder or the same to guess the code if
the jar contained blue and pink cubes, as opposed to green
and yellow cubes?

• Would increasing the code length from three to four make
the game easier or harder?

Summing up, the goal of the first intervention unit is to introduce
the Entropy Mastermind game, to consolidate children’s
understanding of proportions, and to highlight some principles of
entropy that will apply irrespective of the number of different colors.
In the following, we give an overview of the second unit.

Second Unit: Varying Code Lengths and
Multiple Colors
The procedure of the second unit is similar to that of the first unit.
However, the focus is on fostering children’s intuitions about how
the code length and the number of colors impact on the difficulty of
game play. For this unit, new jars are introduced. One code jar has
three colors with the recipe (2:1:1). This could mean, for instance,
that if four cubes are red, then two cubes are blue and two cubes are
green. Another code jar has six colors with the recipe proportions of
35 cubes of one color and one cube each of the five other colors (35:1:
1:1:1:1). During the independent self-guided group work, the teacher
becomes an assistant to the pupils. Pupils have the opportunity to ask
questions whenever something is unclear to them, thereby giving the
teacher insight into the pupils’ strategies. Following the game play,
the teacher conducts a discussion by asking questions testing
students’ understanding of entropy, such as:

• How many colors are represented?
• What is the relative proportion of each color?
• If you could change the color of a cube in the 2:1:1 jar, to
make it easier/harder, what would you do?

• Would you do the same thing if you could only use specific
colors, or if you could use any color?

• If you had six available colors and wanted to make a code jar
as easy/hard as possible, how would you do that?

The above procedure gives some guidelines for using these
enactive activities and group discussion to foster intuitive
understanding of Entropy. The teachers who implement these
units can devise their own pre-tests and post-test to assess
measures of success. In the next section we describe one such
intervention that we have tested ourselves.

AN IMPLEMENTATION OF “EMBODIED
ENTROPY MASTERMIND” IN FOURTH
GRADE
We now report here on a concrete implementation of Entropy
Mastermind with jars and cubes in fourth grade in an empirical
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study based on intervention with N � 42 students (22 girls and 20
boys between the ages of 9 and 10, including 2 students with learning
difficulties) from two fourth-grade classes in an elementary school.

In this intervention children were tested before and after the
instruction units which were performed following the roadmap
described above. Here we describe the contents of the pre- and
post-test chosen in this particular case. The first author, who
implemented the interventions, analyzed and evaluated the pre-
and post-test. She also analyzed the children’s worksheets during
the instruction unit. The aim of this analysis was to evaluate
children’s strategies when dealing with entropy, and how they
evolved during the unit.

Pre-Test: Building Blocks of Entropy
Because, prior to the Entropy Mastermind unit, children would
not be in a position to answer questions about code jars being
easier or harder for Entropy Mastermind, we decided to have a
pre-test dedicated to the essential implicit competencies required
for understanding entropy, namely dealing with proportions. For
instance, a basic competency for both probability and entropy is
that of being able to grasp whether 8 out of 11 is more than 23 out
of 25. Thus, the tasks chosen for the pre-test (see Figure 7)
allowed us to assess children’s understanding of proportions prior
to the intervention. The tasks used in the pre-test were inspired by
tasks of the PISA Tests of 2003 (Prenzel and PISA Konsortium
Deutschland, 2004), and also from the pre-test of a previous
intervention study performed by two of the authors of this paper
and (Knauber et al., 2017; Knauber, 2018). As an example of such
tasks involving proportions, we present Task 1 in Figure 7A and
we also present a proportion task with a text cover story (Task 3 in
the pre-test) in Figure 7B:

Children’s answers to the Pre-test were quantified and analyzed.

The Post-Test: Assessing Intuitions About
Entropy
In the post-test, Entropy Mastermind-specific knowledge
introduced in the teaching units could be taken into
consideration for the design of the questions. Moreover, the
rules introduced during the instruction unit made it possible
to ask detailed and targeted questions. These questions were
devoted to assessing the way children deal with entropy. It was
possible to assess to what extent children understood how to
maximize or minimize the entropy of a jar, whether they could
design code jars according to predefined distributions, and how
they dealt with comparing jars with different ratios and numbers
of elements. They also made it possible to measure the extent to
which children understood how entropy is affected by the
number of colors in the code jar and that replacing colors
without changing color ratios does not affect entropy. Some
examples of the post-test tasks are given in Figure 8:

Children’s answers to the post-test tasks were also quantified
and analyzed.

