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Comparative judgment is a method that allows measurement of a competence by
comparison of items with other items. In educational measurement, where
comparative judgment is becoming an increasingly popular assessment method,
items are mostly students’ responses to an assignment or an examination. For
assessments using comparative judgment, the Scale Separation Reliability (SSR) is
used to estimate the reliability of the measurement. Previous research has shown that
the SSR may overestimate reliability when the pairs to be compared are selected with
certain adaptive algorithms, when raters use different underlying models/truths, or
when the true variance of the item parameters is below one. This research investigated
bias and stability of the components of the SSR in relation to the number of
comparisons per item to increase understanding of the SSR. We showed that
many comparisons are required to obtain an accurate estimate of the item
variance, but that the SSR can be useful even when the variance of the items is
overestimated. Lastly, we recommend adjusting the general guideline for the required
number of comparisons per item to 41 comparisons per item. This recommendation
partly depends on the number of items and the true variance in our simulation study
and needs further investigation.
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INTRODUCTION

Comparative judgment is a method that allows measurement of a competence by comparison of
items. When items are compared in pairs, comparative judgment is also known as pairwise
comparison. This method has been used in different contexts ranging from sports to marketing
to educational assessment, with different models for each context (e.g., Agresti, 1992;
Böckenholt, 2001; Maydeu-Olivares, 2002; Maydeu-Olivares and Böckenholt, 2005;
Böckenholt 2006; Stark and Chernyshenko, 2011; Cattelan, 2012; Brinkhuis, 2014). In
educational measurement, where comparative judgment is becoming an increasingly
popular assessment method (Lesterhuis et al., 2017; Bramley and Vitello, 2018), items are
mostly students’ responses to an assignment or an examination. The assignment or the
examination is used to measure a competence of the students, and the students’ responses
give an indication of their competence level. The method has been used in a variety of contexts,
ranging from art assignments (Newhouse, 2014) to academic writing (Van Daal et al., 2016) and
mathematical problem solving (Jones & Alcock, 2013). These contexts have in common that the
competencies are difficult to disentangle into sub-aspects together defining the competencies.
Therefore, they are difficult to measure validly using analytical scoring schemes such as rubrics
or criteria lists (Van Daal et al., 2016), which are conventional measurement methods used in
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education. In contrast to these analytic measurement methods,
which assume that a competence can be operationalized by
means of a list of sub-aspects and evaluate each aspect
separately, comparative judgment is a holistic measurement
method where a competence is evaluated as a whole (Pollitt,
2012); simply asking which of two items scores higher on the
competence of interest suffices.

For complex competencies like art assignments, academic
writing, and mathematical problem solving, it is possible that a
higher validity can be obtained using comparative judgment
instead of rubrics or criteria lists (Pollitt, 2012; Van Daal et al.,
2016) because of its holistic character and the greater possibility
of raters to use their expertise in their judgments compared to
rubrics or criteria lists. In addition to the claim of higher validity
of comparative judgment, Pollitt (2012) claimed that
comparative judgment also results in higher reliability
compared to using rubrics or criteria lists. However, later
research has shown that this claim is likely to be too
optimistic for the reported numbers of comparisons per item
(e.g., Bramley, 2015; Bramley and Vitello, 2018; Crompvoets
et al., 2020; Crompvoets et al., 2021), and that the extent to
which high reliability that can be obtained using comparative
judgment is limited (Verhavert et al., 2019).

To explain why Pollitt’s (2012) claim is too optimistic, we first
define two types of reliability in the context of comparative
judgment: the benchmark reliability (Crompvoets et al., 2020,
2021) and the Scale Separation Reliability (SSR; e.g., Bramley,
2015; Crompvoets et al., 2020). Both forms of reliability are based
on parameters of the Bradley-Terry-Luce (BTL; Bradley and
Terry, 1952; Luce, 1959) model. This model is defined as
follows. Let K be the number of items, let i and j
(i, j � 1, . . . , K) be item indices, and let θi and θj be the
parameters of items i and j. Furthermore, let Xij be the
outcome of the inter-item comparison where Xij � 1 means
that item i was preferred to item j, and Xij � 0 means that
item j was preferred to item i. The BTL model defines the
probability that item i is preferred to item j in a paired
comparison by means of

P(Xij � 1|θi, θj) �
exp(θi − θj)

1 + exp(θi − θj)
. (1)

We interpret θ as an item parameter, but we may also interpret it
as a person parameter for the competence of one person. For
example, θmay represent the quality of a student’s work, which in
turn represents the competence level of the student. Thus, items
and persons are not clearly distinguished in the BTL model for
comparative judgment.

