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Self-regulated learning (SRL) integrates monitoring and controlling of

cognitive, a�ective, metacognitive, andmotivational processes during learning

in pursuit of goals. Researchers have begun using multimodal data

(e.g., concurrent verbalizations, eye movements, on-line behavioral traces,

facial expressions, screen recordings of learner-system interactions, and

physiological sensors) to investigate triggers and temporal dynamics of SRL

and how such data relate to learning and performance. Analyzing and

interpreting multimodal data about learners’ SRL processes as they work in

real-time is conceptually and computationally challenging for researchers. In

this paper, we discuss recommendations for building a multimodal learning

analytics architecture for advancing research on how researchers or instructors

can standardize, process, analyze, recognize and conceptualize (SPARC)

multimodal data in the service of understanding learners’ real-time SRL and

productively intervening learning activities with significant implications for

artificial intelligence capabilities. Our overall goals are to (a) advance the

science of learning by creating links between multimodal trace data and

theoretical models of SRL, and (b) aid researchers or instructors in developing

e�ective instructional interventions to assist learners in developing more

productive SRL processes. As initial steps toward these goals, this paper

(1) discusses theoretical, conceptual, methodological, and analytical issues

researchers or instructors facewhen using learners’multimodal data generated

from emerging technologies; (2) provide an elaboration of theoretical and

empirical psychological, cognitive science, and SRL aspects related to the

sketch of the visionary system called SPARC that supports analyzing and

improving a learner-instructor or learner-researcher setting using multimodal

data; and (3) discuss implications for building valid artificial intelligence

algorithms constructed from insights gained from researchers and SRL experts,

instructors, and learners SRL via multimodal trace data.
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multimodal trace data, self-regulated learning, emerging technologies, system
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1. Introduction

Technology is woven into the fabric of the twenty-first

century. Exacerbated by the pandemic of COVID-19, these

emerging technologies have the capacity to increase accessibility,

inclusivity, and quality of education across the globe (UNESCO,

2017). Emerging technologies include serious games, immersive

virtual environments, simulations, and intelligent tutoring

systems that have assisted learners in developing self-regulated

learning (SRL) and problem-solving skills (Azevedo et al.,

2019) across multiple domains (Biswas et al., 2016; Azevedo

et al., 2018; Winne, 2018a; Lajoie et al., 2021), populations,

languages, and cultures (Chango et al., 2021). Empirical evidence

shows that SRL with emerging technology results in better

learning gains compared to conventional methods (Azevedo

et al., 2022). These technology-rich learning environments can

record learners’ multimodal trace data (e.g., logfiles, concurrent

verbalizations, eye movements, facial expressions, screen

recordings of learner-system interactions, and physiological

signals) that instructors and education researchers can use

to systematically monitor, analyze, and model SRL processes,

and study their interactions with other latent constructs and

performance with overall goals to augment teaching and

learning (Azevedo and Gašević, 2019; Hadwin, 2021; Reimann,

2021).

Emerging evidence points to key roles that multimodal data

can play in this context (Jang et al., 2017; Taub et al., 2021) and

has sparked promising data-driven techniques for discovering

insights into SRL processes (Cloude et al., 2021a; Wiedbusch

et al., 2021). Yet, major issues remain regarding roles for various

SRL processes (e.g., cognitive and metacognitive; Mayer, 2019)

and their properties: evolution or recursive nature over time,

frequency and duration, interdependence, quantity vs. quality

(e.g., accuracy in metacognitive monitoring), and methods for

fusing multimodal trace data to link SRL processes to learning

task performance. As research using multimodal trace data

unfolds, we perceive an increased need to understand how

instructional decisions can be forged by modeling regulatory

patterns reflected by multimodal data in both learners and their

instructors. We pose a fundamental question: Has the field

developed the knowledge and the supporting processes to help

researchers and instructors interpret and exploit multimodal

data to design productive and effective instructional decisions?

