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The accurate measurement of the cognitive load a learner encounters in a given
task is critical to the understanding and application of Cognitive Load Theory (CLT).
However, as a covert psychological construct, cognitive load represents a challenging
measurement issue. To date, this challenge has been met mostly by subjective self-
reports of cognitive load experienced in a learning situation. In this paper, we find that
a valid and reliable index of cognitive load can be obtained through item response
modeling of student performance. Specifically, estimates derived from item response
modeling of relative difficulty (i.e., the difference between item difficulty and person
ability locations) can function as a linear measure that combines the key components of
cognitive load (i.e., mental load, mental effort, and performance). This index of cognitive
load (relative difficulty) was tested for criterion (concurrent) validity in Year 2 learners
(N = 91) performance on standardized educational numeracy and literacy assessments.
Learners’ working memory (WM) capacity significantly predicted our proposed cognitive
load (relative difficulty) index across both numeracy and literacy domains. That is, higher
levels of WM were related to lower levels of cognitive load (relative difficulty), in line with
fundamental predictions of CLT. These results illustrate the validity, utility and potential
of this objective item response modeling approach to capturing individual differences in
cognitive load across discrete learning tasks.

Keywords: cognitive load, item response theory, mental effort, working memory, standardized test

INTRODUCTION

The core goal of cognitive load theory (CLT) is the creation of learning environments that make
optimal use of learners’ cognitive resources and reduce any demands extraneous to learning
in order to optimize learning success (Paas et al., 2003, 2004). In addition to the inherent
complexity of information that is to be learned, the method of presenting information to
learners also affects the cognitive load learners experience when acquiring knowledge and skills.
However, the understanding and application of CLT requires methods to appraise cognitive load,
which could be expected to differ across tasks, contexts and learners. To-date, this has been
indexed mostly by subjective self-reports of cognitive load experienced in a learning situation.
In this study, we evaluated a more objective and sensitive approach to indexing cognitive load
experienced by learners.
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Cognitive Load: Definition, Sources and
Measurement
Cognitive load is considered to be a complex multidimensional
construct that consists of: (1) causal factors relating to the
task, the learner and their interactive components; and (2)
assessment factors such as mental load (ML), mental effort (ME),
and performance (e.g., Paas and van Merriënboer, 1994). The
cognitive resources needed for a certain task comprise ML, which
is a result of a task’s content, presentation, structure, complexity
and difficulty (Paas, 1992). On the other hand, the cognitive
resources that are devoted to a task comprise ME (Paas, 1992;
Paas et al., 2003). ME is intrinsic to the learner, and constitutes
the degree to which cognitive resources are mobilized to enable
processing and completion in complex tasks (Paas and van
Merriënboer, 1994). The causal factor of cognitive load relates
to aspects such as the novelty of the task and environmental
conditions, while factors relating to the learner involve aspects
like working memory (WM) capacity and expertise. These task
and learner factors interact to further influence performance
through their influence on, for example, motivation.

Cognitive load can be understood within three broad
categories – intrinsic, extraneous, and germane (Sweller et al.,
2019). Intrinsic cognitive load has to do with the complexity
of the information which is being processed and subsumes the
idea of “element interactivity” (Sweller et al., 2019). Element
interactivity depends on the nature of the information and
the prior knowledge of the learner processing the information.
For example, complex tasks which require the processing
of multiple interconnected elements are considered to have
high element interactivity. By contrast, extraneous cognitive
load has to do with how information is presented and the
instructional procedures involved in the task. Manipulations of
the presentation of instructional procedures can affect the level
of element interactivity. Finally, germane cognitive load refers
“[. . .] to the WM resources available to deal with the element
interactivity associated with intrinsic cognitive load” (Sweller,
2010, p. 126). Therefore, germane cognitive load is both linked to
intrinsic and extraneous cognitive load. Germane cognitive load
resources can only be utilized if extraneous cognitive load is not
depleting WM resources. Moreover, germane cognitive load can
redistribute WM resources to process complex tasks with high
element interactivity (Sweller et al., 2019).

