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E-learning is increasingly used to support student learning in higher education. This
results in huge amounts of item response data containing valuable information about
students’ strengths and weaknesses that can be used to provide effective feedback to
both students and teachers. However, in current practice, feedback in e-learning is
often given in the form of a simple proportion of correctly solved items rather than
diagnostic, actionable feedback. Diagnostic classification models (DCMs) provide
opportunities to model the item response data from formative assessments in
online learning environments and to obtain diagnostic information to improve
teaching and learning. This simulation study explores the demands on the data
structure (i.e., assessment length, respondent sample size) to apply log-linear
DCMs to empirical data. Thereby we provide guidance to educational practitioners
on how many items need to be administered to how many students in order to
accurately assess skills at different levels of specificity using DCMs. In addition,
effects of misspecification of the dimensionality of the assessed skills on model fit
indices are explored. Results show that detecting these misspecifications statistically
with DCMs can be problematic. Recommendations and implications for educational
practice are discussed.
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1 INTRODUCTION

Feedback in education is a powerful tool to enhance student learning (Black andWiliam, 1998; Nicol
and Macfarlane-Dick, 2006). It can be conceptualized as information that is provided to students
regarding aspects of understanding or performance. Following the feedback model from Hattie and
Timperley (2007), this information can be focused on four different levels: task-oriented feedback
(e.g., regarding correctness or completeness of the performed tasks), process-oriented feedback
(i.e., focused at the learning processes that are required to understand or complete the tasks),
feedback about self-regulation (i.e., supporting students to monitor, direct, and regulate actions
towards learning goals), and feedback directed to the self (i.e., expressing evaluations and affect about
the student, generally unrelated to the tasks). In order to obtain beneficial effects from feedback,
learning goals must be properly defined, current levels of performance should be compared with
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desired levels of performance, and one must engage in
appropriate actions to close the gap between current and
desired performance (Sadler, 1989).

1.1 Actionable Feedback From e-Learning
in Higher Education
In academic settings, learning goals are often defined by course-
specific targets, criteria and standards. Feedback can provide
information about how students’ levels of performance relate
to these goals. Yet, various courses in higher education consist of
large groups of students, making it intractable for teachers to
provide personalized feedback to individual students. Further, it
can be difficult to keep track of learning progress at group level.
The emergence of computer-based learning facilities can provide
support for this. The use of e-learning environments to support
learning processes in higher education has emerged over the last
decades and the widespread use of these new technologies led to
the availability of huge amounts of student data. Although this
data can be a rich source of information for personalized teaching
and learning, in itself it does not lead to quality improvement of
education. It must lead to actionable feedback by analyzing,
describing and visualizing the data, i. e, feedback that can be
acted upon. This requires the data to be transformed into
meaningful information using learning analytical approaches
in order to provide both students and teachers with
knowledge about learning progress (Ferguson, 2012). Despite
the opportunities the emerging field of learning analytics research
entails and the available expertise at universities, large-scale
adoption of learning analytics to improve teaching and
learning in higher education is lacking (Viberg et al., 2018).

Nevertheless, some form of learning analytics to provide
feedback is implemented in virtually all e-learning
environments. For example, practice exercises are often
provided with immediate feedback about correctness of
responses. Although this fine-grained, task-oriented feedback
has been found to positively affect student learning (see for
example VanLehn, 2011), it does not provide insight in
cognitive strengths and weaknesses to support self-monitoring.
That is, if a student knows that their answer to a certain question
is incorrect, this does not imply that they can infer which
knowledge or skills are lacking and which materials need more
practice. To address this, e-learning modules generally include
short formative assessments after a sequence of lessons about a
specific topic. In current practice, feedback on these online
formative assessments is often given in the form of
proportions of correctly solved items. These metrics are simple
and intuitive, but they are oversimplified measures of proficiency
and ignore factors of learners, content, and context. This can
result in biased representations of students’ strengths and
weaknesses, which can lead to poor learning choices.
Moreover, the information these metrics provide about
learning progress is not very specific and can therefore be
difficult for both students and teachers to act upon.
Stakeholders generally seek more detailed diagnostic
information about knowledge, skills and abilities (Huff and
Goodman, 2007).

Diagnostic feedback is information about how students’
current levels of performance relate to desired levels of
performance. This type of feedback indicates whether or not
students have mastered the skills that are required to solve certain
tasks (Huff and Goodman, 2007). In the context of the feedback
model from Hattie and Timperley (2007) described above, this
diagnostic information provides not only task-oriented feedback,
but also process-oriented feedback and feedback that can support
self-regulation. It can be regarded as process-oriented feedback
since it provides insight in the skills and processes that underlie
task performance. In addition, it shows students’ learning
progress with respect to these skills, and this detailed
information about strengths and weaknesses supports self-
monitoring (Schunk and Zimmerman, 2003). This can be
helpful for students since poor judgment of one’s own
performance and progress can result in poor learning choices,
such as terminating study or skipping over important learning
opportunities (e.g., Brown, 2001). Diagnostic feedback enables
students to determine where they should focus their attention and
effort, thus to make more effective learning choices (Bell and
Kozlowski, 2002). Thereby it can support self-regulation by
providing actionable information (Nicol and Macfarlane-Dick,
2006). Diagnostic information can also be helpful for teachers,
because it allows them to timely undertake appropriate
pedagogical actions, such as personalized interventions if a
student lacks understanding of specific concepts, or if a
student is falling behind and may be at risk for course
dropout or failing. At group level, the information allows
teachers to adjust educational strategies, for example if specific
skills or topics are not mastered by many students, indicating that
these require additional attention in class.

1.2 Cognitive Diagnostic Assessment
Formative assessments in e-learning provide opportunities to
obtain detailed information with cognitive diagnostic assessment,
which aims to measure knowledge structures and processing
skills in students to provide information about their cognitive
strengths and weaknesses (Leighton and Gierl, 2007b). For this
end, a so-called cognitive model is specified that links
understanding to performance (Norris et al., 2007).
Educational domain experts define a set of skills, abilities and
cognitive processes that are required to solve certain items, which
are referred to as attributes. Note that this limits the scope of
cognitive diagnostic assessment to well-defined domains, since
specifying a cognitive model requires thorough understanding of
the domain and the cognitive processes that underlie item
response behavior. The objective of cognitive diagnostic
assessment is to classify students based on their item
responses in terms of mastery or nonmastery of each of the
attributes. These classifications result in attribute profiles
indicating which attributes students have mastered. For
example, if one is interested in assessing the construct “solving
algebraic equations”, diagnostic feedback provides information
about mastery of different attributes that are involved in this
construct, such as understanding the meaning of symbols,
performing algebraic manipulations, and constructing
graphical representations. This information can guide students
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in choosing learning materials they need to study to become
masters of the attributes they have not yet mastered, hence this
information is actionable.