We analyzed the results of the pre- and post-test, as well as
of results of a detailed analysis of children’s answers during the
instruction units. Data collected in the pre-test and post-test
were first analyzed quantitatively to determine whether the
tasks were solved correctly or incorrectly. Children’s’ answers
were then analyzed qualitatively by establishing categories and
classifying answers accordingly. The aim of this categorization
was to find features that show to what extent the answers given
are actually based on a correct underlying theoretical

FIGURE 7 | (A) Task 1 of the Pre-test. (B) Task 3 of the Pre-test.
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understanding, and what difficulties arose in dealing with
entropy.

Results of the Pre-Test
71.4% of the students chose the correct answer in Task 1 (see
Figure 9, top; here the orange bars represent correct
argumentation). Because this percentage does not reveal
features of children’s thinking and understanding while
solving the task, a finer classification is also presented in the

bottom panel of Figure 9. A closer look at reasons students gave
for choosing this answer showed that only 2 children out of 42
related the task to proportional thinking. All the other 40
children argued in a way that suggests that proportional
thinking did not take place and thus no intuitions about
entropy in the jars; this is made clear by Figure 9. In
particular, children tended to think that it is easier to draw a
white marble in the jar with a smaller total number of marbles.

Some answers of the children according to the categories will
be shown below:

Answer 1 in Figure 10 presents a child’s response who
reasoned correctly. Here the distributions of the given jars
were compared by multiplying the number of elements of the
smaller jar so as to make it comparable to the number of the larger
quantity.

Answer 2, 3 and 4 are examples of wrong reasoning. The
child’s reasoning in answer 2 corresponds to the category of
children who argued based on the total number of marbles in a
jar: It is easier to draw a white marble out of a jar with less marbles
than the other jar.

The third answer is an example of the following way of
thinking: The less often a marble appears, the greater is the
probability of drawing this ball.

About half of the children’s responses correspond to
preferring a jar with the higher absolute number of convenient
preferred-color marbles.

We show also the answers to Task 2, which was similar to Task
1 with 2 white and 3 black marbles in jar 1, and 6 white and 8
black marbles in jar 2. The rationales that the children gave
mostly corresponded to those of Task 1.

Approximately half of all (47.6%) children chose the
correct answer in Task 2 (see Figure 11). The dominant
argument for Task 2 was, as in Task 1, based on the total
number of marbles in the respective jars, not on the ratio. This
shows that children in the pre-test had poor intuitions on
proportions, which form a building block of the understanding
of entropy.

Because not all children’s responses could be assigned to the
previously formed categories, the category system of Task 1 was
expanded by one category. Statements that relate exclusively to
the arrangement of the marbles in a jar, but do not consider
probabilities, are assigned to this category.

As mentioned before, with the increased number of marbles in
jar 2, additional naive arguments were added to the categorization
system: Because there are more marbles in jar 2, it may happen
that the convenient marbles are covered by the unfavorable
marbles. Due to this fact, one has to reach deeper into the jar
to get the desired marble. Proportions are not considered in this
line of thinking.

Task 3 on lettuce, which explicitly tests proportional thinking,
was correctly solved by 23 children (54.8% of the sample). 19% of
the correctly chosen answers presented arguments by reference to
proportions (see student example in Figure 12A); all other
children gave answers which indicate that proportions were
not considered (see Figure 12B).

All children’s responses for Task 3 could be assigned to the
categories established for the children’s answers in the

FIGURE 8 | Selected tasks from the Post-test: 1, 3, 8, 10, 12.
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previous tasks. Figure 13 shows the distribution of the given
answers:

Results of the Posttest
We give for each task in the posttest a short description and
present the corresponding results. Task 1 requires an
understanding of proportions. The children had to complete
code jars by coloring squares as specified and according to
given distributions. 57.1% of the children (24 children)
fulfilled the requirements and painted all given jars
correctly. 23.8% (10 children) completed two of three jars
correctly, 11.9% (5 children) completed one jar correctly and
7.1% (3 children) colored the squares incorrectly (see task 1 in
Figure 14).