As a covert psychological construct, which can be expected to
vary across tasks, contexts and learners, cognitive load constitutes
a serious challenge in terms of its accurate measurement. Without
precision in its capture, application of CLT is limited to the
identification of conditions under which learning is superior or
inferior, without the ability to accurately tailor these principles
to the specific tasks, conditions and learners involved in a
particular learning situation. For instance, the split attention
effect would suggest that when learners are novice, essential
information should be well integrated; however, this might not
be expected at higher levels of expertise. Application of this
principle to optimize learning outcomes amongst diverse tasks
(e.g., in reading, numeracy, and science), diverse learners (e.g., in
expertise and WM capacity), and in different contexts to which

the research was conducted, is complicated without the ability to
carefully appraise changes in cognitive load as conditions change.

When cognitive load is measured it is most often done through
the use of a subjective ranking using a Likert scale asking for
invested ME (e.g., Marcus et al., 1996; Tindall-Ford et al., 1997;
Salden et al., 2004; Halabi et al., 2005). A primary reason is that
this method is straightforward, simple to apply, shows evidence of
reliability, construct validity, and does not interfere with learning
(Paas et al., 1994; Sweller et al., 1998). For instance, Paas (1992)
used a one-dimensional 9-point symmetrical category rating scale
(Likert-type scale) for assessing learners’ ME in different phases
of learning and performance. The scale ranged from 1 (very low
mental effort) to 9 (very high mental effort), on which learners
rank their ME during a learning and performance task. Paas
et al. (1994) tested this subjective scale for its measurement
properties and found that it had good reliability (e.g., Cronbach
α = 0.82) and was sensitive to variation in small levels of
cognitive load. Such evidence is taken to suggest that learners are
capable of introspecting their cognitive processes and use this to
quantify their ME.

However, this scale has been interpreted by some cognitive
load researchers by substituting “mental effort” with “task
difficulty” (e.g., Ayres, 2006; Cierniak et al., 2009). By itself, asking
learners to rank difficulty of learning tasks as a measure of ME is
problematic. While ME and task difficulty are no doubt related,
as a consequence of factors such as prior knowledge, they are
not identical (van Gog and Paas, 2008). For instance, when tasks
are very difficult for learners, research shows they are often not
stimulated to put in the required ME (Wright, 1984; Wright
et al., 1986) and, as a result, may not be reflective of the task’s
cognitive load. Despite this, Sweller et al. (2011, p. 74) state that
the subjective ME scale has “[. . .] been shown to be the most
sensitive measure available to differentiate the cognitive load
imposed by different instructional procedures.”

From these scales, ME (cognitive load) is indexed through
a combination of the learning result and learners’ ME. That
is, a learning experience is considered more optimal if it has
a higher average performance than an alternative condition.
Yet when two instructional conditions record the same average
performance the learning condition that requires less ME
has higher instructional efficiency. Accordingly, the learning
condition that needs more ME is considered to be less efficient
than the one that requires learners to exert less ME. Using a
cognitive load framework, Paas and van Merriënboer (1993)
suggested a method for quantifying this instructional efficiency.
Their formula, E = (P−R)

√
2

, reconciles: (E), the relative efficiency
of the instructional condition; (P), the standardized z-scores for
test performance scores; and (R), the standardized z-scores for
the ratings of cognitive load related to the task. Based on this
formula, a learning condition would be more efficient when
lower subjective ratings of cognitive load correspond with higher
performance scores. These scores are calculated per learner
and per task, and interpreted relative to an ideal slope of 1,
where instructional efficiency = 0 (or performance is equal
to ME). Proximity above or below this slope denotes high or
low mental efficiency, respectively. This mental efficiency model
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has since been expanded to include factors such as motivation
(Hummel et al., 2004).

However, Hoffman and Schraw (2010) have pointed out
fundamental measurement concerns with Paas and van
Merriënboer’s (1993) cognitive load efficiency model beyond
the well-documented issues of using self-report measures,
such as measurement error arising from rater bias and over-
confidence (e.g., Stone, 2000; Burson et al., 2006). Hoffman
and Schraw note that task performance scores and ME scores
are not commensurable and do not share a common unit of
measurement. Calculations derived from incommensurable
variables are problematic for interpretative and computational
reasons (see Hoffman and Schraw, 2010).