Diagnostic assessment can support the analysis of student
behavior at various levels of detail by defining attributes at
different granularity levels. For example, for assessment of the
construct “solving algebraic equations” we specified (among
others) the coarsely defined attribute “performing algebraic
manipulations”. Alternatively, this can be broken down into
multiple attributes such as performing basic arithmetic
operations, simplifying expressions, and performing
factorizations. One could argue that more fine-grained
assessment provides more information and is therefore
superior to assessing more coarsely defined attributes, but this
is not necessarily true. As Sadler (2007) states, fine-grained
learning objectives and assessment in education result in the
accumulation of small knowledge components and achieving
short-term objectives, but feedback on such small components
is not necessarily meaningful and may not result in integrated
knowledge and skills. On the other hand, coarsely defined
attributes may not provide sufficient details to lead to
actionable diagnostic feedback. It is therefore important to
carefully consider the purpose and receiver of the feedback to
determine a granularity level that is valuable from an educational
perspective, in the sense that it is both meaningful and actionable
(see e.g., Thompson and Yonekura, 2005).

1.3 Statistical Issues
Considerations in the specification of a cognitive model extend
beyond these educational concerns. In addition, statistical issues
need to be considered, which are the focus of the current study.
To estimate students’ attribute profiles, statistical models are used
that relate students’ item responses to their skills and abilities.
Well-suited models to obtain diagnostic information with respect
to multiple attributes based on item response data are diagnostic
classification models (DCMs; Rupp et al., 2010). These models
can yield multidimensional diagnostic profiles based on
assessment data. We focus on DCMs under the log-linear
cognitive diagnosis modeling (LCDM) framework because of
its modeling flexibility and straightforward interpretation. This
is a general model specification framework that subsumes a
continuum of models that can be expressed easily (more
details are provided in Section 2).

To obtain good model fit and accurate estimates of diagnostic
profiles, a sufficient number of items measuring the attributes
must be administered to a sufficient number of students. If a set of
attributes is decomposed into more fine-grained attributes, the
number of attributes increases and thereby the statistical model
complexity increases as well. This puts higher demands on the
data structure (e.g., assessment length, respondent sample size)
and it may become impossible to estimate attribute profiles,
although the explicit data requirements remain unclear.

Further, determining a granularity level when defining
attributes and constructing items involves careful
consideration of the underlying cognitive processes that cause
item response behavior and how these processes can be
represented by a set of distinct skills. In practice, the

granularity level of attributes is often constrained by the
purpose of the assessment and practical considerations rather
than completely driven by theories about how students reason
and learn (Bradshaw, 2017). However, ideally cognitive models
“reflect the most scientifically credible understanding of typical
ways in which learners represent knowledge and develop
expertise in a domain” (Pellegrino et al., 2001, p. 45), which
asks for a set of distinct skills. Specifying multiple fine-grained
attributes that represent similar or strongly related skills can
result in high correlations between the attributes, reflecting that a
multidimensional model was forced to fit a unidimensional
assessment (Sessoms and Henson, 2018), resulting in
subscores that have no added value (Sinharay, 2010). In some
situations it can still be useful to retain highly correlated attributes
as separate attributes (e.g., if each attribute is associated with a
specific remedial action). However, if there are no practical
reasons to split them, it may be preferable to define one
composite attribute to obtain more reliable estimates of the
attribute profiles (Templin and Bradshaw, 2013). On the other
hand, coarse-grained attributes can also result in model misfit if
the application of a specified skill varies across items measuring
that skill (Rupp et al., 2010). This stresses the importance of
evaluating model fit after applying DCMs to empirical data. Thus,
although diagnostic measurement models offer opportunities to
obtain diagnostic feedback in higher education based on data
from formative assessment in e-learning, defining a cognitive
model can be challenging. The attribute specification affects not
only the meaningfulness and actionability of the feedback, but
also the statistical model results. Model complexity, assessment
length, and respondent sample size are all factors to take into
account in cognitive diagnostic assessment.

1.4 Current Study
In the current study, we approach two issues in defining cognitive
models from a statistical perspective to guide practitioners in
specifying attribute structures and designing formative
assessments to enable the application of DCMs.

Data Requirements
The first issue that is addressed in this study concerns data
requirements for the statistical model that relates students’
item responses to their skills and abilities. As described,
applying DCMs to empirical data requires not only
educational considerations about the meaningfulness and
actionability of feedback, but one also needs to consider
practical issues such as the availability of sufficient data
(i.e., assessment length, respondent sample size) and empirical
model fit (Rupp, 2007; Rupp et al., 2010). When more complex
models are estimated, the demands on the data structure are
higher. Unfortunately, there is relatively little research that
compares results of competing models in diagnostic
measurement using real or simulated data sets; although there
are exceptions, see for example Kunina-Habenicht et al. (2012)
and Cai et al. (2013). Kunina-Habenicht et al. explored effects of
sample size and model misspecifications on DCM results, but the
levels of the variables in their study were limited. Only sample
sizes of 1,000 and 10,000 respondents and 25 and 50 items were
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considered, whereas in online formative assessment in higher
education sample sizes will generally be (much) smaller. Some
research has been conducted in cognitive diagnostic assessment
based on small sample sizes with simulations comparing the
results of nonparametric and parametric methods, see for
example Chiu et al. (2018). Generally, nonparametric methods
work better with smaller sample sizes (30–50 respondents),
whereas parametric methods perform better with larger sample
sizes (200–500 respondents) (Ma et al., 2020). Although this
shows the opportunity to apply DCMs to e-learning data in
higher education, the explicit sample size requirements are not
clarified. In the current study, we focus on university courses with
large groups of students, hence on parametric methods. By means
of a simulation study, we explore whether it is feasible to use log-
linear DCMs to obtain diagnostic information about students
based on e-learning data with respondent sample sizes common
in this domain. We aim to gain insight in the feasibility of making
statements about attribute mastery based on such data by
studying how many items need to be administered to how
many students in order to obtain high classification accuracy
and to allow for adequate evaluation of model fit.

Attribute Granularity
The second issue that is addressed in this study concerns effects of
misspecification of the dimensionality of the underlying attribute
structure; more specifically of the definitional grain size of the
attributes.1 As mentioned, defining attributes requires
consideration of the cognitive processes involved in item
response behavior, and thus of the grain size of the true
underlying skills and mechanisms that result in the item
responses, since granularity misspecifications can result in
model misfit. Although decisions about attribute grain size are
often constrained by the purpose of the assessment and/or
practical considerations, they are ideally grounded in theory
about how students learn (Pellegrino et al., 2001). If limited
substantive knowledge is available about the nature of the
attributes, it is useful if empirical data can support these
decisions, for example based on item response data from
existing assessments in the domain of interest. It is important
to note that such retrofitting procedures can limit both the scope
of the attributes that can be measured and the number of
measurements of each attribute (Gierl and Cui, 2008; de la
Torre and Minchen, 2014), and that it is not assured that
items with specific cognitive characteristics exist in
assessments developed without a cognitive model. However,
content development for any assessment is likely to involve
breaking down a larger construct into subdomains, which can
be considered as multiple dimensions. Therefore, although one
needs to proceed with caution when retrofitting, it can be useful
for learning more about the constructs of interest (Liu et al.,
2018).

In the current study, we explore to what extent log-linear
DCMs can be used to examine attribute grain size. For pragmatic
reasons, we assume that a true dimensionality exists. We
distinguish two situations: too coarse-grained assessment, in
which single attributes are evaluated that in reality represent
multiple distinct skills, and too fine-grained assessment, in which
multiple attributes are evaluated that in reality represent the same
(or highly similar) skills. In the simulation study, we explore how
absolute model fit indices are affected by such misspecifications
and what the power of these fit indices is to detect these. We also
explore whether relative fit indices can detect the correct
dimensionality of the attribute structure.