The benchmark reliability is only known in simulated data and
is computed as the squared correlation between the true
(simulated) item parameters and the item parameter estimates.
Let θ be the item parameter in the generating model and let θ̂ be
the item parameter estimate. The benchmark reliability can then
be computed as

ρθ̂θ̂′ � cor(θ, θ̂)2. (2)

This definition of reliability corresponds with the definition of
reliability as ρ2(θ, θ̂) in classical test theory (Lord and Novick,
1968), where θ represents the true score and θ̂ represents the
observable test score. Since we are interested in reliability of the
measurement of a specific set of items, benchmark reliability is
used as the true reliability of this set of items.

The SSR is an estimate of reliability that is based on the Index
of Subject Separation formulated by Andrich and Douglas (1977,
as cited in Gustafsson, 1977) and is computed as follows. We
assume that items are compared in pairs and that the location
parameters of these items on the latent competence scale are of
interest. Let S2(θ) be the estimated true variance of the object
parameters and let S2(θ̂) be the variance of the estimated object
parameters. Furthermore, let MSE be the mean of the squared
standard errors corresponding to the item parameter estimates,
computed as

MSE � 1
K
∑K

i
SE(θ̂i)2.

The SSR can then be written as

SSR � S2(θ)
S2(θ̂) (3)

where

S2(θ) � S2(θ̂) −MSE,

that is, the observed variance minus an error term (Bramley,
2015).

Research (Bramley, 2015; Bramley and Vitello, 2018;
Crompvoets et al., 2020) has shown that the SSR might
overestimate reliability (Eq. 2) in certain situations. These
include the use of certain adaptive algorithms to select the
pairs that raters have to compare. Pollitt’s (2012) claim that
comparative judgment results in higher reliability than using
rubrics or criteria lists is based on a study using an adaptive
algorithm to select the pairs that are compared in combination
with the SSR. Other situations in which the SSRmay overestimate
benchmark reliability are when raters behave inconsistent
amongst each other, which would be reflected in the BTL
model by different parameters for the same items, and
perhaps when the true variance of the item parameters is
below 1 as well (Crompvoets et al., 2021). The result that the
SSR may overestimate reliability suggests why Pollitt’s (2012)
claim that comparative judgment results in higher reliability is
likely too optimistic. Moreover, the result that the SSR may
overestimate reliability is problematic because 1) reliability
estimates should provide a lower bound to reliability to avoid
reporting reliability that is too high and therefore promises too
much (Sijtsma, 2009; Hunt and Bentler, 2015) and 2) most
recommendations about the number of required comparisons
are based on achieving at least a user-defined value of the SSR
(e.g., Verhavert et al., 2019).

To the best of our knowledge, no one has thoroughly
investigated and reported the positive bias of the SSR.
Previous research that reported the bias of the SSR has
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stopped at the conclusion that the SSR was biased (Bramley, 2015;
Bramley and Vitello, 2018) or has only led to speculations about
the meaning of the bias due to either adaptive pair selection
(Crompvoets et al., 2020), different rater probabilities, or small
true variances (Crompvoets et al., 2021).

One might reason that the behavior of the SSR needs no
investigation, because its value can easily be derived from the
two components S2(θ̂) and MSE (Eq. 3). The strategy to vary
only one component and keep the other components constant
shows how the value of the measure changes with the value of
the component. However, both components of the SSR, S2(θ̂)
and MSE, are based on the parameter estimates θ̂ from the
underlying model. This means that a shift in the item
parameters affects both components simultaneously, which
renders the strategy unrealistic for investigation of the SSR. In
addition, all item parameter estimates are mutually dependent
because we estimate the parameters based on comparisons of
the items with each other. This means that every additional
comparison changes all item parameter estimates, so we
cannot vary one item parameter estimate keeping the other
item parameter estimates constant. Moreover, the changes of
item parameter estimates after one comparison depend on the
parameters of the items that are compared; the outcome of the
comparison, which is not always straightforward because we
use a probabilistic model; the total number of items and their
parameters; and the outcomes of all previous comparisons,
which is not always straightforward due to the use of a
probabilistic (e.g., BTL) model. In conclusion, instead of
influencing the components of the SSR directly, we can only
influence the set of item parameters, which influences the
comparison data, which influences the parameter estimates,
which influences the components of the SSR. Therefore, it is
highly relevant to investigate the behavior of the SSR.