Recently, studies have attempted to measure the different
aspects of cognitive load (e.g., Leppink et al., 2013; Klepsch et al.,
2017; Krell, 2017). For example, Krell (2017) developed a seven-
point Likert scale to measure self-reported levels of cognitive
load. In this study, Krell used an item response theory (IRT)
approach to test the linear functioning of the self-report scale.
This scale consists of 12 items, half of which measure ML (i.e.,
the cognitive capacity to process tasks) and the other half to
measure ME (the investment of cognitive capacity by persons to
process tasks). Krell tested the scale on a large sample of high
school students on the performance of a standardized science test.
Krell found evidence that ML and ME were different dimensions
and some evidence which suggest a causal role between ML and
performance but not ME and performance.

Whereas the majority of cognitive load researchers have
used subjective self-report, a range of objective cognitive load
measurement techniques have also been explored by cognitive
load researchers (for overviews see Paas et al., 2003; Paas et al.,
2008). Whereas subjective techniques are normally used to
get an estimate of overall cognitive load, that is, experienced
load based on the whole task procedure, continuous objective
techniques can be used to determine the dynamics of cognitive
load through fluctuations in cognitive load from the beginning
to the end of the task (Xie and Salvendy, 2000; Paas et al.,
2003). Such approaches include neuroscience (e.g., Antonenko
et al., 2010; Howard et al., 2015), physiological measurements
such as heart rate (e.g., Paas and van Merriënboer, 1994), pupil
dilation (van Gerven et al., 2004), and blood glucose levels
(e.g., Scholey et al., 2001).

Other objective cognitive load measurement techniques
involve the use of secondary tasks. Secondary-task techniques are
based on the assumption that performance on a secondary task
can be used to reflect the level of cognitive load imposed by a
primary task, and have been used successfully by several cognitive
load researchers (e.g., Chandler and Sweller, 1996; Marcus et al.,
1996). A recent and promising example of this technique is the
rhythm method (Park and Brünken, 2015; Korbach et al., 2018).
With this technique participants have to execute a previously
practiced rhythm continuously by foot tapping (secondary task)
while learning (primary task). Eye-tracking analysis is another
objective technique to measure cognitive load. These studies
investigate fixation time and number of fixations on visual stimuli
as indications of ME and cognitive load (see Korbach et al., 2017;
Krejtz et al., 2018).

In summary, cognitive load has been measured primarily
through the use of subjective self-report scales. Less common
objective measures of cognitive load have been attained through
brain imaging, the monitoring of physiological processes,
the use of secondary tasks, and eye tracking. While such
studies (e.g., neuroscientific (fMRI) approaches to cognitive
load measurement) have shown great potential (Whelan, 2007)
they are cumbersome, intrusive, require considerable technical
expertise beyond the capability of most CLT researchers, and are
unclear about which type of cognitive load is being measured.
Moreover, such measurement approaches lack ecological validity
and occur within laboratory settings outside of the typical
classroom learning environment. An ideal measure of cognitive
load would be objective, unobtrusive, and measurable within a
typical classroom environment.

A Measure of Cognitive Load Through
Rasch Modeling
Self-report Likert scale ratings do not constitute measures in so
far as, technically, they are observations and, as such, do not meet
the basic requirements of measurement (Wright, 1997). Likert
scale raw scores provide ordinal data, which means that: (1) the
scale is finite or limited to a small number of observations (e.g.,
5-, 7-, or 9-point); and (2) that differences between observations
(i.e., ratings) are not equidistant from each other, as in an interval
or ratio level scale. For a scale to qualify as a linear measure it
needs to be boundless, or not limited to a finite set of observations
and, critically, needs to consist of equally divisible units. Hence,
a serious problem of measurement error arises when Likert
scales are used as substitute measures in parametric analyses,
such as analyses of variance (ANOVA) (Wright, 1997). Ideally, a
behavioral measure of ME would be derived through an objective
procedure that fulfills the measurement principles of a linear
continuum with interval-level units. Item response modeling
presents such an opportunity, while using some of the same data
(e.g., performance) as CLT efficiency indices.