To summarize, the following research questions are addressed
in the context of online formative assessment in higher education
(i.e., with respondent sample sizes reasonable in this domain):

1. How many items need to be administered to how many
students to obtain high classification accuracy and adequate
evaluation of model fit when assessing mastery of different
numbers of skills using log-linear DCMs?

2. How are model fit indices influenced bymisspecification of the
grain size (i.e., dimensionality) of the measured skills?

By answering these questions with a simulation study, we aim
to provide guidance for assessment construction in an
educational context in which it is desired to obtain diagnostic
information regarding multiple skills.

2 METHODS

The research questions are approached with a simulation study.
This allows to generate data under certain assumptions and
compare model results with the “true” generating mechanisms.
In the remainder of this section, first some (technical)
background about diagnostic classification models under the
LCDM framework is provided, followed by a description of
the study design and details of the simulation study.

2.1 The Log-Linear Cognitive Diagnosis
Modeling Framework
As mentioned, diagnostic classification models aim to classify
students as master or nonmaster of specified attributes. DCMs
are therefore also known as restricted latent class models since they
are used to classify respondents in a restricted number of latent
classes (i.e., attribute profiles). Suppose an assessment with I items
that measures A binary attributes. The attribute profile for latent
class c is denoted by the vector αc = [αc1, . . . , αcA], where αca = 1 if
attribute a is mastered and αca = 0 if not. DCMs directly estimate
the probability that a respondent meets the criteria for a given
diagnosis (i.e., that a respondent falls into a particular latent
diagnostic class given their item responses). The estimates
depend on both expert judgment and empirical evidence.
Domain experts encode which attributes are required to solve
each item into a so-called Q-matrix, which is an I × A matrix
indicating for each item i whether it measures each attribute a (qia

1In the current study, we refer to “misspecifications”. However, note that there are
situations in which it is acceptable to retain highly correlated attributes as separate
or to define composite attributes based on practical constraints (as described in
Section 1.3).
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= 1) or not (qia = 0). The Q-matrix in combination with data from
diagnostic assessment enables estimation of parameters related to
item and respondent characteristics.

As the name implies, the LCDM uses a log-linear framework
to parameterize the relation between attribute mastery and item
response probabilities. Specifically, the conditional probability πic
that a respondent with attribute profile αc responds correctly to
item i is modeled as follows:

πic � P Xic � 1 | αc( ) � exp λi,0 + λTi h αc, qi( )( )
1 + exp λi,0 + λTi h αc, qi( )( )

(1)

Here, Xic represents the dichotomously scored response to
item i by a respondent in latent class c, which equals 0 or 1 for an
incorrect or correct response respectively. Further, qi = [qi1, . . . ,
qiA] is the vector of binary Q-matrix entries for item i indicating
which attributes the item measures. The intercept parameter λi,0
represents the logit (log-odds) of a correct response given that the
none of the required attributes are mastered by a respondent. The
vector λi of length 2

A− 1 contains the parameters representing the
main effects and interaction effects for item i, and h (αc, qi) is a
vector of length 2A− 1 with linear combinations of αc and qi. More
specifically, the item parameters, the attribute profiles of
respondents, and the Q-matrix entries are combined in the
exponent as follows:

λi,0 + λTi h αc, qi( ) � λi,0 +∑
A

a�1
λi,1, a( )αcaqia + ∑

A−1

a�1
∑
A

a′�a+1
λi,2, a,a′( )αcaαca′qiaqia′ +/

(2)
For item i, the exponent includes an intercept term (λi,0), all

main effects (e.g., λi,1,(a) indicates the increase in the logit of a
correct response given mastery of attribute a), and all possible
(two-way up to A-way) interactions between attributes (e.g.,
λi,2(a,a′) represents the two-way interaction between attributes a
and a′, allowing the logit of a correct response to change given
mastery of both attributes). These item parameters λi are
estimated using for example the expectation-maximization
algorithm. The parameters are subject to monotonicity
constraints to ensure that the probability of a correct
response increases monotonically with the number of
attributes mastered. The item response function is flexible in
the inclusion of item and attribute effects, allowing to express
differentially complex DCMs by constraining specific
parameters from the vector λi to zero; the LCDM is the
saturated version of many reduced DCMs (see for example
Rupp et al., 2010, Ch. 7). The framework provides the possibility
to use differential complexity for different items within an
assessment, which reflects attribute behavior at the item level
(e.g., whether nonmastery of a certain attribute can be
compensated by mastery of another attribute).

Estimating a respondent’s attribute profile αc given their item
reponses is generally done within a Bayesian framework.
Classification is then done based on posterior probabilities of
the attribute profiles derived from the response pattern via the
likelihood and the prior probabilities of latent class membership.
Classification can be based on maximum a posteriori (MAP)

estimates or expected a posteriori (EAP) estimates of the
posterior distribution. The former uses latent class
membership probabilities (i.e., posterior probabilities of each
attribute profile) and does not provide direct probability
estimates for each attribute separately. The latter is based on
probabilities of attribute mastery for individual attributes.
Huebner and Wang (2011) showed that for the DINA model
(a special case of the LCDM), MAP results in higher proportions
of respondents assigned with the correct attribute profile
(i.e., higher profile classification accuracy), whereas EAP
results in higher accuracy for the total of individual attributes
(i.e., higher attribute-wise classification accuracy) and fewer
severe misclassifications.

2.2 Study Design
The aim of the simulation study is to explore whether it is feasible
to use the LCDM to obtain diagnostic information about
students’ skills based on data from online formative
assessments in higher education. In addition, we explore
effects of misspecification of the dimensionality of the
underlying attribute structure. In the simulation study, we
manipulated the number of measured attributes, the number
of items, and the number of respondents. Further, we chose
plausible values for other parameters that are required to simulate
item responses, namely marginal attribute difficulties, attribute
associations, item loading structures (i.e., Q-matrix), and item
parameters. By simulating realistic scenarios, results are expected
to be informative for practitioners. For each condition 1,000 data
sets are generated. The study design is summarized inTable 1 and
will be described in more detail below.

Number of Attributes
The first manipulated variable is the number of attributes A. The
levels of this variable are set to 3, 4, 5, and 6 attributes. This set of
values encompasses levels that are generally used in simulation
studies with DCMs (e.g., Rupp and Templin, 2008; Kunina-
Habenicht et al., 2012; Liu et al., 2017) and reflect common
dimensionalities of educational assessments (e.g., Sinharay
et al., 2011). Although DCM applications with more
attributes are described in the literature (see e.g., Sessoms
and Henson, 2018), these applications need significantly
more data and might have more stringent requirements on
the Q-matrix in order to be identifiable (Gu and Xu, 2021). We
aim to study the feasibility to apply DCMs to online formative
assessment in higher education, where resources are limited and
thus the maximum number of attributes is restricted. In this
context, it is relevant to obtain detailed information about the
different requirements for different number of attributes to
inform practitioners. Therefore, we chose to increase the
number of attributes with steps of 1 and restrict the
maximum number to 6.