Because all quantities needed to estimate the SSR (Eq. 3) are
based on the parameter estimates θ̂ from the underlying model,
this study focused on the parameter estimates used in the
computation of the SSR. Specifically, we investigated the bias
and stability of the parameter estimates. We define these
outcomes in the Method section. Because parameter estimates
depend on the amount of data available, we investigated bias and
stability of the parameter estimates in relation to the number of
comparisons.

The goal of this study was to gain insight into the bias and
stability of the parameter estimates and the SSR of
comparative judgment in educational measurement from
two perspectives. In addition, we aimed to use this
information either to support the guideline about the
number of required comparisons per item from Verhavert
et al. (2019) or to provide a new guideline based on the results
from this study. First, we adapted the guideline for the
required number of observations to obtain stable results for
the one-parameter item response model or Rasch model
(Rasch, 1960) for regular multiple choice tests to the BTL
model used for comparative judgment. Second, we
investigated the bias and stability of the parameter
estimates and SSR of comparative judgment in a simulation

study. In the discussion, we will reflect on the two
perspectives.

SAMPLE SIZEGUIDELINE ADAPTATION TO
THE BRADLEY-TERRY-LUCE MODEL

To determine the required number of observations to obtain
stable model parameters, most researchers and test institutions
use experience as their guide. One reason for this may be that the
literature about sample size requirements to obtain stable model
parameters is sparse and seems limited to conference
presentations (Parshall et al., 1998), articles that were not
subjected to peer review (Linacre, 1994), a framework used to
assess test quality written in a non-universal language (Evers
et al., 2009), or a brief mention in a book (Wright and Stone, 1979,
p. 136). Parshall et al. (1998) and Evers et al. (2009) describe the
guideline that for the one-parameter item response model, at least
200 observations per item are required to obtain stable item
location parameter estimates. Wright and Stone (1979) suggest
using 200 observations for test linking using the Rasch model,
although they, and Linacre (1994), also mention that fewer
observations may be sufficient to obtain sufficiently stable
parameter estimates for some purposes. When the model
parameters are considered sufficiently stable depends on the
context. Because we encountered the guideline of 200
observations per item for several purposes and it is used often
in practice, we used this guideline as a starting point.

The literature about guidelines for the Rasch model may be
sparse, but for the mathematically related (Andrich, 1978) BTL
model, no guidelines exist that describe how many observations
are required in educational measurement for obtaining stable
item parameter estimates. In this section, we first describe how
the Rasch model and the BTL model are related, and then adapt
the guideline from the Rasch model to the BTL model. In the
Discussion section, we will evaluate this guideline in relation to
the outcomes of the simulation study from the next section and in
relation to the literature.

The Rasch model is defined as follows. LetN be the number of
persons in the sample, let i (i � 1, . . . , N) be the person index, and
let θpi be the parameter of person i on the latent variable scale,
where the p indicates that θpi differs from θi used in the BTL
model (Eq. 1). Let K be the number of items, let j (j � 1, . . . , K)
be the item index, and let βj be the parameter of item j on the
latent variable scale. Furthermore, let Xij be the outcome of the
person-item comparison where Xij � 1 means that person i
answered item j correctly, and Xij � 0 means that person i
answered item j incorrectly. The Rasch model defines the
probability that person i answers item j correctly by means of

P(Xij � 1|θpi , βj) �
exp(θpi − βj)

1 + exp(θpi − βj)
. (4)

We note that although mathematically it would have made sense
to use βi and βj in the formulation of the BTL model (Eq. 1) for
equivalence with the Rasch model, we chose to follow the
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conventional notation of the BTL model in comparative
judgment contexts using θ notation for the items.

Even though the Rasch model and the BTL model have
different parametrization (Verhavert et al., 2018), Andrich
(1978) showed that the equations for the Rasch model and the
BTL model are equivalent. This means that a person-item
comparison in the Rasch model is mathematically equivalent
to an inter-item comparison in the BTL model. Therefore, it
makes sense to adapt the guideline for the Rasch model about the
required number of observations for stable model estimates to the
BTL model.