The Rasch Model
The Rasch (1960) model, or the one parameter logistic model
(1PL), is a commonly used model in IRT. The Rasch model is
a mathematical model of probability predicated on a hierarchy of
item difficulties. This hierarchy of item difficulty is determined
by conformity to a Guttman scalar pattern. The model depicts
the probability of getting an item correct/incorrect as a logistic
function of the distance between a person’s location (ability)
and an item’s location (difficulty). These location estimates
are situated on the same linear scale (i.e., logit scale). This
relationship is expressed below in mathematical form for
dichotomous data (e.g., correct/incorrect test answers):

P {Xni = x} =
ex

(βn− δi)

1+ e(βn− δi)

Where P = probability of X at person n for item i and where
x represents either a correct (x = 1) or an incorrect (x = 0)
response. Person locations are denoted as βn and item locations
as δi (Andrich et al., 2010).
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According to this model, an item’s difficulty is defined as being
equal to the level of ability at which 50% of persons respond
successfully to that item. When the difficulty of any given item
exceeds the ability of any given group of persons, a smaller
percentage of persons respond successfully. A major strength of
this model is that an analysis on raw data provide reliable and
valid independent (stand-alone) measures of a person’s ability
and the difficulty of items. These reliable person ability and item
difficulty parameters, attained through a person-item interaction,
potentiates an objective measure of cognitive load. That is, the
difference between item difficulty δ and person ability β or (δ
–β) provides an objective and performance-derived estimate of
relative difficulty (or cognitive load experiences by the learner as
a function of the learning task). The more the difficulty of an item
exceeds the ability of the person, the greater the relative difficulty
of that item for that person and, hence the greater cognitive load
involved in correctly solving the item.

This approach reflects the interaction between measurable
elements of cognitive load (i.e., ML, ME, and performance) and
calibrates them within a single scalable trait/dimension. ML is
captured through the transformation of raw performance data
into reliable estimates of item/task difficulty. ME is estimated
through the transformation of raw performance data into ability
measures (and degree to which variation occurs with respect to
difficulty estimates). This relative difficulty of items is analogous
to ME as a measure of the amount of cognitive load involved in
correctly responding to the task/item. This provides a summary
interval level measurement of cognitive load derived by an
objective mathematical procedure. It is important to note that
this proposed cognitive load measure involves intrinsic cognitive
load only and does not encompass extraneous cognitive load. The
proposed measure deals solely with the complexity of the tasks
and or difficulty of the test questions (element interactivity) and
the background knowledge of the learners (e.g., their numeracy
and literacy abilities).

By contrast with Paas and van Merriënboer’s (1993) efficiency
model, which stem from calculations involving incommensurable
variables, this IRT approach provides a psychometrically sound
alternative. For example, Paas and van Merriënboer’s (1993)
efficiency model uses two distinct scales to derive a measure of
cognitive efficiency/cognitive load and calculates the difference
between z score performance and z score effort as an
efficiency measure. By contrast, a probabilistic IRT analysis
transforms the raw data of a single performance measure
and derives item difficulty and person ability parameters
from this measurement scale (i.e., test or task scores). IRT
probabilistic transformation of raw performance scores into
these two parameter estimates are located on a single logit
scale in interval level units. Hence, the subtraction of the
ability estimates from the difficulty estimates per person item
interaction is psychometrically sound as these estimates share a
common logit scale.

The Present Study
We understand the concept of test validity as defined by
Kane (2013) who presents an argument-based approach. In
this approach “. . .to validate an interpretation or use of test
scores is to evaluate the plausibility of the claims based on

the test scores” (p. 1). This validity framework consists of
(1) stating the proposed interpretation and use of the test
scores and (2) evaluating the plausibility of such proposals
(Kane, 2013).

In the current study, and following from Kane’s (2013)
argument-based approach, we specifically propose that IRT
derived statistics from standardized numeracy and literacy test
scores can provide proxy measures to determine variance in
learners’ intrinsic cognitive load. In order to evaluate the
plausibility of this proposal we demonstrate two types of validity
evidence: construct validity and concurrent criterion validity.
Evidence of construct validity is demonstrated through an IRT
analysis on the National Assessment Program – Literacy and
Numeracy (NAPLAN) standardized test data (e.g., correct item
functioning, reliability testing, and fit to the Rasch model).
Moreover, we evaluate the plausibility of this proposal by
attaining concurrent criterion validity evidence. Our hypothesis
(H1) for criterion validity was that WM should inversely predict
the relative difficulty/cognitive load requirement of learners.
That is, concordant with CLT theory, higher WM capacity
would decrease the experience of cognitive load and give
preliminary support for the utility of this index to measure
learners’ cognitive load.