Number of Items
The second manipulated variable is the number of administered
items I. The aim is to study the feasibility of applying DCMs to
formative assessments in e-learning environments. Since
(subjective) cognitive fatigue increases with increasing time-
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on-task (Ackerman and Kanfer, 2009), the amount of items
should not be large. Keeping the assessment length short
ensures that students are motivated to complete all items of
low-stakes assessments. To simulate realistic assessment lengths,
the levels of this variable are set to 10, 15, 20, 25, and 30 items.

Number of Respondents
The third manipulated variable is the number of respondents R.
As described, previous simulations have shown that
nonparametric methods are preferred for smaller sample sizes
(30–50 respondents) and parametric methods such as DCMs for
larger sample sizes (200–500 respondents) (Ma et al., 2020). To
obtain more specific information about sample size requirements
for DCMs, the levels of this variable are set to vary between 100
and 1,000, increasing with steps of 100. These varying levels
provide useful information for university courses, since the
amount of students who participate in these courses varies
greatly across courses and universities.

Mastery Proportions and Attribute Associations
To simulate item response data, first R attribute profiles are
generated for each number of attributes A, taking into
consideration the marginal attribute difficulties (mastery
proportions) and the attribute associations (correlations). For
each respondent, a vector p of length A is sampled from a
multivariate normal distribution with mean μ and correlation
matrix Σ and these vectors are discretized at 0, resulting in
attribute profiles αc (i.e., αac = 0 if pa < 0, and αac = 1 if pa > 0).
The mean vector μ and correlation matrix Σ are defined based
on plausible values for the marginal mastery proportions and
the correlations between the latent attribute variables
respectively.

The aim is to evaluate whether the models are applicable in
e-learning, which is a low-stakes practice environment. Students
are likely to make assessments before thoroughly studying all the
learning materials and some may grasp some attributes better
than other attributes. Therefore, the marginal mastery
proportions ma are expected to vary across the attributes
within an assessment. In each replication, μ is chosen such
that it leads to marginal attribute proportions of
approximately 0.3, 0.5 and 0.7 for the conditions with three
attributes; 0.3, 0.5, 0.5 and 0.7 for four attributes; 0.3, 0.4, 0.5,

0.6 and 0.7 for five attributes; and 0.3, 0.4, 0.5, 0.5 0.6 and 0.7 for
six attributes. These values were driven by similar rates in
literature. For example, Kunina-Habenicht et al. (2012) studied
conditions with mastery proportions varying from 0.3 to 0.7
versus equal mastery proportions of 0.5 across attributes. Results
showed no substantial impact on classification accuracy, and
although it would be interesting to verify whether this also holds
in our situation with smaller sample sizes, we choose one realistic
level for this factor to keep the simulation study manageable. For
the same reason, we choose one level for the tetrachoric attribute
correlations of attribute pairs. For each attribute pair, the
correlation in Σ is sampled from U (0.5, 0.7), which are
typical values for associations of subscores in subdomains in
educational learning applications (Sinharay, 2010; Sinharay et al.,
2011; Hofman et al., 2018). This reflects moderate to high
correlations between the attributes, which is a realistic scenario
for assessments within university courses that generally cover
subjects that are by definition related to each other. In addition, it
is in line with values that are used in similar simulation studies
(e.g. Cui et al., 2012; Kunina-Habenicht et al., 2012; Liu et al.,
2017).

Q-Matrix Specification
A Q-matrix is defined for each condition that results from
crossing the number of attributes and items. For this study,
we assume that the Q-matrix is correctly specified. Q-matrices
can differ in their complexity, that is, in the number of items
measuring each attribute, the number of attributes measured
within each item, and the number of attributes that are measured
jointly with other attributes on the assessment. Following the
recommendations from Madison and Bradshaw (2015),2 we
ensure that each attribute is measured at least once in
isolation, if possible more than once. This aligns with findings
from Kunina-Habenicht et al. (2012), who demonstrated that
items that load on more than three attributes are computationally
demanding and lead to large standard errors of parameter
estimates. Therefore, we include only unidimensional and two-

TABLE 1 | Simulation study design and conditions for data generation.

Design factor Number of levels Values of levels

Varying — —

Number of attributes 4 A ∈ {3, 4, 5, 6}
Number of items 5 I ∈ {10, 15, 20, 25, 30}
Number of respondents 10 R ∈ {100, 200, 300, . . . , 900, 1,000}
Fixed — —

Marginal attribute mastery proportions — ma ∈ {0.3, 0.4, 0.5, 0.6, 0.7}
Attribute associations — Σa,a′ ~ U (0.5, 0.7)
Item loading structures (Q-matrix) — See text and Table 2
Item parameters — See text and Table 3
Number of replications 1,000 —

2We constructed the Q-matrices following guidelines fromMadison and Bradshaw
(2015). More recently, Gu and Xu (2021) provided guidelines to ensure Q-matrix
identifiability, which we briefly discuss in Section 4.2
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dimensional items (i.e., items that measure one or two attributes).
For each number of attributes A, Q-matrices are specified for the
different assessment lengths I. Table 2 shows the numbers of
unidimensional and two-dimensional items that are included in
each Q-matrix. For the unidimensional items, we ensured that all
attributes are measured the same number of times. The two-
dimensional loading structures are sampled randomly from all
possible structures in each replication.

Item Parameters
To generate data, item parameters λi are sampled from uniform
distribution such that they result in plausible response
probabilities. For all items measuring one attribute, the
intercepts λi,0 are sampled from U (−1.50, −0.80) and the
main effects λi,1,(a) from U (2.20, 2.90). For all items
measuring two attributes, the intercepts λi,0 are sampled from
U (−1.50, −0.90), both main effects λi,1,(a) fromU (0.90, 1.10), and
the two-way interactions λi,2(a,a′) from U (0.30, 0.50). The
probability of a correct response to an item can be calculated
using Eqs. 1, 2. The range of the item response probabilities
resulting from the sampled item parameters are shown inTable 3.
These item response probabilities are plausible in the sense that
guessing probabilities for complete nonmasters are relatively low,
probabilities of correct responses for complete masters are
relatively high, and incremental increases in probabilities for
masters of individual attributes for two-dimensional items are
nontrivial (see e.g., Liu et al., 2017 and Madison and Bradshaw,
2015 for simulations with similar ranges of response probabilities
for data generation). By randomly sampling the item parameters,
the generated item sets will include a mix of items of lower and
higher quality.

2.3 Data Generation
Data is generated using the statistical software R (R Core
Team, 2019) with the saturated LCDM as the generating
model. The simulated attribute profiles, Q-matrices, and
item parameters are combined to compute the item
response probabilities πic for each respondent using Eqs. 1,

2. Then, to generate response xic to item i for a respondent with
attribute profile αc, a random number u is drawn from a
uniform distribution on the interval 0 to 1: u ~ U (0, 1).
This value is compared with the response probability πic. If u <
πic then xic = 1, otherwise xic = 0.