Our starting point for the guideline adaptation is the item,
since items are present in both the Rasch model and the BTL
model. In addition, the guideline Parshall et al. (1998) suggested
aims at obtaining stable item parameter estimates. We assume
that the number of items in the test that the Rasch model analyzes
is the same as the number of items in the set of paired
comparisons that is analyzed by means of the BTL model.
However, the manner in which we obtain additional
observations for an item differs between the models. Each
observation for an item in the Rasch model is obtained from a
person belonging to a population with many possible parameter
values, whereas each observation for an item in the BTL model is
obtained from an item in the fixed set of items under
investigation. Therefore, for the BTL model, the information
obtained from one observation may depend on the item
parameters in the set, which is different for the Rasch model,
where the information also depends on the sample of persons.

There are two ways to adapt the guideline from the Rasch
model for use with the BTL model. The first adaptation is to
equate the number of required observations per item for the BTL
to the required number for the Rasch model; that is, 200
observations per item (Guideline 1). Since each comparative
judgment/observation for the BTL model contains information
about two items, this adaptation means that compared to the
Rasch model, we need half of the total number of observations.
We illustrate this with an example. Suppose we have 20 items in
both models. The guideline of 200 observations per item for the
Rasch model means that we need 200 (persons) × 20 (items) �
4, 000 observations in total for a 20-item test to obtain stable item
parameter estimates. The adapted guideline of 200
observations per item for the BTL model means that we
need 200 (comparisons per item) / 2 (items per comparison) ×
20(items) � 2000 observations in total for a 20-item test to
obtain stable item parameter estimates.

The second possibility is to equate the total number of
observations for a set of items instead of the number of
observations of one item. Continuing the example from the
previous paragraph, 4,000 observations are required for a set
of 20 items for the Rasch model to obtain stable item parameter
estimates using Parshall et al.’s (1998) guideline. Adapted to the
BTL model following the second guideline (i.e., equating the
total number of observations for a set of items), this would
mean that 4,000 paired comparisons in total are required to
get stable item parameter estimates, which would mean
(4, 000 comparisons × 2 items per comparison) / 20 items � 400
observations per item. This is our Guideline 2. This means that

compared to the Rasch model, we need twice as many
observations per item for stable item parameter estimates
from the BTL model. This makes sense, because each
observation in a comparative judgment setting contains
information about two items, so only half of the information
concerns each item. We will evaluate both guidelines in the
discussion section of this paper. One should note that the
current recommendations for the numbers of comparisons
per item based on a meta-analysis of comparative judgment
applications range from 12 to 37 (Verhavert et al., 2019), which
shows a large discrepancy with both the 200 and 400
comparisons per item according to the two adapted guidelines.

For the BTL model, the limited number of unique
comparisons implies that the number of items in the set
influences which numbers are compared, even though the
number of observations per item does not change for different
numbers of items. The number of items in the set is nonlinearly
related to the number of unique comparisons in a comparative
judgment setting. This means that the number of times each
unique comparison is made differs for different numbers of
comparisons. Table 1 illustrates this: using guideline 2, for 20
items, all unique comparisons should be made 21 times (on
average). On the other hand, for 1,000 items, all unique
comparisons should be made 0.4 times, which means that not
even all unique comparisons are made.

BIAS AND STABILITY OF SCALE
SEPARATION RELIABILITY COMPONENTS

We investigated in a simulation study: 1) Howmany comparisons
are required to obtain a stable and unbiased variance of the
parameter estimates, S2(θ̂); 2) how many comparisons are
required to obtain a coverage of 95%-confidence intervals for
the parameter estimates θ̂ using the standard errors SE(θ̂) of 95%;
and 3) how the SSR develops with increasing number of
comparisons. We investigated these outcomes in situations in
which we expected the SSR to underestimate benchmark
reliability, because it is easier to understand the SSR and its
components in these situations than in situations where we do
not know why the SSR overestimates benchmark reliability. The
R-code of the simulation study is available at https://osf.io/x7qzc/.

METHODS

Simulation Set-Up
The simulation design had two factors. First, we varied the
number of items N � {20, 30, 50, 100} to investigate whether
the number of items affects the stability of the SSR estimate.
Second, we used five different variances of the simulated item
parameters. In the first condition, we used a variance of zero,
which means that all items had the same location on the scale. We
used this condition as a benchmark to investigate when the SSR
was stable at zero, because the SSR should be zero if the true
variance is zero, see (Eq. 3). In the second condition, we used a
variance of 1.59, which is a realistic value based on the
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argumentative writing dataset ‘having children’ used in Van Daal
(2020, data retrieved from https://osf.io/wpbhk/?view_
only�7aa609162ca146bbbbe9236c9224b668). Argumentative
writing refers to one’s ability to express, argue for, and refute
objections of one’s opinion about a specific topic (Van Daal, 2020,
p. 175). This dataset contained 1,224 comparative judgments
performed by 55 raters of 135 texts written by students in the fifth
year of secondary education on the topic ‘having children’. Based
on a comparison with the summary of several datasets in the
meta-analysis of Verhavert et al. (2019), we argue that this dataset
is realistic and representative of datasets obtained using
comparative judgment for educational measurement.
Furthermore, we added the variance conditions 0.5, 1, and 3
to obtain information about the results in between and beyond
the benchmark variance and the realistic variance.