MATERIALS AND METHODS

Participants
Ninety-one primary school primary school-aged learners in
Grade 2 (aged 7–8 years) participated in this study. Learners were
recruited across three regional (n = 29) and two metropolitan
schools (n = 62), with a balanced gender ratio of boys (n = 42),
and girls (n = 49). All learners spoke English as their first language
and had no known developmental delay or disorder.

Measures
Learning Assessment
An out-of-circulation version of Australia’s National Assessment
Program – Literacy and Numeracy (NAPLAN) test was
administered as the learning task (ACARA, 2011). Specifically,
a numeracy test (35 multiple-choice questions) and a language
conventions test which consists of a spelling subtest (25 multiple-
choice questions) and a grammar subtest (25 multiple-choice
questions) of NAPLAN were selected to provide raw performance
data. These assessments were administered in a group setting
within the students’ classrooms, which followed the protocols of
the NAPLAN test.

Working Memory
Phonological and visual-spatial WM was measured by respective
“Not This” and “Mr Ant” tasks from the Early Years
Toolbox (EYT; Howard and Melhuish, 2017). These tasks are
administered via iPad to collect scores and timing measures.

Phonological WM
The iPad-based EYT “Not This” task (Howard and Melhuish,
2017) involves the presentation of an auditory instruction, against
a blank screen, to find a stimulus that does not have certain
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characteristics of color, shape, or size (or a combination of
these; e.g., ‘Point to a shape that is not red and not a circle).
After a brief retention interval, participants are then shown a
stimulus array from which to identify a stimulus that satisfies
the auditory instruction. The task increases in complexity from
level 1 (one feature to recall) to level eight (eight features to
recall). Each level consists of five trials and at least three successful
responses are required to proceed to the next level. The task
ends if participants fail to achieve three or more successful trials
within a level, or the completion of level eight. WM capacity is
estimated using a point score, calculated as: one point for each
successive level, starting at the first, in which at least three trials
are performed correctly and then 1/5 of a point for each successful
trial thereafter.

Visual-Spatial WM
The iPad-based EYT “Mr Ant” task (Howard and Melhuish,
2017) involves recall of an increasing number of stickers placed
on various locations of a cartoon ant. The task increases in
complexity from level one (recalling the placement of one sticker)
to level eight (recalling the placement of eight stickers). The task
consists of three trials per level and failure on all trials at a given
level (or completion of level eight) ends the task. In test trials,
a cartoon ant with sticker/s is presented for 5 s, followed by a
blank screen for 4 s, before the return of the cartoon ant without
any stickers. Participants respond by tapping on the location of
the missing sticker/s. WM capacity is estimated by a point score,
calculated as: 1 point for each successive level, starting at the first,
in which at least two trials are performed correctly and then 1/3
of a point for each successful trial thereafter.

Procedure
NAPAN tests were administered in two group sessions within
students’ classrooms, across 2 days, starting with language
conventions. This order and spacing is consistent with NAPLAN
administration (Board of Studies Teaching and Educational
Standards NSW (BOSTESNSW), 2015). Absent students
completed the missed test on the day of their return to school.
After completion of the NAPLAN assessments, the WM tasks
were administered in a single session individually and in a quiet
room. The tasks were administered in a fixed random order, as
follows: RSPM; Mr Ant; and Not This. The classroom teacher
was present throughout the testing phase and was on hand to
assist students who had questions.

RESULTS

Rasch Analyses
The proposed indices of cognitive load were derived from Rasch
modeling analyses of the NAPLAN test performances (numeracy
and language conventions). These data were analyzed using
the dichotomous Rasch model, run on Rasch Unidimensional
Measurement Modeling (RUMM) 2030 software (Andrich et al.,
2010; for a complete interpretation of Rasch analysis, see Tennant
and Conaghan, 2007). Overall fit of the data to the Rasch model
indicated good model fit for both tests (chi-square all p > 0.05)

(see Table 1 for summary of fit statistics). The Person Separation
Index (PSI), a reliability index on the transformed logistic data,
indicated very good reliability for all three tests (0.85–0.86), as
did the Cronbach alpha reliability indices (0.86–0.94).