In the first part of the study, 1,000 data sets are generated for
each condition resulting from crossing the number of attributes
(4 levels), number of items (5 levels), and number of respondents
(10 levels). In the second part of the study we look at the effects of
misspecification of the dimensionality of the attribute structure,
for which we also generate 1,000 data sets per condition. In these
situations, Q-matrices to generate data can have a different
dimension than the Q-matrices to estimate the models. That
is, we generate data assuming a certain number of underlying
attributes (Atrue) that result in the item responses. We estimate
both the true generating models and models with a Q-matrix with
an incompatible numbers of attributes (Aest ≠ Atrue),
i.e., assuming that a different number of attributes underlies
the item response behaviour. We distinguish two situations in
this regard. First, we look at situations where the attributes for the
estimated model are too coarsely defined. We generate data
assuming Atrue = 2 and Atrue = 4 true underlying attributes,
and we estimate misspecified models assuming Aest = 1 and Aest =
2 underlying attributes respectively. The Q-matrix for estimation
is therefore a reduced version of the Q-matrix used for generation
(i.e., lower dimensionality). Second, we look at situations where
the estimated model is too fine-grained. We consider situations
for which data is generated assuming Atrue = 1 and Atrue = 2 true
underlying attributes and we estimate models with Aest = 2 and
Aest = 4 respectively. This is achieved by generating data for
attribute pairs with correlations set to ρ = 0.98 to represent single,
unseparable underlying skills (a value close to but not equal to 1
was chosen to prevent computational issues). This way, to
estimate the misspecified and true models, we need the
generating Q-matrices and a reduced version of this matrix
(i.e., it is only required to reduce the dimensionality; not to
increase). A set of Q-matrices with different dimensionalities is
constructed as follows. First, the matrix with the highest

TABLE 2 | Number of unidimensional (uni) and two-dimensional (two) items per condition resulting from crossing the number of attributes and items.

I 10 15 20 25 30

A uni two uni two uni two uni two uni two

3 6 4 12 3 15 5 18 7 21 9
4 8 2 12 3 16 4 20 5 24 6
5 5 5 10 5 15 5 20 5 25 5
6 6 4 12 3 12 8 18 7 24 6

TABLE 3 | Range of item response probabilities for data generation.

Number of attributes measured by item Number of measured attributes mastered by respondent

0 1 2

1 (0.18, 0.31) (0.67, 0.89) —

2 (0.18, 0,29) (0.35, 0.55) (0.65, 0.86)
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dimension is specified following the procedures described in
Section 2.2, and this dimensionality is reduced based on its
loading structure. If two attributes are assumed to represent
similar skills, the Q-matrix with reduced dimensionality
combines these into one attribute. If an item loads on either
one or both of the original attributes, the item also loads on the
new attribute. An example of this reduction is shown in
Supplementary Appendix Table A1).

2.4 Model Estimation
All models are estimated with the statistical software R (R Core
Team, 2019) using the R package GDINA (Ma and de la Torre,
2020b; note that the LCDM is equivalent to the generalized
deterministic inputs, noisy “and” gate model with a logit link
[G-DINA; de la Torre, 2011]; the required monotonicity
constraints were added). Classifications are based on the
expected a posteriori (EAP) estimates. To answer the first
research question about the demands on the data structure for
the LCDM, the true generating model was fitted to each data set,
i.e., using the correct Q-matrix and the saturated LCDM.
Evaluation of classification accuracy and model fit indices
provides insight in the requirements on the data in order to
make statements about attribute mastery of respondents. To
answer the second research question about the impact of
dimensionality misspecifications on model fit indices, we
misspecified the number of attributes in the Q-matrix
following the procedure described in Section 2.3. Both the
true and misspecified models are estimated and the behavior
of model fit indices is evaluated.

2.5 Outcome Measures
Classification Accuracy
Correct classification rate is typically an important outcome when
DCMs are applied to empirical data, since educational decisions
are made based on these classifications. In educational practice,
students’ learning choices are likely to be made based on
evaluation of mastery results of individual attributes, for
example deciding to practice with learning materials about a
nonmastered attribute. We therefore evaluate the marginal
attribute classification rate (i.e., attribute-wise classification
accuracy).

Absolute Model Fit
We evaluate the behavior of two measures of absolute model fit of
the estimated models. First, M2 is calculated, which combines
limited-information fit statistics across pairs of items to produce
an overall index of model fit (Maydeu-Olivares and Joe, 2006).
Asymptotic p-values for this statistic are accurate even when the
data are sparse. Liu et al. (2016) showed thatM2 is a powerful tool
to detect model misspecification and recommend the use of M2

statistic for assessing the overall exact model fit in DCMs.
However, the power of M2 to detect misspecifications in the
attribute structure seems to be rather low (Hansen et al., 2016).

In addition, we assess goodness of approximation with the
bivariate root mean square error of approximation statistic
(RMSEA2), which is a transformation of the discrepancy

between the fitted model and the population probabilities that
adjusts for model complexity and expresses such discrepancy in
the metric of the summary statistics used to assess model fit (see
Maydeu-Olivares and Joe, 2014 for details). It shows a degree of
misfit and can be regarded as an effect size measure. Simulation
studies showed that for the RMSEA2 the cutoff values 0.030 and
0.045 are reasonable criteria for excellent and good fit for the
LCDM (Liu et al., 2016).

Relative Model Fit
To evaluate relative model fit both Akaike’s information criterion
(AIC; Akaike, 1974) and the Bayesian information criterion (BIC;
Schwarz, 1978) are considered, which are measures that
compromise model fit and complexity. It is assessed whether
these indices provide evidence in favor of the correctly specified
models compared with the models with dimensionality
misspecifications.

3 RESULTS

3.1 Impact of Assessment Length and
Respondent Sample Size on Model Results
To answer the first research question concerning data
requirements for the LCDM, we assessed the conditions for
which the generating model is consistent with the estimated
model. For each condition resulting from crossing the number
of attributes, items and respondents, we evaluated the marginal
(attribute-wise) classification accuracy and the behavior of the fit
statistics M2 and RMSEA2.

Classification accuracy is shown in Figure 1. The figure
shows the accuracy averaged across replications with 90%
error bars (vertical axes start at 0.7 for clearer presentation
of the results). The accuracy is not highly influenced by
respondent sample size, although smaller sample sizes
expectedly result in more variation across replications as
illustrated by the larger error bars, indicating that these
results are less stable. The number of items seems to have
more impact on the accuracy than the number of
respondents. As expected, administering more items results
in higher classification accuracy, since classifications are
based on more information. For each number of attributes A
we evaluated how many respondents R are needed to achieve
accuracy of 0.9 (indicated by the horizontal dashed line) with
different assessment lengths. The results are summarized in
Table 4. When more attributes are assessed, the data
requirements to achieve accuracy of 0.9 are obviously more
demanding. In several conditions, this level of accuracy was not
achieved with R ≤ 1,000. In the remaining conditions
respondent sample size requirements vary between 100 and 300.