For each of the 4 (Number of Items) x 5 (Variance of Items) �
20 design conditions, we repeated the same procedure 100 times.
We first selected to item pairs (1,2) (2,3), (3,4), et cetera, until
(K − 1, K) and (K,1) to create a linked comparison design. For
each item pair, we simulated a comparison in which the
probability of preferring one item to the other was given by
the BTL model (Eq. 1). After these K comparisons, we estimated
the BTL model using the open-source R-code from Crompvoets
et al., 2020. This code uses an Expectation Maximization
algorithm based on Hunter (2004) to obtain Maximum
Likelihood estimates of the parameters. We used the
parameter estimates from the BTL model to compute S2(θ̂)
and the SSR for the first time. Subsequently, we compared a
randomly selected pair of items, estimated the BTL model
parameters, and computed S2(θ̂) and the SSR after each
comparison until the maximum number of comparisons of
200 per item was reached. Lastly, we computed the number of
comparisons per item required to obtain a stable variance of the
parameter estimates S2(θ̂) at the true parameter variance and the
number of comparisons per item required to obtain a correct
coverage of the 95% confidence interval for the parameter
estimates θ̂.

We determined the number of comparisons per item required
for a stable and accurate estimate to be the number of
comparisons where 12K subsequent comparisons produced a
value within a range around the true value, both for S2(θ̂) and for
the coverage of the 95% confidence intervals. The range of
accurate values was defined as the range between 1 standard
error below the true value and 1 standard error above the true
value. We based the 12K subsequent comparisons on the

guideline of 12 comparisons per item from the meta-analysis
of Verhavert et al. (2018).

RESULTS

Figure 1 shows the development of S2(θ̂) (top row), MSE
(middle row), and the SSR (bottom row) with increasing
numbers of comparisons per item of each of the 100
simulations per design cell and of the average for all true
variance conditions for 50 items. On average, S2(θ̂) seems to
converge to the true variance, but not for every single simulated
data set. Comparing the top- and middle rows, we see that there is
much more variation in S2(θ̂) than in MSE across simulations.
The variation in development across simulations of both S2(θ̂)
andMSE was larger for larger true variance values. Interestingly,
although S2(θ̂) and MSE are the only components needed to
compute the SSR (Eq. 2), the variation in development across
simulations of the SSR shows the opposite trend with smaller
variation for larger true variance values.

Figure 2 shows the development of bias in S2(θ̂) (top row) and
bias in SSR (bottom row) with increasing numbers of
comparisons per item averaged across all 100 simulations with
68% confidence intervals for both true variance conditions and all
numbers of items. In general, the bias of S2(θ̂) was smaller for
larger numbers of items. We first describe the results for a true
variance of 0. The bias of S2(θ̂) was larger for smaller numbers of
items, but differences in S2(θ̂) among numbers of items almost
disappeared after about 30 comparisons per item. For 20 and 30
items, the SSR overestimated benchmark reliability in the
beginning of data collection. For 20 items, this overestimation
stopped after only a few comparisons, but then underestimated
benchmark reliability by about 0.2 units. For 30 items, it took
about 25 comparisons per item to stop the SSR from
overestimating benchmark reliability. For 50 items, the SSR
closely estimated benchmark reliability after only a few
comparisons per object. For 100 items, the SSR closely
estimated benchmark reliability after about 40 comparisons.

We next describe the results for the other true variances. In
general, the differences among the number of items conditions in
S2(θ̂) were larger for larger true variances. For true variances
larger than 1, on average, S2(θ̂)was underestimated for 100 items,
while it was overestimated for lower numbers of items and lower
true variances. Except for a true variance of 3, fewer comparisons
were required to converge to the true variance for larger

TABLE 1 | Total number of observations and number of complete designs according to the translated guideline for the BTL model for different numbers of items.