The individual fit of items to the Rasch model are identified
by fit residuals outside the acceptable ranges (≤2.50 and >2.50).
Residuals constitute the difference between the observed values
and the theoretical Rasch estimates. Individual item misfit can
also be detected by significant chi-square and F statistics, where
an insignificant p value (>0.05) indicates good fit to the Rasch
model. Misfit can also be detected by examination of an item’s
item characteristic curve (ICC). ICCs plot the observed values
against the theoretical Rasch-derived estimates represented as an
s-shaped curve; the closer the proximity between the observed
values and the theoretical curve the better the fit and vice versa.

One item in the language conventions test (item 48) was
found to misfit the model (χ2 = 0.72, p < 0.001) at Bonferroni
adjusted alpha = 0.001 and was removed from the analysis. Also,
Item 25 in the language conventions test had an extreme score
(defined as all responses correct or incorrect) and was not used
in the analysis. Otherwise, individual item fit was acceptable
for all items of each test. Overall, all tests showed evidence
of good reliability and construct validity (as good fit to the
unidimensional Rasch model and correct functioning of items).
The spread of items relative to the ability of the learners in
the numeracy and language conventions tests are depicted in
Figures 1, 2, respectively.

The high reliability indices and well-functioning of items
according to the Rasch model constitutes significant evidence
of the precision of the test score data which we will use
to formulate our proposed intrinsic cognitive load measure.
Following Kane’s (2013) validity argument approach, such
evidence of the precision of our test score data will support the
plausibility and generalizability of our proposed measure.

Relative Difficulty/Cognitive Load Measures
Essentially, our proposed cognitive load index is a measure
of the relative difficulty of test items. This relative difficulty
measure was calculated from the subsequent IRT analysis on the
NAPLAN numeracy and language conventions test data. These
relative difficulty/cognitive load measures were calculated for
each test dimension by subtracting the IRT derived person ability
estimates from the item difficulty estimates for each person-item
interaction. The descriptives for these measures are depicted in
Table 2 as logits and depict the mean relative difficulty/cognitive
load for each person-item interaction across the two test domains.

TABLE 1 | Rasch analysis summary statistics of the NAPLAN numeracy and
language conventions tests.

Item trait Interaction PSI α

Test type Value (df) p

Numeracy 088.3 (70) 0.07 0.85 0.86

Language conventions 105.8 (96) 0.23 0.86 0.94

*ps < 0.05 are statistically significant. PSI, person separation index.
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FIGURE 1 | Wright map of the spread of learner ability and item difficulty on the NAPLAN numeracy test (in logits). Learner abilities (on the left) range from the least
able on the bottom to the most able on the top of the graph. Item difficulties (on the right) range from the least difficult on the bottom to the most difficult on the top.
The map indicates that the test was difficult with the majority of learners indicating their ability levels were lower than the difficulty of the majority of items.

Multiple Regression Analyses
The results of the multiple regression for Model 1 (numeracy
relative difficulty/cognitive load) indicated that the two WM
predictors significantly explained 20% of the variance [R2 = 0.20,

F(2,87) = 10.63, p< 0.001]. Phonological WM made the strongest
contribution to explaining numeracy relative difficulty/cognitive
load and accounted for 9% unique variance while visual-spatial
WM was found to contribute 6% unique variance. It was
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FIGURE 2 | Wright Map of the spread of learner ability and item difficulty on the NAPLAN language conventions test (in logits). Learner abilities (on the left) range
from the least able on the bottom to the most able on the top of the graph. Item difficulties (on the right) range from the least difficult on the bottom to the most
difficult on the top. The map indicates that the test was very difficult for 20 learners’ whose ability fell below the easiest item (item 26). Overall, the majority of items
fell above the ability of the majority of learners indicating a difficult test.

found that as phonological WM increased by one standard
deviation the relative difficulty/cognitive load index decreased
by 0.31 standard deviations (β = −0.31, p < 0.01), as did
visual spatial WM, which decreased by 0.26 standard deviations
(β = −0.26, p < 0.05). Model 2 (language conventions
relative difficulty/cognitive load) indicated that the predictors
explained 7% of the variance (R2 = 0.07, F(2,87) = 0 3.18,

p < 0.05). However, only phonological WM significantly
contributed to unique variance (6%). As phonological WM
increased by 1 standard deviation the relative difficulty/cognitive
load index decreased by 0.26 standard deviations (β = −0.26,
p < 0.05). Correlations of these variables are listed in Table 3
and results of the regression models are summarized in
Table 4.