In Task 2, 3 and 4 the children had to identify the jar with the
highest entropy (the “hardest”) out of the three. The jars in Task 2
are made up of cubes of two different colors, while in Task 3 and 4
the number of colors varies between two and five. These tasks
required an understanding of how the level of entropy depends on
the number of colors and their proportions. Task 2 was solved
correctly by 92.9% of the children, task 3 by 81% and Task 4 by
88.1% (see Task 2, 3 and 4 in Figures 14).

In Task 5 and 8 the children had to complete jars by coloring
squares according to a list of colors. They had to maximize
entropy under given conditions. Only 50% of the children

solved task 5 correctly. Nevertheless, 33% of the children
who solved the task incorrectly, distributed their chosen
colors equally, satisfying the requirement that entropy should
be maximal. However, they did not use all the listed colors (see
Tasks 5 and 5 Z in Figure 14).

Task 8 was correctly solved by 73.8% of the children
(Figure 14).

In Task 6, 7 and 9 the children also had to complete jars by
coloring in squares with listed colors. But this time they had to
minimize the entropy under given conditions. These tasks also
differ in the number of listed colors. Observe that Entropy
Mastermind is easiest to play if the jar is coded with only one
color. In this case the entropy is 0 bit. In task 6, four of the given
twelve squares are colored orange and orange is among the listed
colors. 59.5% of the children solved this task correctly by coloring
in the remaining squares in orange as well. 40.5% of the children
solved the task incorrectly: They reduced entropy by coloring all
the squares orange except one. In this solution, entropy is very
low, but not minimal (see Tasks 6 and 6 Z in Figure 14).

Task 7 was solved correctly by 88.1% of the children and Task
9 by 64.3% (see Task 7 and 9 in Figure 14).

Tasks 10 and 11 require an understanding of proportions. Two
jars with different basic quantities and color distributions have to
be compared. 92.8% of the children solved Task 10 correctly and
95.2% solved Task 11 correctly (Figure 14).

FIGURE 9 | Percentages and classification of children’s answers on Task 1.
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Task 12 shows two jars. Both of them have the same number of
squares and the distributions of the colors are identical. They differ
only in the choice of color. This task requires the understanding
that the choice of color does not influence the entropy of a jar.
90.4% of all children solved this task correctly (Figure 14).

Comparison Between the Pre-Test and the
Post-Test in Proportion Comparison
In summary, although an average of 57.9% of all tasks were
correctly solved in the pre-test, the analysis of children’s
reasoning shows that only 9.5% of the answers were actually
based on an intuitive understanding of proportion comparison.
Many children showed misconceptions, such as the incorrect
additive strategy in proportional thinking. Similarly, relationships
between two basic sets were often not considered, and reasoning

was mainly based on the absolute frequency of favorable or
unfavorable marbles.

In the Post-test an average of 77.6% of the tasks were solved
correctly. Nine of the 12 tasks had been designed with the goal that
an understanding of proportion comparison on the one hand, and
entropy on the other, was essential for correct answers. For the
three other multiple-choice tasks, a correct answer by guessing
cannot be excluded, but the solution rates for these tasks are not
conspicuously higher than for the other tasks.

As wementioned, the data collected in the pre-test and post-test
were evaluated in order to determine whether the tasks were solved
correctly or incorrectly. In addition, students’ answers were
analyzed qualitatively by establishing categories, to which the
answers could be clearly and unambiguously assigned. As we
already explained, the categories were based on similarities and
differences between answers: the aim was to assess the extent to

FIGURE 10 | Children’s answers according to the categories depicted in Figure 9.
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which the answers given were actually based on understanding.
Another issue of interest was the type of difficulty that arose in
dealing intuitively with the concept of entropy.