Number of items 20 50 100 200 500 1,000

Guideline 1: 200 observations per item
Total number of observations 2,000 5,000 10,000 20,000 50,000 100,000
Number of complete designsa 10.53 4.08 2.02 1.01 0.40 0.20

Guideline 2: 400 observations per item
Total number of observations 4,000 10,000 20,000 40,000 100,000 200,000
Number of complete designsa 21.05 8.16 4.04 2.01 0.80 0.40

aOne complete design contains all N(N − 1)/2 unique comparisons.
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numbers of items. The SSR closely estimated benchmark
reliability often after a few comparisons but almost always
with 30 comparisons per item. Furthermore, on average, the
SSR seemed to closely estimate benchmark reliability after
fewer comparisons for lower numbers of items, which is the
opposite trend of convergence compared to S2(θ̂). However,
the differences in SSR among the numbers of items are quite
small in general. One difference worth mentioning is that for
20 items and a true variance of 0.5, the SSR was overestimated
in the beginning of data collection, which is more like the
condition with a true variance of zero.

Table 2 shows the mean number of comparisons per item
required for accurate S2(θ̂) values. In general, fewer comparisons
per item are required on average for larger numbers of items, with
the exception of 100 items and a true variance of 3. In addition,
more comparisons per item are required on average for increasing
true variances, with the exception of 100 items and a true variance
of 3. The mean number of comparisons per item required for
accurate S2(θ̂) values ranges from 24 comparisons per item (for
100 items and a true variance of 1.59) to 119 comparisons per
item (for 20 items and a true variance of 0.5). Furthermore, the

large ranges within each condition indicate that there is a large
variation in the number of comparisons per item required across
simulations.

Figure 3 shows the development of the coverage of the 95%
confidence intervals for the parameter estimates θ̂ with increasing
numbers of comparisons per item. In general, with the exception
of 100 items and a true variance of 3, the coverage was larger than
95%, which indicates that the standard errors of the parameter
estimates were overestimated. However, most values are within
the range of accurate values. The number of items required for
accurate coverage was lower for larger true variances (Figure 3;
Table 3). As Table 3 indicates, in many conditions, the coverage
was accurate in 12 comparisons per item or under, and it was
accurate for at most 25 comparisons per item.

Because the development of S2(θ̂) and the coverage with
increasing number of comparisons per item was different from
the development of the SSR, we decided to provide a guideline
based on the SSR itself instead of its components. To this end, we
computed the number of comparisons per item required for the
SSR to underestimate benchmark reliability within a margin in
95% of the cases. Specifically, we calculated how many

FIGURE 1 | Development of S2(θ�), MSE[S(θ�)], and the SSR with increasing numbers of comparisons per item of all 100 simulations (black lines) and of the
average (red line) for all true variance conditions for 50 items. The x-axis shows the average number of comparisons per item for interpretation purposes, but the data
points are per comparison.
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comparisons per item were required such that the lower bound
of the 95% CI of the SSR was between the benchmark reliability
and a margin of 0.10, 0.05, 0.03, and 0.01 below the benchmark
reliability for each condition. The results are displayed in
Table 4. The number of comparisons per item required for
the SSR to closely estimate benchmark reliability depended on
the number of items in the set and the true variance of the item
parameters, which is in line with the bottom row in Figures 1,
2 displaying the SSR in relation to the number of comparisons
per item. The number of comparisons per item ranged from 15
to more than 200. In general, smaller margins led to more
comparisons per item required, more items in a set led to
approximately the same or fewer comparisons per item

required, and larger true variances led to fewer comparisons
per item required, except for the combination of 20 items and a
true variance of 3.

DISCUSSION

The guideline that 200 observations per item are required for
stable parameter estimates using the Rasch model (Parshall et al.,
1998) was adapted for the BTL model in two ways. Guideline 1
was obtained using the number of observations per item in the
Rasch model, resulting in 200 comparisons per item for the BTL
model. Guideline 2 was obtained using the total number of

FIGURE 2 | Development of bias in S2(θ�) and bias in SSR with increasing numbers of comparisons per item averaged across simulations with 68% confidence
intervals for all true variance conditions and all numbers of items. Bias in SSRwas computed as SSR—benchmark reliability. For S2(θ�), we usedMSE[S(θ�)] to create the
confidence interval. For the SSR, we used the SD across simulations to create the confidence interval. The x-axis shows the average number of comparisons per item (up
to 50 comparisons per item) for interpretation purposes, but the data points are per comparison.