Frontiers in Education | www.frontiersin.org 7 April 2021 | Volume 6 | Article 648324

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/
https://www.frontiersin.org/journals/education#articles


feduc-06-648324 April 19, 2021 Time: 8:31 # 8

Ehrich et al. IRT Approach to Cognitive Load

TABLE 2 | Descriptive statistics for item response derived measures of relative
difficulty/cognitive load for the numeracy and language conventions tests.

Relative difficulty Mean SD Skewness Kurtosis

Numeracy 3.31 1.29 0.20 (0.25) 0.54 (0.50)

Language conventions 4.20 2.11 0.33 (0.25) −1.23 (0.50)

These metrics are denoted in logit values and indicate the average amount
of cognitive load capacity utilized to complete the full tests (numeracy and
language conventions) per test taker. SD = standard deviation. Standard errors
are denoted in parentheses.

TABLE 3 | Summary of intercorrelations.

Measure 1 2 3 4

1. Numeracy (relative difficulty) – −0.539*** −0.369*** −0.338**

2. Language conventions (relative difficulty) – – −0.262* −0.095

3. Phonological working memory – – – −0.221*

4. Visual spatial working memory – – – –

*ps < 0.05; **ps < 0.01; ***ps < 0.001.

TABLE 4 | Multiple regression results for working memory predicting relative
difficulty/cognitive load measures.

B SE B β t

Model 1

Numeracy

Constant 5.846 0.573 10.201***

Phonological WM −0.529 0.169 −0.311 −03.130**

Visual spatial WM −0.289 0.111 −0.260 −02.609*

Model 2

Language conventions

Constant 6.426 1.009 6.372***

Phonological WM −0.707 0.297 −0.255 −2.375*

Visual spatial WM −0.058 0.195 −0.032 0.767

*ps < 0.05; **ps < 0.01; ***ps < 0.001 are statistically significant.

DISCUSSION

The aim of the current study was to evaluate the potential
of item response modeling to generate an objective measure
of intrinsic cognitive load. Results indicated that valid and
reliable indices of intrinsic cognitive load can be attained by
item response modeling of raw test data (or other series of
complex tasks/problems within a single domain) at an interval
scale level. The interaction of the two parameter estimates (item
difficulty and person ability) combine into a single scalable
measure, in logits, subsuming critical elements of the measurable
aspects of cognitive load: ML (i.e., task difficulty) and ME
(performance measures transposed into ability logits). In support
of our hypothesis (H1), resulting relative difficulty indices–that is,
subtraction of the person ability estimates from the item difficulty
estimates–were related to cognitive resources, in the expected
direction, functions as an estimate of cognitive load. This IRT
approach to estimating intrinsic cognitive load is superior to
subjective self-report measures as it meets the requirements of
objective measurement (Andrich, 2004).

Our findings provide clear validity evidence for the plausibility
of our interpretations and utility of our IRT-based measure
to indicate a learner’s intrinsic cognitive load capacity. This
evidence was demonstrated through a concurrent criterion
validity approach in that a learner’s WM capacity was found
to significantly predict our proposed cognitive load index
within both numeracy and literacy domains. We found
both phonological and visual spatial WM scores significantly
accounted for 20% of the variance of cognitive load in the
numeracy domain. This finding is consistent with prior research
which has found that phonological and visual spatial WM
are important predictors of numeracy processing (Alloway
and Alloway, 2010; Alloway and Passolunghi, 2011). While
phonological WM significantly captured 7% of the variance of
our novel cognitive load index in the language conventions
domain (combined spelling and grammar tasks), visual-spatial
WM played no significant role.

A possible explanation for these results, that is, the small
amount of variance captured by phonological WM and lack
of predictive role of visual-spatial WM on our cognitive load
measure may have to do with the nature of the language
convention spelling and grammar tasks. In the language
conventions sections of the NAPLAN tests, the spelling items
consist of identification of misspelt words. The mental resources
needed for this type of processing do not require deliberate
thought and essentially require retrieval from long-term memory
if the word is known and guessing in the case of an unknown
word (though in some cases the application of spelling rules
may apply). Similarly, in the grammatical section of the
language conventions test the format consists of short cloze
activities where a sentence is presented, and students choose
the correct missing grammatical form. Here, knowledge of
the correct conjugation or form of the verb or auxiliary
is all that is needed to successfully complete the task. The
degree to which deliberate thought is needed to control the
processing of information is minimal and hence the ME and
WM capacities on these tasks would not be optimal. According
to Paas and van Merriënboer’s (1994) cognitive load model, the
automatic processing of information bypasses the requirement of
drawing on ME resources and feeds directly into performance.
Hence, this type of automatic processing may have sufficiently
limited the cognitive capacity requirements in the language
conventions domain.