In this paper, we provide an elaboration on psychological

aspects related to the design of a teaching and learning

architecture called SPARC that allows researchers or instructors

to standardize, process, analyze, recognize, and conceptualize

(SPARC) SRL signals from multimodal data. The goal is

to help researchers or instructors represent and strive to

understand learners’ real-time SRL processes, with the aim to

intervene and support ongoing learning activities. We envision

a SPARC system to reach this goal. Specifically, we recommend

that the design of SPARC should embody a framework

grounded in (1) conceptual and theoretical models of SRL (e.g.,

Winne, 2018a); (2) methodological approaches to measuring,

processing, and modeling SRL using real-time multimodal data

(Molenaar and Järvelä, 2014; Segedy et al., 2015; Bernacki,

2018; Azevedo and Gašević, 2019; Winne, 2019), and (3)

analytical approaches that coalesce etic (researchers/instructors)

and emic (learners) trace data to achieve optimal instructional

support. We first discuss previous studies using learners’

multimodal trace data to measure SRL during learning activities

with emerging technologies. Next, we describe challenges

in using these data to capture, analyze, and understand

SRL by considering recent developments in analytical tools

designed to handle challenges associated with multimodal

learning analytics. Lastly, we recommend a hierarchical

learning analytics framework and discuss theoretical and

empirical guidelines for designing a system architecture that

measures (1) learners’ SRL alongside (2) researchers’/instructors’

monitoring, analyzing, and understanding of learners’ SRL

grounded in multimodal data to forge instructional decisions.

Implications of this research could pave the way for training

artificial intelligence (AI) using data insights gained from

researchers, instructors, and experts within the field of SRL

that vary by individual characteristics including training

background/experience, country, culture, gender, and many

other diversity aspects. Algorithms trained using data collected

on a diverse sample of interdisciplinary and international (1)

SRL experts and researchers, (2) instructors, and (3) learners

has the potential to automatically detect and classify SRL

constructs across a range of data channels and modalities

could serve to mitigate the extensive challenges associated

with using multimodal data and assist educators in making

effective instructional decisions guided by both theory and

empirical evidence.

1.1. Characteristics of multimodal data
used to reflect SRL

To gather multimodal data about SRL processes during

learning, learners are instrumented with multiple sensors.

Examples include electro-dermal bracelets (Lane and

D’Mello, 2019), eye tracking devices (Rajendran et al.,

2018), and face tracking cameras to capture facial expressions

representing emotions (Taub et al., 2021). These channels

may be supplemented by concurrent think-aloud data

(Greene et al., 2018), online behavioral traces of learners

using features in a software interface (Winne et al., 2019)

and gestures and body movements in an immersive virtual

environment (Raca and Dillenbourg, 2014; Johnson-Glenberg,

2018). This wide array of data can reflect when, what, how,

and how long learners interact with specific elements in a
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FIGURE 1

Experimental set-up to collect multimodal SRL data with

MetaTutor.

learning environment—e.g., reading and highlighting specific

text, inspecting diagrams, annotating particular content,

manipulating variables in simulations, recording, and analyzing

data in problem-solving tasks, and interacting with pedagogical

agents (Azevedo et al., 2018; Winne, 2019). Multimodal data

gathered across these channels offer advantages in representing

latent cognitive, affective, metacognitive, and motivational

processes that are otherwise weakly signaled in any single data

channel (Greene and Azevedo, 2010; Azevedo et al., 2018)

(Figure 4).

A typical laboratory experimental set-up shown in Figure 1

illustrates a college student instrumented during learning with

MetaTutor, a hypermedia-based intelligent tutoring system

designed to teach about the human circulatory system (Azevedo

et al., 2018). In addition to pre- and post-measures of

achievement and self-report questionnaires not represented in

the figure, multimodal instrumentation gathers a wide range

of data about learning and SRL processes. Mouse-click data

indicate when, how long, and how often the learner selects a

page to study. Features and tools available for to the learner

in a palette, such as self-quizzing and typing a summary,

identify when the learner makes metacognitive judgments about

knowledge (Azevedo et al., 2018) and how that might change

across different learning goals (Cloude et al., 2021b). An

electro-dermal bracelet records signals documenting changes

in skin conductance produced by sympathetic innervation of

sweat glands, a signal for arousal that can be matched to

the presence of external sensory stimuli (Lane and D’Mello,

2019; Messi and Adrario, 2021; Dindar et al., 2022). Eye

movements operationalize what, when, where, and how long

the learner attends to, scans, revisits, and reads (or rereads)