In addition to classification accuracy, we assessed the behavior
ofM2. More specifically, we evaluated the rejection rates at α = 0.05.
Since the estimated models correspond to the data generating
mechanisms, these values represent type I error rates. All rejection
rates were reasonably close to the nominal alpha level 0.05,
providing no indication that this statistic is too conservative or
too liberal under these circumstances (the rejection rates per
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condition are presented in Supplementary Appendix Table A2).
Note that for the condition with 10 items and 5 or 6 attributes, the
M2 statistic could not be calculated because the degrees of freedom
were too low, implying that themodel was too complex for the data
at hand. For a detailed description ofM2 and its degrees of freedom,
we refer the reader to Maydeu-Olivares and Joe (2006) or Hansen
et al. (2016).

Last, RMSEA2 was evaluated. Note that again, for the condition
with 10 items and 5 or 6 attributes, the RMSEA2 statistic could not be
calculated due to too low degrees of freedom. For the remaining
conditions, Figure 2 shows the average RMSEA2 across replications
with 90% error bars. The average values are all well below the
proposed cutoff value of 0.045 (Liu et al., 2016; indicated by the
horizontal dashed lines), thereby indicating good model fit. For small
respondent sample sizes, RMSEA2 varied considerably across
replications as illustrated by the large error bars, indicating that
this statistic may not be reliable under these circumstances.

To explore the relation between RMSEA2 and marginal
classification accuracy, Figure 3 shows scatterplots of this
relation for the different levels of A and I, with horizontal
dashed lines indicating accuracy of 0.9 and vertical dashed
lines RMSEA2 of 0.045. We expect a negative relation between
the two variables, so that a higher value of RMSEA2 indicates
lower accuracy. Although this trend is to some extent visible in
the panels in Figure 3, it is evident that if many attributes are
assessed with a small number of items (i.e., A = 3 and I = 10; A = 4

and I ≤ 15; A = 5 and I ≤ 20; A = 6 and I ≤ 25), the values of
RMSEA2 do not substantially increase despite the somewhat
lower accuracy in these conditions. Thus, under these
circumstances, RMSEA2 fails to provide evidence of decreased
model performance.3 Note that these are precisely the conditions
in which 0.9 accuracy could not be achieved with R ≤ 1,000 (see
Table 4), emphasizing that it is advisable to avoid these situations
in cognitive diagnostic assessment with the LCDM, since one
cannot adequately evaluate model performance with the
RMSEA2.

3.2 Sensitivity of Model Fit Indices to
Dimensionality Misspecifications
To answer the second research question concerning
dimensionality misspecifications, we assessed the conditions for
which the generating model is inconsistent with the estimated
model. This means the number of attributes assumed in generating
the data is different from the number of attributes in the estimated
model. We distinguish two situations: the attribute structure of the
estimated model is too coarse-grained, or the attribute structure of
the estimated model is too fine-grained. For each condition
resulting from crossing the number of attributes, items and
respondents, we evaluated the power of M2 to detect misfit and
the behavior of RMSEA2. In addition, we considered the sensitivity
of relative fit indices (i.e., AIC and BIC) to select the best model
among models with different dimensionality.

Too Coarse-Grained Assessment
To simulate too coarse-grained assessment, models with Aest = 1
and Aest = 2 were fitted to data that was generated assumingAtrue =
2 and Atrue = 4 true underlying attributes respectively. The top
panels in Figure 4 show the M2 rejection rates for all conditions,
which represent the power to detect this type of model misfit.

FIGURE 1 | Average marginal classification accuracy (with 90% error bars) in the conditions resulting from crossing the number of attributes A, items I, and
respondentsR for which the generatingmodel was consistent with the estimatedmodel. Vertical axes start at 0.7 for clearer presentation of results and horizontal dashed
lines indicate accuracy of 0.9.

TABLE 4 | Required number of respondents R to achieve a marginal classification
accuracy of 0.9 when assessing A attributes with I items (“-” indicates that this
level of accuracy cannot be achieved with R ≤ 1,000).

I

A 10 15 20 25 30

3 — 300 200 100 100
4 — — 300 200 100
5 — — — 300 200
6 — — — — 300

3Similar patterns were found across conditions with different numbers of
respondents R, see Supplementary Appendix Figure A1
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Assuming a desired power of 0.8 (indicated by the horizontal
dashed lines), a respondent sample size of R = 300 is required to be
able to detect the misfit when I = 10. When the number of items is
larger, the required number of respondents decreases. For I = 15,
respondent sample sizes of R = 100 to R = 200 suffice, and when I ≥
20 a respondent sample size of R = 100 is sufficient.

The bottom panels in Figure 4 show the average RMSEA2

across replications with 90% error bars and horizontal dashed
lines indicating the 0.045 cutoff value proposed by Liu et al.
(2016). For I = 10, RMSEA2 varies greatly across replications with
averages close to the cutoff value, indicating that this statistic is
not reliable under these circumstances. This lack of reliability
remains an issue for small respondent sample sizes (R ≤ 200) even
if the number of items increases. In the remaining conditions,
RMSEA2 correctly provides indications of model misfit.

In addition to absolute model fit indices, it is assessed
whether the AIC and BIC can be used for model selection
among the too coarse-grained model and the correctly
specified (generating) model. Both models were estimated
for each simulated data set and the model with the lowest

value of each relative fit index was selected. Figure 5 shows for
each condition the proportion of replications in which the true
model was selected.4 With sufficient numbers of items and
respondents (I ≥ 20, R ≥ 200) both the AIC and the BIC nearly
always selected the true, more complex model. For shorter
assessments and smaller respondent sample sizes, the AIC
outperformed the BIC. This is in line with previous research
showing that the AIC may be preferred to the BIC when
candidate models are oversimplifications of more complex
true models (Vrieze, 2012). However, note that when both
the number of items and respondents are small (I = 10, R =
100) the AIC still selected the misspecified, less complex model
a considerable amount of times. Overall, in 92.3% of all
replications across all conditions both indices correctly

FIGURE 3 | Scatterplot of marginal classification accuracy against RMSEA2 in conditions with consistent generating and estimated models. Horizontal and vertical
dashed lines indicate accuracy of 0.9 and RMSEA2 of 0.045.

FIGURE 2 | Average RMSEA2 (with 90% error bars) in the conditions resulting from crossing the number of attributes A, items I, and respondents R for which the
generating model was consistent with the estimated model. Horizontal dashed lines indicate RMSEA2 of 0.045.

4The analyses were repeated with model selection only if the difference in AIC or
BIC was larger than 2, since smaller differences are sometimes regarded as
providing no evidence for either of the models under consideration (e.g.,
Burnham and Anderson, 2004, p.270-271). These results were highly similar to
results presented here
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favored the true model, in 6.9% there was disagreement
between the indices with the AIC always outperforming the
BIC, and in only 0.8% both indices incorrectly favored the too
coarse-grained model.

Too Fine-Grained Assessment
To simulate too fine-grained assessment, models withAest = 2 and
Aest = 4 were fitted to data that was generated assuming Atrue = 1
and Atrue = 2 true underlying attributes respectively. Figure 6
shows theM2 rejection rates and average RMSEA2 with 90% error
bars for all conditions. Rejection rates are low in all
conditions (all < 0.1), indicating that the power of M2 to

detect this type of misfit is low. In addition, the average
RMSEA2 values are below the cutoff value 0.045 (indicated by
the horizontal dashed lines) in all conditions, thereby also
failing to provide indication of misfit. Thus, whereas the
absolute fit indices were able to detect too coarsely defined
models (with sufficiently large numbers of items and
respondents), these indices cannot be used to detect model
misfit if assessment is too fine-grained.