Our findings may also simply be reflective of the reduced
role of visual spatial WM in language processing. For example,
it is well established that visual spatial WM is important for
early numeracy processing (McKenzie et al., 2003; Bull et al.,
2008). Moreover, in the year three NAPLAN numeracy tests
many questions comprise visual “patterns” (or similar) and
consequently involve visual processing along the lines of what
was assessed by the visual spatial WM tasks. By contrast, such
item types requiring visual processing were not present in the
language conventions test used. Therefore, this may explain the
lesser role of visual spatial WM processing as a predictor of our
proposed cognitive load index.

Overall, however, our findings indicated that higher levels of
cognitive resources were related to lower levels of cognitive load
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requirements and vice versa. This is consistent with fundamental
underpinnings of CLT (Sweller et al., 2019), which suggest that:
cognitive load and WM capacity share an inverse relationship,
such that deficiency in one aspect can be rectified by reduction
in the other; and that a reduction in cognitive load can facilitate
learning and performance.

Our proposed IRT modeling approach to cognitive load
measurement provides a relatively simple and straightforward
procedure to attain reliable and valid estimates of intrinsic
cognitive load. While IRT modeling and Rasch analysis has been
available to social scientists and psychologists for many decades
now few have taken advantage of its superior measurement
capabilities. Moreover, the creative potential of IRT modeling
and its applications to cognitive load research, as well as
educational and psychological research in general, has yet
to be actualized.

As we have shown in this study, IRT modeling can
provide an objective measure of intrinsic cognitive load
outside of subjective self-report. This is particularly pertinent
given the difficulty in attaining reliable self-report measures
on cognitive processing of younger children (i.e., less than
7 years) (Conjin et al., 2020). The ability to ascertain reliable
and valid measures of intrinsic cognitive load through a
performance-based objective mathematical procedure is highly
beneficial, especially for cognitive load researchers interested
in measuring younger learners’ cognitive load. Moreover, this
objective IRT modeling approach has ecological validity in
that the performance data (i.e., tasks, problems, and questions)
are collected within the classroom learning environment
and are unobtrusive. The innovation of IRT and Rasch
modeling into the cognitive load research paradigm offers
exciting measurement opportunities beyond subjective self-
report approaches.

Limitations
We wish to acknowledge several limitations of this study. First,
while our study has demonstrated the utility and validity of
IRT modeling to quantify intrinsic cognitive load it is important
to note that IRT analysis requires large sample sizes. In the
case of the current study sample size was not such an issue
because we used standardized tests which have already been
validated with large (nationwide) samples using IRT analyses
(ACARA, 2020). Normally, a reliable IRT analysis requires
(N = 200) or so (Linacre, 1994). Hence, IRT analysis may be

beyond the scope of typical smaller experimental classroom-
based cognitive load investigations. Second, our sample of
learners were younger than the target age of the tests and this
was reflected somewhat in the IRT analysis, in that many learners
found the test difficult.

Future Directions
The current study has shown that our relative difficulty/cognitive
load index varies with WM in relation to intrinsic cognitive
load. Further validation of this measure would benefit from
evaluation of the index to determine whether it varies according
to the learner task following CLT principles (e.g., extraneous and
germane load) and through construct (i.e., convergent) validity
testing to establish the measure’s relationship with other cognitive
load scales (e.g., Paas, 1992; Leppink et al., 2013; Krell, 2017).
Such research is needed to show that our proposed cognitive
load index varies with theoretical variations in cognitive load.
Additionally, it would be desirable to investigate the performance
of our proposed cognitive load index with learners at varying
stages of age and development. Finally, our proposed cognitive
load index may be a useful measure for those undertaking
intervention research where the index can be used to assess
shifts in relative difficulty (cognitive load) scores across stages of
learner development.
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