content and consults displays, such as a meter showing

progress toward goals (Taub and Azevedo, 2019; Cloude

et al., 2020). Dialogue recorded between the learner and

any of the four pedagogical agents embedded in MetaTutor

identify system-provided scaffolding and feedback. Screen-

capture software records and time stamps how and for

how long the learner interacts with all these components

and provides valuable contextual information supplementing

multimodal data. A webcam samples facial features used

to map the sequence, duration, and transitions between

affective states (e.g., anger, joy) and learning-centered emotions

(e.g., confusion).

Figure 2 illustrates examples of multimodal data used to

study SRL across several emerging technologies including

MetaTutor, Crystal Island, and MetaTutor IVH (Azevedo

et al., 2019). The figure omits motivational beliefs because

motivation has been measured almost exclusively using self-

reports (Renninger and Hidi, 2019). Multimodal data structures

are wide in scope, complexly structured and richly textured.

For example, a learner reading about the anaphase stage

of cell division may have metacognitively elected to apply

particular cognitive tactics (e.g., selecting key information while

reading, then assembling those selections across the text and

diagram as a summary). At that point, eye-gaze data show

repeated saccades and fixations between text and diagrams

as the learner utters a metacognitive judgment captured via

think-aloud, “I do not understand the structures of the heart

presented in the diagram.” Concurrently, physiological data

reveal a spike in heart rate and analysis of the learner’s facial

expressions indicate frustration. Inspecting and interpreting this

array of time-stamped data sampled across multiple scales of

measurement and spanning several durations pose significant

challenges for modeling cognition, affect, metacognition, and

motivation. Which data channels relate to the different SRL

features (cognition, affect, metacognition, and motivation)? Is

one channel better at operationalizing a specific SRL feature?

How should the different data channels be configured so

that researchers can accurately monitor, analyze, and interpret

SRL processes in real-time? What is (are) the appropriate

temporal interval(s) for sampling each data channel, and how

are characterizations across data channels used to support

accurate and valid interpretations of latent SRL processes?

Assuming these questions are answered, how can researchers

be guided to make instructional decisions that support and

enhance learners’ SRL processes? We suggest guidelines to

address these questions in the form of a SPARC system. Our

paper is based in theoretical and empirical literature from

the science of learning, and evolving understanding about

multimodal trace data.
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FIGURE 2

Examples of specific types of multimodal data to investigate cognitive, a�ective, and meta-cognitive SRL process with di�erent emerging

technologies (Azevedo et al., 2019).

1.2. Challenges in representing SRL using
multimodal data

Time is a necessary yet perplexing feature needing careful

attention in analyses of multimodal data sampled over multiple

channels. How should data with differing frequencies be

synchronized and aligned when modeling processes? To blend

multisynchronic data, time samples need to be rescaled to a

uniform metric (e.g., minutes or seconds). Multimodal data

may require filtering to dampen noise and lessen measurement

errors. Decisions about these adjustments can be made usually

only after learners have completed segments in or an entire study

session. Judgments demand intense vigilance as researchers and

instructors scan multimodal data and update interpretations

grounded in multimodal data. If researchers or instructors

attempt to monitor and process multimodal data in real-time to

intervene during learning—e.g., prompting learners to avoid or

correct unproductive studying tactics—vigilance will be one key.
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In the presence of dense and high-velocity data, critical signals in

multimodal data that should steer instructional decision-making

may be missed as demonstrated in Claypoole et al.’s (2019)

study. Their findings showed increases in stimuli per minute

decreased participants’ sensitivity (discriminating hits and false

alarms) and increased time needed to detect pivotal details

(Claypoole et al., 2019). As well, because vigilance declines

over time and tasks (Hancock, 2013; Greenlee et al., 2019),

counters need to be developed if multimodal data are to be

useful inputs for real-time instructional decision-making to

support learners’ SRL. Furthermore, a particular and pressing

challenge for moving this research forward is determining what

information can be used from learners, such as who will be

allowed to access potentially personal data, and how might such

users obtain permissions to ethically use the data (Ifenthaler

and Schumacher, 2019), meanwhile maintaining confidentiality,

reliability, security, privacy, among many others that align with

security and privacy policies that may vary across international

lines (Ifenthaler and Tracey, 2016).