The too fine-grained models are more complex (i.e., include
more parameters) than the models that correspond to the data
generating mechanisms. More complex models are more likely to
fit empirical data, explaining the low rejection rates ofM2 and the

FIGURE 4 | M2 rejection rates and average RMSEA2 (with 90% error bars) in the conditions resulting from crossing the number of items I and respondents R for
which the estimated model was more coarse-grained than the generating model (Aest < Atrue). Horizontal dashed lines indicateM2 rejection rates of 0.8 (desired power)
and RMSEA2 of 0.045.

FIGURE 5 | Proportion of replications where AIC and BIC preferred the true model over the too coarse-grained model. Results are displayed for the conditions with
Atrue = 2 and Aest = 1, 2, and with Atrue = 4 and Aest = 2, 4.
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low values of RMSEA2. To account for this, the relative fit indices
AIC and BIC include penalty terms for complexity. For the AIC
this penalty is 2p and for the BIC p · ln(n), where p is the number
of parameters and n indicates sample size. We assessed whether
the AIC and BIC provide evidence in favor of the correctly
specified models compared with models with dimensionality
misspecifications. Both the true generating model and the too
fine-grained model were estimated for each simulated data set
and the model with the lowest value of each relative fit index was
selected. It was evaluated how often the true model was preferred
over the misspecified model by the AIC and BIC, i.e., in what
proportion of the replications the relative fit indices were lower
for the true model than the misspecified model. The results are

shown in Figure 7.5 It is evident that the BIC outperforms the
AIC in all conditions. This aligns with findings from Lei and Li
(2016), who found that in cognitive diagnostic modeling the AIC
tends to erroneously favor more complex models. However,
despite the penalty component of the BIC that increases with
sample size, the performance of the BIC decreases with increasing
respondent sample size for conditions with a large number of
items. This suggests that, although the BIC outperforms the AIC,
neither of these indices performs great in selecting the true model
if competing models are more complex. In 24.4% of all

FIGURE 6 | M2 rejection rates and average RMSEA2 (with 90% error bars)in the conditions resulting from crossing the number of items I and respondents R for
which the estimated model was more fine-grained than the generating model (Aest > Atrue). Horizontal dashed lines indicate RMSEA2 of 0.045.

FIGURE 7 | Proportion of replications where AIC and BIC preferred the true model over the too fine-grained model. Results are displayed for the conditions with
Atrue = 1 and Aest = 1, 2, and with Atrue = 2 and Aest = 2, 4.

5Again, the analyses were repeated with model selection only if the difference in
AIC or BIC was larger than 2, leading to highly similar results
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replications across all conditions both indices favored the true,
more parsimonious model, in 32.6% there was disagreement
between the indices with the BIC always outperforming the
AIC, and in 43.0% both indices incorrectly favored the too
fine-grained model. The proportion of replications in which
both indices favor the incorrect model increases with
increasing number of items and respondents. In short, there is
a continuous trend of both the AIC and the BIC favoring overly
complex models. A measure with a stronger penalty for
complexity may be needed with larger sample sizes.

4 DISCUSSION

This simulation study investigated the feasibility of applying log-
linear diagnostic classification models to online formative
assessments in higher education to obtain diagnostic,
actionable feedback, particularly in courses with large groups
of students. More specifically, we approached issues in
constructing cognitive diagnostic assessments from a statistical
perspective by studying data requirements of log-linear DCMs
and the impact of misspecification of the grain size
(i.e., dimensionality) of the measured skills on model fit
indices. Regarding the data requirements, we provided
minimum respondent sample sizes that are necessary to 1)
obtain high accuracy in classifying students as master or
nonmaster of different numbers of attributes based on
assessments of different lengths, and 2) allow for adequate
evaluation of model fit with the M2 and RMSEA2 statistics. As
expected, assessing more attributes increases the demands on the
data structure, with minimum respondent sample sizes varying
between 100 and 300; see Table 4 for the explicit requirements.
These requirements seem feasible to meet in large courses in
higher education, especially since the number of items seems to
have more impact on the accuracy than the number of
respondents. Results showed that if attributes are assesses with
a small number of items (i.e., 3, 4, 5 or 6 attributes with at most 10,
15, 20 or 25 items respectively), model fit cannot be adequately
evaluated with the RMSEA2, but if more items are administered
this issue is resolved. If it is possible to include at least 20 to 30
items in formative assessments, one can accurately assess 3 to 5
attributes based on respondent sample sizes of 200 students,
which is not an uncommon number in this domain.

Regarding dimensionality misspecifications, we evaluated
situations where single attributes are defined that in reality
represent multiple distinct skills, and situations where
multiple attributes are defined that in reality represent the
same (or highly similar) skills. Results showed that (with
sufficient data) the absolute model fit indices M2 and
RMSEA2 can be used to detect model misfit if attributes are
too coarsely defined, but not if the definitional grain size is too
fine. Moreover, the relative fit indices AIC and BIC generally
provided evidence in favor of true, more fine-grained and
complex models when compared with too coarsely defined
models, but not in favor of true, more coarsely defined and
parsimonious models when compared with too fine-grained
models. Regarding too fine-grained models, we studied the

extreme case with attribute correlations of 0.98, resulting in
almost unseparable attributes (i.e., single dimensions). Even in
this extreme case the fit indices generally preferred the incorrect,
higher-dimensional models and this performance is expected to
decrease further for lower attribute correlations. We
recommend to be conservative if it comes to dimensionality
and to give preference to parsimonious models. Results showed
that the models are prone to overfitting, and that the AIC and
BIC penalty terms for complexity may not be strong enough.
The problem is that in practice, if dimensionality is studied
empirically by fitting log-linear DCMs of different
dimensionalities, it is unknown which of the two situations
applies and it is thus unknown whether the results can be
trusted. Since the AIC was found to perform better in one
situation and the BIC in the other, it is advisable not to rely on
solely one index but to evaluate their agreement to lend more
support for model choice. However, even if the indices agree
these results cannot be fully trusted, since there is a considerable
chance of overfitting (especially with larger sample sizes).
Therefore, when assessing attribute dimensionality, it is
recommendable to rely on sound research in education and
cognition (e.g., think-aloud studies; Leighton and Gierl, 2007a).

4.1 Implications for Educational Practice
The established data requirements provide guidance to
educational practitioners for the design of online formative
assessments to allow for the application of log-linear DCMs to
obtain diagnostic, actionable feedback. As described, this design
process starts with defining a cognitive model (i.e., specifying the
attributes). Depending on the number of students that will make
the assessment, the results from Table 4 can be used to determine
the number of attributes and items. For example, if 300 students
participate, one can choose to assess 4 attributes with 20 items.
Note that if an assessment is not sufficiently long, one can
consider to include covariates that provide auxiliary
information to increase classification accuracy (Sun and de la
Torre, 2020), such as courses taken or obtained grades (Mislevy
and Sheehan, 1989). Once the number of attributes is determined,
one defines the attributes at a certain granularity level. From an
educational perspective, this involves consideration of the range
of learning goals that are covered in the assessment and the
desired specificity of feedback. In addition, the results from the
simulation showed the importance of theoretical considerations
regarding cognitive processes underlying item response behavior
to define a set of distinct attributes, since it can be troublesome to
statistically detect attribute dimensionality misspecifications.