TABLE 2 | Mean number of comparisons per item required for accurate estimation of the true variance.

Number of items True variance M (min-max)a

0.5 1.0 1.59 3.0

20 119 (29–200+) 100 (18–200+) 102 (21–200+) 88 (14–200+)
30 98 (18–200+) 78 (13–200+) 69 (13–200+) 68 (13–200+)
50 93 (13–200+) 68 (14–200+) 50 (10–200+) 42 (5–161)
100 72 (18–200+) 31 (4–121) 24 (6–94) 54 (14–200+)

aBased on 100 simulations.
Note. The number of comparisons per item represents the average number of comparisons per item in a set of items (i.e., one item may be compared more often than another item)
rounded up to integers.
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observations in a set of items in the Rasch model, resulting in 400
comparisons per item for the BTL model.

In the simulation study, the results showed that the variation
in development across simulations of both the estimated variance
and the mean squared standard error were larger for larger true
variance values, but the variation in development across
simulations of the SSR was smaller for larger true variance
values. This is interesting, because the estimated variance and
the mean squared standard error are the only components of the
SSR. Possibly, the variations in the estimated variance and the
mean squared standard error are more aligned for larger true
variances such that combining them in the SSR leads to less
variation. On average, the variance was accurately estimated after
24 to 119 comparisons per item, although the number of
comparisons per item differed greatly among simulations. The
coverage of the 95% confidence intervals of the parameter
estimates showed that the standard errors of the parameter
estimates were accurate after 4 to 25 comparisons per item.
The SSR could closely estimate benchmark reliability even
when the variance of the parameter estimates was still
overestimated. When using margins ranging from 0.10 to 0.01
to determine when the SSR closely estimated benchmark
reliability, across conditions, the number of comparisons per
item ranged from 15 to more than 200.

When we compare the results from the two perspectives, it
seems that Guideline 2 of 400 comparisons per item is too
pessimistic and overly demanding. Guideline 1 could be useful

since several simulations took 200 or more comparisons per
item to get stable variance estimates and it took 200 or more
comparisons for the SSR to closely estimate benchmark
reliability when the margin was 0.01. However, averaged
across samples, the variance was accurately estimated after
a maximum of 119 comparisons per item, the standard errors
of the parameters and the SSR required even fewer
comparisons per item, and in most conditions, the SSR
closely estimated benchmark reliability after less than 50
comparisons per item. Therefore, Guideline 2 may be too
demanding as well.

FIGURE 3 | Development of the coverage of 95% confidence intervals for parameter estimates θ
�
with increasing numbers of comparisons per item for all true

variance conditions and all numbers of items.

TABLE 3 |Mean number of comparisons per item required for accurate coverage
of 95% CI around parameter estimates.

Number of items True variance

0 0.5 1.0 1.59 3.0

20 25 4 4 4 5
30 9 14 6 6 7
50 11 12 12 11 7
100 21 21 16 11 4

Note. The number of comparisons per item represents the average number of
comparisons per item in a set of items (i.e., one item may be compared more often than
another item) rounded up to integers.

TABLE 4 | Number of comparisons per item required for the SSR to estimate
benchmark reliability between the benchmark reliability value and the
benchmark reliability value minus the margin in 95% of the cases.

Number of items Margin

0.10 0.05 0.03 0.01

True variance � 0.5
20 41 72 112 200+
30 32 62 97 200+
50 32 57 75 175
100 28 45 58 105

True variance � 1
20 27 48 70 136
30 19 33 49 135
50 18 36 53 108
100 19 30 42 77

True variance � 1.59
20 23 42 59 119
30 17 29 42 97
50 16 25 39 78
100 18 28 37 69

True variance � 3
20 25 58 100 200+
30 16 27 43 113
50 15 22 36 83
100 17 25 33 64