International researchers have begun to engineer systems

to manage challenges associated with processing, analyzing,

and understanding multimodal data. For example, SensePath

(Nguyen et al., 2015) was built in the United Kingdom

and designed to reduce demand for vigilance by providing

visual tools that support articulating multichannel qualitative

information unfolding in real-time, such as transcribed audio

mapped onto video recordings. Blascheck et al. (2016) developed

a similar visual-analytics tool in Germany to support coding

and aligning mixed-method multimodal data gathered over a

learning session in the form of video and audio recordings,

eye-gaze tracks, and behavioral-interactions. Their system was

designed to support researchers in (1) identifying patterns, (2)

annotating higher-level codes, (3) monitoring data quality for

errors, and (4) visually juxtaposing codes across researchers

to foster discussions and contribute to inter-rater reliability

(Blascheck et al., 2016). These systems illustrate progress in

engineering tools researchers and instructors need to work with

complex multimodal data, such as those required to reflect

learning and SRL. But two gaps need filling. First, systems

developed so far could further mine and apply research on

how humans make sense of information derived from complex

multimodal data. Second, systems have not yet been equipped

to gather and mine data about how researchers and instructors

use system features using data representations and visual tools.

Furthermore, how might researchers and instructors use system

features differently as their goals and intentions, training, and

beliefs about phenomenonmay vary? In other words, developing

models that represent how diverse users leverage the system

and its features need to be considered in future work to build

a multi-angled view of the total system.

One notable system designed for multimodal signal

processing and pattern recognition in real-time is the Social

Signal Interpretation framework (SSI) developed in Germany

by Wagner et al. (2013). SSI was engineered to simultaneously

process data ranging from physiological sensors and video

recordings to Microsoft’s Kinect. A machine-learning (ML)

pipeline automatically aligns, processes, and filters multimodal

data in real-time as it is collected. Once data are processed,

automated recognition routines detect and classify learners’

activities (Wagner et al., 2013). Another multimodal data tool,

SLAM-KIT (Noroozi et al., 2019), was built in the Netherlands

and designed to study SRL in collaborative contexts. It reduced

the volume and variety in multimodal data to allow teachers,

researchers, or learners to easily navigate in and across data

streams, analyze key features of learners’ engagements, and

annotate and visualize variables or processes that analysts

identify as signals of SRL. Notwithstanding the advances these

systems represent, issues remain. One is how to coordinate (a)

data across multiple channels with multiple metrics alongside

(b) static and unfolding contextual features upon which learners

pivot when they regulate their learning (Kabudi et al., 2021).

Another target for improvement is supporting researchers

to monitor, analyze and accurately interpret matrices of the

multimodal data for tracking SRL processes. Factors that may

affect such interpretations include choosing and perhaps varying

optimal rates to sample data, synchronizing and temporally

aligning data in forms that support searching for patterns,

and articulating online data with contextual data describing

tasks, domains learners study, and characteristics of settings

that differentiate the lab from the classroom from home, and

individual vs. collaborative work. All these issues have bearing

on opportunities to test theoretical models (e.g., Winne, 2018a)

and positively influence learning.