After specifying the attribute structure, a sufficient number
of items measuring these attributes are combined into an
assessment. Courses that use e-learing environments
generally have an item bank available with practice materials
for students. Teachers can exploit these items to compose an
assessment to obtain diagnostic information and specify which
attribute(s) each item measures (i.e., specify the Q-matrix).
Madison and Bradshaw (2015) provide guidelines for
Q-matrix design that should be considered in this process.
They recommend to measure each attribute a reasonable
amount of times, to measure each attribute at least once in
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isolation (i.e., with unidimensional items), and, if two attributes
are truly connected and items cannot be written to measure
either attribute in isolation, to combine them into one
composite attribute. More recently, Gu and Xu (2021) have
provided guidelines for constructing an identified Q-matrix that
should be considered. Further, in the current study it was
assumed that the Q-matrix was correctly specified. Yet, the
process of establishing the Q-matrix based on expert judgment
is subjective in nature and may be susceptible to errors. To
address this issue, the Q-matrix can be empirically validated to
identify misspecified entries, for example with the general
discrimination index (GDI; de la Torre and Chiu, 2016) or
the stepwise Wald method (Ma and de la Torre, 2020a). These
validation methods provide suggestions for modifications that
improve model fit, which should be evaluated by domain experts
to take a final decision about the Q-matrix to secure theoretical
interpretability.

Once a formative assessment has been composed, it is
provided to students in online learning environments and
DCMs are estimated based on the response data. In the
current study, the saturated LCDM was estimated, which
corresponded to the true generating model. However, in
reality the nature of attribute interactions may vary across
items for complex structure items, which may call for the use
of reduced DCMs. If there is no a priori theory about attribute
behavior at the item level, the LCDM framework can be used to
observe attribute behavior by testing for each item whether a
reduced model can be estimated without a significant loss of
model fit with a Wald test (de la Torre and Lee, 2013). Ma et al.
(2016) found that when reduced DCMs are correctly used for
different items, this can result in higher classification accuracy
compared to fitting the saturated LCDM to all items, particularly
when the sample size is small and items are of low quality. Once
the approriate DCMs are estimated, diagnostic profiles can be
obtained. This detailed diagnostic feedback can improve
educational practice by allowing for better informed learning
choices by both students and teachers (Nicol and Macfarlane-
Dick, 2006).

In future work, we plan to implement cognitive diagnostic
assessments in an online learning environment in higher
education and to model item response data with log-linear
DCMs. We will demonstrate with empirical data how these
models can be used to provide effective feedback based on
online formative assessments. To get a sense of how this can be
established, we refer the reader to Jang (2008) for a framework
for implementing cognitive diagnostic assessments in practice,
and to Roduta Roberts and Gierl (2010) for a framework for
developing score reports of cognitive diagnostic assessments.
Further, for application examples see Park et al. (2020) who
show the use of DCMs to report subscores in health
professions education, or Gierl et al. (2010) for an
implementation of cognitive diagnostic assessment in a
mathematics program.

4.2 Limitations and Future Research
The current simulation study was not exhaustive with respect to
conditions of model (mis)specifications, since that would not be

manageable. We attempted to resemble circumstances in the
domain of online learning in higher education as closely as
possible by specifying plausible values in the simulation
design, such as mastery proportions, attribute correlations,
and item quality. Although the results of this study can be
generalized beyond this specific domain, the choices for the
simulation conditions were driven by this context. Note that
true values may deviate from the specified values and
although previous simulations have not shown substantial
effects of such deviations for some of these factors (e.g.,
Kunina-Habenicht et al., 2012), it would be interesting to
verify whether this also holds in our situation with smaller
sample sizes. In addition, other types of model
misspecifications may impact the results, such as
underfitting or overfitting of the Q-matrix (i.e., specifying
0s where there should be 1s and vice versa) or incompleteness
of the Q-matrix. Research has been conducted to explore the
effects of such misspecifications in cognitive diagnostic
assessment (see for example Rupp and Templin, 2008;
Kunina-Habenicht et al., 2012; Lei and Li, 2016), but it
would be relevant to explore these further in the context
of formative assessment in higher education courses, i.e. with
smaller sample sizes.

Further, we only included unidimensional and two-dimensional
items. As indicated earlier, including more cross-loadings in
the Q-matrix will lead to more estimation
instability (Kunina-Habenicht et al., 2012). Larger sample
sizes than recommended in our study may be needed if
Q-matrix complexity increases and it would be interesting to
extend the simulation study by including more complex
items. Note that we specified our Q-matrices following
guidelines from Madison and Bradshaw (2015). Q-matrix
identifiability is an active research area, and more explicit
requirements have recently been recommended to ensure
identifiability; see Gu and Xu (2021). We evaluated our
Q-matrix construction procedures, and found that in the
conditions with I ≥ 3A (nearly) all our Q-matrices meet the
requirements from Gu and Xu, but not in the conditions
with I < 3A. Although our results did not show identification
problems, it is important to take identifiability into
consideration for the interpretability of the model results
in practice.

Like the simulation conditions, the model fit indices used to
evaluate the results were not exhaustive. Additional fit indices
are available that would be interesting to explore in the context
of granularity misspecifications, such as the bivariate
information statistics considered by Chen et al. (2013) or by
Lei and Li (2016).

Finally, we assumed a true, static attribute dimensionality.
Note that the structure of skills may change over time, e.g.,
correlations between skills can increase and become so
strongly connected that they can be viewed as a
unidimensional skill (Hofman et al., 2018). Learning is a
dynamic process, especially when feedback is provided, and
these dynamics should be considered in diagnostic
assessment too (e.g., Brinkhuis and Maris, 2019). Future
studies might consider exploring highly correlated

Frontiers in Education | www.frontiersin.org February 2022 | Volume 7 | Article 80282814

Maas et al. DCMs: Sample Size & Assessment Length

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


attributes and the effect of the definitional grain size on
inferences about students.

4.3 Concluding Remarks
To conclude, diagnostic classification models can be a
valuable tool to obtain diagnostic information based on
online formative assessments in higher education. To
achieve this, teachers need to specify the skills to be
measured, construct assessments, and indicate for each
assessment item which skill(s) it measures. The current
study shows that DCMs can provide accurate diagnostic
information with sufficient numbers of items and
respondents, yet it stresses the importance of theoretical
considerations about cognitive processes that result in item
responses when specifying the skills to be measured. Note
that constructing cognitive diagnostic assessments does not
require statistical knowledge about data modeling, thus
making it feasible for teachers in any educational domain
that allows for theoretically grounded attribute specification.
To enable this, e-learning platforms would need to develop
user-friendly tools that enable the construction of such
assessments, including instructions for teachers about the
requirements concerning the numbers of skills and items and
item loading structures. Constructing these assessments
requires additional effort from teachers, but this is
outweighed by the benefits of obtaining actionable
feedback rather than (less meaningful) proportion correct
scores that are generally provided in current practice.
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