Note. The number of comparisons per item represents the average number of
comparisons per item in a set of items (i.e., one item may be compared more often than
another item) rounded up to integers. Underline for advised (maximum) number of
comparisons per item for each threshold. Bold for advised (maximum) number of
comparisons per item for each number of items.
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The alternative guideline we present here is largely based on
Table 4. We recommend that comparative judgment applications
require at least 41 comparisons per item based on the following
considerations. In general, smaller margins led to more comparisons
per item required, more items in a set led to approximately the same
or fewer comparisons per item required, and larger true variances led
to fewer comparisons per item required. With respect to the margin
that determines how much the SSR may underestimate benchmark
reliability, we are lenient by choosing the largest margin. We believe
that this is justified because the benchmark reliability is usually larger
than the SSR, and because Verhavert et al. (2019) indicate that the
SSR already has high values with this many comparisons per item. If
one prefers a smaller margin, we recommend 72 comparisons per
item for a margin of 0.05, 112 comparisons for a margin of 0.03, and
more than 200 comparisons for amargin of 0.01.With respect to the
true variance of the itemparameters, we were quite strict by choosing
the largest number of comparisons, which was for a true variance of
0.5. Because one can never know the true variance in practice and
because our study showed that accurate variance estimation often
required many observations per item, we argue that it is best to play
safe, that is, to risk performing more comparisons than required for
the desired accuracy rather than risking that you do not achieve the
desired accuracy by performing too few comparisons. For example, if
the number of comparisons for a comparative judgment application
is based on a variance of 1, but in reality the true variance is less than
1, the SSRwill not be as close to the benchmark reliability as onemay
believe. With respect to the number of items, we also argue to be
strict and play safe. Therefore, we chose the number of comparisons
for 20 items for the general guideline, which requires the most
comparisons per item. However, as one does know the number of
items in their comparative judgment application, the required
number of comparisons can be somewhat adjusted to the
number of items in this set. Table 4 provides information about
this adjustment, but the researcher must make the call, given that we
only investigated four numbers of items.

Our guideline of 41 comparisons per item renders comparative
judgment less interesting to use in practice than the guideline of 12
comparisons per itemVerhavert et al. (2019) suggested. However, 41
comparisons per item are necessary for accurately determining the
reliability of the measurement using the SSR. The SSR may
overestimate benchmark reliability in individual samples, even
when it underestimates reliability on average, especially when the
number of comparisons is small. Based on Table 4, we suggest that
after 41 comparisons, the risk of overestimating reliability with the
SSR in individual samples is largely reduced.

Our guideline concerns reliability estimation by means of the
SSR and not benchmark reliability. This means that using fewer
than 41 comparisons may result in sufficient benchmark
reliability (Crompvoets et al., 2020; Crompvoets et al., 2021).
The problem is that we cannot determine whether this is the case
based on the SSR. Therefore, if a different reliability estimate
would exist for comparative judgment, the guideline might
change. Measures like the root mean squared error (RMSE)
may be useful in some instances, since it is related to
reliability, only in terms of the original scale. However, the
fact that the RMSE is scale dependent also makes it more

difficult to interpret and to compare between different
measurements. Therefore, a standardized measure of
reliability, bound between 0 and 1, would be preferred. This is
an interesting topic for future research.

In our simulation designs, we did not use adaptive pair
selection algorithms or multiple raters who perceived a
different truth, which are the situations in previous research
where the SSR systematically overestimated benchmark
reliability. The results of our study provide a baseline how the
SSR and the components used to compute the SSR develop with
increasing numbers of comparisons when the SSR is expected to
underestimate reliability, as it should. Future research could build
on our results by investigating how the components of the SSR
develop with increasing numbers of comparisons in situations
where the SSR might overestimate reliability. The fact that the
SSRmight overestimate reliability in some situations is evenmore
reason to use a guideline that reduces the risk of overestimation
due to sampling fluctuations.

Our study focused on the components of the SSR because we
expected that this would show the cause of the inflation of the
SSR. However, our simulation study showed that the estimated
variance and standard errors of the item parameters developed
differently from the SSR with increasing numbers of comparisons
with respect to variation between samples, which is not what we
expected. Since the components of the SSR developed differently
from the SSR, they do not seem to be the cause of the inflation of
the SSR. Future research could also aim at developing alternative
reliability estimates to the SSR.

In conclusion, the SSR may overestimate reliability in certain
situations, but it can function correctly as an underestimate of
reliability even when the variance of the items is overestimated.
The SSR can be used when the pairs to be compared are selected
without an adaptive algorithm, when raters use the same
underlying model/truth, and when the true item variance is at
least 1. The variance of the items is likely to be overestimated
when fewer than 24 comparisons per item were performed. An
adaptation of the guideline for the Rasch model was too
pessimistic. We provided a new guideline of 41 comparisons
per item, with nuances concerning the number of items and the
margin of accuracy for SSR estimation. Future research is needed
to further investigate the SSR estimation and to develop an
alternative reliability estimate.
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