1.3. Overview of the SPARC architecture

Making effective just-in-time and just-in-case instructional

decisions demands expertise in monitoring, analyzing, and

modeling SRL processes. Are researchers and/or instructors

equipped to meet these challenges when delivered fast-

evolving multimodal data? To address these issues, we discuss

a hierarchical learning analytics framework and guidelines

for designing a theoretically and empirically-based suite of

analytical tools to help researchers and/or instructors solve

challenges associated with receiving real-time multimodal

data, monitoring SRL, assembling interventions, and tracking

dynamically unfolding trajectories as learners work in emerging

technologies. The SPARC system we recommend is a dynamic

data processing framework in which multimodal data are

generated by (1) learners, (2) researchers and/or instructors, and

(3) the system itself. These streams of data are automatically1

processed in real-time negative feedback loops. Two features

1 We cannot elaborate on this process due to space limitations.

However, there are several tools currently used by interdisciplinary
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FIGURE 3

(A) SPARC capturing the learner’s and researcher’s multimodal data; (B) Hierarchical architecture for data processing and feedback/sca�olding

loops for both (1) learners and (2) researchers; MMD, multimodal data.

distinguish SPARC from other tools. First, researchers and/or

instructors are positioned in three roles: data generators, data

processors, and instructional decision makers. Second, the

overall system has a triifb-partite structure designed to record

series of multimodal data for real-time processing across the

timeline of instructional episodes. The target SPARC aims

for is iteratively tuning data gathering, data processing, and

scaffolding for both learners and researchers/instructors, thereby

helping both players more productively self-regulate their

respective and interactive engagements (see Figure 3).

Imagine an instructor and learner are about the engage

in a learning session with an emerging technology. See

Figure 3–both the users (researchers and learners) interact with

content while their data are recorded on such interaction. For

example, both instructor and learner are instrumented with

multiple sensors, including a high-resolution eye tracker and

physiological bracelet, meanwhile, both users’ video, audio, and

researchers to view, process, and analyze learners’ multimodal data in

real-time such as the iMotions’s research platform.

screens are being recorded. Further, once the learner begins

interacting with content, their data are recorded and SRL

variables are generated in real-time. These data are displayed to

the instructor so they can see what the learner is doing such as

where their eyes are attending to specific text and/or diagrams,

including the sequence and amount of time they are engaging

with content. The instructor can also see the learner’s physiology

spikes, facial expressions of emotions, screen recording, and

speech. Meanwhile, the instructor is also being recorded with

sensors. Once the learner begins engaging with materials, data

on the instructor measure the degree to which they attend—

i.e., monitor, analyze, and understand the learner’s SRL via data

channels and modalities over the learning activity. From these

data, SPARC can calculate the degree to which the instructor

is biased to oversample a specific channel of learner data,

say, eye-gaze behaviors. For instance, SPARC can detect this

bias when the instructor’s eye-gaze and logfiles data show they

infrequently sample other data channels carrying critical SRL

signals. Here, SPARC should take three steps. First, alert the

instructor to shift attention, e.g., by posting a notification, “Is
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FIGURE 4

Pipeline architecture for capturing conditions using Winne’s model. JOL, judgment of learning; FOK, feeling of knowing; MPTG, monitoring

progress toward goals.

variance in the learner’s eye-gaze data indicating a change in

standards used for metacognitive monitoring?.” Second, SPARC

varies illumination levels of its panels to cue the instructor to

shift attention to the panel displaying learner eye movements.

Third, a pop-up panel shows the instructor a menu of alternative

interventions. In this panel, each intervention is described

using a 4-spoke radar chart grounded in prior data gathered

from other learners: the probability of learner uptake e.g.,

Bayesian knowledge tracing (Hawkins et al., 2014), the cognitive

load associated with the intervention, negative impact on

other study tactics such as note-taking, and learner frustration

triggered upon receiving SPARC’s recommendation to adapt

standards for metacognitively monitoring understanding. Then,

SPARC monitors the instructor’s inspection of display elements

to update its model of the instructor’s biases for particular

learner variables—e.g., a preference to limit learner frustration

when selecting an intervention to be suggested to the learner.

And later, as SPARC assembles data about how the learner

reacts to the instructor’s chosen intervention, the model of

this learner is updated to sharpen a forecast about the

probability of intervention uptake and impact of the instructor’s

chosen intervention on the profile of study tactics this

learner uses. SPARC’S complex and hierarchical approach

to recording, analyzing, and interacting with both agents in

instructional decision-making and self-updating models both

pushes SPARC past the boundaries of other multimodal systems.