The most relevant aspect of our comparison was the following:
while in the pre-test, children gave answers that indicate incorrect
additive comparisons with regard to proportions, this seldom
occurred in the post-test. Given that the pre- and post-test
items were not exactly the same (because the pre-test could not
contain Entropy-Mastermind-specific questions), some caution
needs to be made in interpreting these results. However--
especially given the much greater theoretical difficulty of the
post-test items--we take the results as very positive evidence for
the educational efficacy of the Entropy Mastermind unit.

CONCLUSION

Competence in themathematics of uncertainty is key for everything
from personal health and financial decisions to scientific reasoning;
it is indispensable for a modern society. A fundamental idea here is
the concept of probabilistic entropy. In fact, we see entropy both as
“artificial” in the sense that it emerges from abstract considerations
on structures imposed on uncertain situations, and as “natural” as
suggested by our interaction with the environment around us. We
propose that Entropy as a measure of uncertainty is fundamental in

consideration of the physical order and symmetry of environmental
structures around us (Bomashenko, 2020).

After having played EntropyMastermind, the majority of fourth-
grade students (77.6%) correctly assessed the color distribution of
code jars in their responses. This can be interpreted as showing that
children were able to develop an intuitive understanding of the
mathematical concept of entropy. The analysis of the students’
written rationales for their answers gave further insight into how
their strategies and intuitions developed during game-play. It seems
that with increasing game experience children tended to regard
Entropy-Mastermind as a strategy game, and not only as a game of
chance. By developing strategies for gameplay, the childrenwere able
to increase the chance of cracking the code, despite the partly
random nature of the game. Many strategies that were used are
based on an understanding of the properties of entropy. It was
impressive how the children engaged in gameplay and improved
their strategies as they played the game. Although we did not include
the post-test items in the pre-test, for the reasons explained above,
and thus direct comparisons between the pre- and post-test are not
straightforward, we infer that children’s high scores in the post-test
are at least partly attributable to their experiences during the Entropy
Mastermind unit.

Qualitatively, children reported that the game Entropy
Mastermind was fun, and their verbal reports give evidence that
the game fostered their intuitions about entropy: students

FIGURE 11 | Percentages and classification of children’s answers on task 2.

Frontiers in Education | www.frontiersin.org June 2021 | Volume 6 | Article 59500014

Özel et al. Playing Entropy Mastermind

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


repeatedly asked whether they could play the game again. This
observation corroborates the finding in the literature that students
enjoy gamified learning experiences (Bertram, 2020) and suggests
that games can foster intuitive understanding of abstract concepts
such as mathematical entropy. It is remarkable that we found this
positive learning outcome in elementary school students, whose
mathematical proficiency was far from understanding formulas as
abstract as mathematical entropy at the time of data collection.

Building on the road map described here, we are extending
the Entropy Mastermind unit to include a digital version of the

game and additional questionnaires and test items in the pre-
and post-test (Schulz et al., 2019; Bertram et al., 2020).
We have developed a single-player app (internet-based)
version in which children can play Entropy Mastermind
with differently entropic code jars and varying code lengths.
This makes the Entropy Mastermind App a malleable learning
medium which can be adapted to children’s strengths and
needs. A key issue in future work will be to identify how best to
make the app-based version of Entropy Mastermind adapt to
the characteristics of individual learners, to maximize desired

FIGURE 13 | Categories for the analysis of answers to Task 3 in the pre-test.

FIGURE 12 | (A). Explanation based on comparison. (B) A solution with no comparison of proportions of proportions.
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learning and attitudinal outcomes. The digital Entropy
Mastermind unit is well suited for digital learning in
various learning contexts, for example for remote schooling
during the Covid-19 pandemic. At the same time, the extended
pre- and post-test, including psychological questionnaires and
a variety of entropy-related questions, allows us to generate a
better understanding of the psychology of game-based
learning about entropy.

Summing up, using Entropy Mastermind as a case study, we
showed that gamified learning of abstract mathematical concepts
in the elementary school classroom is feasible and that learning
outcomes are high. We are happy to consult with teachers who
would like to introduce lesson plans based on EntropyMastermind
in their classrooms. Although our focus in this article is on Entropy
Mastermind, we hope that our results will inspire work to develop
gamified instructional units to convey a wide range of concepts in
informatics and mathematics.
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