By dynamically updating models of learners and instructors (or

researchers), instructional decisions are grounded and iteratively

better grounded on the history of all three players—self-

regulating learners, self-regulating instructors, and the self-

regulating system itself. If widely distributed to create genuinely

diverse big data, SPARC would significantly advance research

in learning science and mobilize research based on expanding

empirical evidence about SRL and interventions that affect it

(e.g., Azevedo and Gašević, 2019; Winne, 2019).

1.3.1. Information processing theory of
self-regulated learning

The first step toward a SPARC system is building a

pipeline architecture that operationalizes a potent theoretical

framework to identify, operationalize, and estimate values for

parameters of key variables (Figure 4). From a computer-

science perspective, a pipeline architecture captures a sequence

of processing and analysis routines such that outputs of one

routine (e.g., capturing multimodal data on researchers and

learners) can be fed directly into the next routine without

human intervention (e.g., processing learners’ and researchers’
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multimodal data separately). Overall, an ideal system should

support valid interpretations of latent causal constructs. SPARC

adopts an information processing view of self-regulated learning

along with assumptions fundamental to this perspective (Winne

and Hadwin, 1998; Winne, 2018a, 2019).

According to the Winne-Hadwin model of SRL, human

learning is an agentic, cyclic, and multi-faceted process centered

on monitoring and regulating information in a context of

physical and internal conditions bearing on cognitive, affective,

metacognitive, and motivational (CAMM) processes during

learning (Malmberg et al., 2017; Azevedo et al., 2018; Schunk

and Greene, 2018;Winne, 2018a). Individual differences, such as

prior knowledge about a domain and self-efficacy for a particular

task, and contextual resources (e.g., tools available in a learning

environment) set the stage for a cycle of learning activity

(Winne, 2018a). Consequently, to fully represent learning as

SRL requires gathering data to represent cognitive, affective,

metacognitive, and motivational processes while learners (and

researchers) learn, reason, problem solve, and perform. Also,

to ensure that just-in-case instructional decisions can be

grounded in this dynamic process and assumptions of SRL

(Winne, 2018a), we propose capturing multimodal data about

the instructional decision maker (i.e., researcher) is just as

relevant and important as capturing multimodal data about

the learner. Thus, the pipeline architecture should be fed data

across channels and modalities tapping cognitive, affective,

metacognitive, and motivational processes separately for both

learners and researchers (see Figure 3). The Winne-Hadwin

model of agentic SRL (Winne and Hadwin, 1998; Winne,

2018a) describes learning in terms of four interconnected and

potentially nonsequential phases. In Phase 1, the learner surveys

the task environment to identify internal and external conditions

perceived to have bearing on the task. Often, this will include

explicit instructional objectives set by an instructor. In phase

2, based on the learner’s current (or updated) understanding

of the task environment, the learner sets goals and develops

plans to approach them. In phase 3, tactics and strategies set

out in the plan are enacted and features of execution are

monitored. Primary among these features is progress toward

goals and subgoals the learner framed in phase 2; and emergent

characteristics of carrying out the plan, such as effort spent, pace,

or progress. In phase 3, the learner may make minor adaptations

as judged appropriate. In phase 4, which is optional, the learner

reviews work on the task writ large. This may lead to adaptive re-

engagement with any of the preceding phases as well as forward

reaching transfer (Salomon and Perkins, 1989) to shape SRL in

similar future tasks.

For the physical set-up2 illustrated in Figure 3, entries in

Table 1 demonstrate a complex coordination between learners’

2 This figure is for illustration purposes only since, ideally, we would

physically separate the researcher and learner to avoid bias, social

desirability, etc.

and researchers’ multimodal data facilitated by a SPARC system.

In this table, we provide two examples that map assumptions

based on Winne’s phases to the learners’ and researchers’

multimodal SRL data (Winne, 2018a). Included are a researcher’s

monitoring, analyzing, and understanding of a learner’s SRL

based on the learner’s multimodal data and instructional

interventions arising from the researcher’s inferences about

the learner’s SRL. Two contrasting cases are provided. The

first is a straightforward example of a learner’s multimodal

data that is easy to monitor, analyze, and understand. This

leads, subsequently, to an accurate inference about SRL by

the researcher who does not require SPARC to intervene in

supporting the researcher’s instructional intervention. A second

scenario is more complex. The learner presents several signals

in multimodal data, which could reflect multiple and diverse

issues related to their motivation, affect, and cognition. The

researcher must intervene to scaffold and prompt the learner

but it is not clear where to begin given multiple instructional

concerns. So, SPARC intervenes to scaffold the researcher

to optimize instructional decision-making based on pooled

knowledge about the learner’s SRL and the researcher’s past

successful interventions.

Throughout each phase of SRL, five facets characterize

information and metacognitive events, encapsulated in the

acronym COPES. Conditions are resources and constraints

affecting learning. Time available to complete the task, interest,

and free or restricted access to just-in-time information

resources are examples. Operations are cognitive processes

learners choose for manipulating information as they address

the task. Winne models five processes: searching, monitoring,

assembling, rehearsing, and translating (SMART). Products

refer to information developed by operations. These may

include knowledge recalled, inferences constructed to build

comprehension, judgments of learning, and recognition of an

arising affect. Evaluations characterize the degree to which

products match standards, criteria the learner set or adopted

from external sources (e.g., an avatar) to operationalize success

in work on the task (e.g., pace), and its results. Since SPARC’s

pipeline architecture is intended to capture learner’s SRL

processes, we argue it is critical to investigate how to map

multimodal data from specific data channels to the theoretically-

referenced constructs in the Winne and Hadwin model of SRL

and the cognate models for tasks (COPES) and operations

(SMART) within tasks. For instance, what data channels or

combinations of data channels and modalities best represent

a cognitive strategy? Do these data also indicate elements

of metacognition? A system such as SPARC should help

answer these questions by examining how researchers’ and

learners’ multimodal data might reflect these processes and how

those processes impact performance and instructional decision-

making, respectively.

We outline a potentially useful start for mapping data

channels and modalities to theoretical constructs based on
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TABLE 1 Learner’s and researcher’s multimodal SRL data aligned with phase 2 of Winne’s model of SRL and corresponding instructional strategies

based on umambiguous signals in data.

Learning context Learner’s MMD Researcher’s MMD SPARC

1. Learner engages with

biology content and sets

• Goals and

• Plans based on their

current (or updated)

understanding

2. Researcher observes

learner’s MMD on their IF

3. SPARC observes both the

researcher’s and learner’s

MMD

• Concurrent verbalizations

via audio recording (e.g.,

“my goal is to learn about

how blood flows through the

four chambers of the heart.”;

• Screen recordings showing

learner-system interactions;

• Eye gaze illustrating where

learner is searching for

relevant information on the

IF

• Concurrent verbalizations via

audio recording (e.g., “I will

review learner’s data within the

context of their goal.... They are

not monitoring the right

information.”;

• Screen recordings of system

interactions with learner’s

MMD;

• Eye gaze on learner’s interaction

with content on IF

SPARC observes and updates its

user model based on

1. Researcher’s MMD, including

eye gaze, utterances, and screen

recordings of researcher-system

interactions

2. Learner’s MMD, including eye

gaze, utterances, and screen

recordings of learner-system

interactions

the COPES model (Winne, 2018a, 2019; Winne P., 2018),

specific to conditions3 (Figure 3). As specified in Figure 3, some

criterion variables refer to information captured as a learner

verbalizes monitoring of engagement in a task (e.g., frequency of

judgment of learning, feeling of knowing). Other data obtained

from eye tracking instrumentation represents learners’ assessing

conditions, such as time left for completing the task signaled

by viewing a countdown timer in the interface. These data

expand information on conditions beyond records of how

frequently learners visit pages in MetaTutor (Azevedo et al.,

2018), edit a causal map in Betty’s Brain (Biswas et al., 2016),

or highlight text in nStudy (Winne et al., 2019). Together, these

multimodal data characterize how, when, and with what the

learner is proceeding with the task and engaging in SRL. A

pipeline architecture for SPARC affords modularity as illustrated

in Figure 3. The pipeline can customize data cleaning, pre-

processing, and analysis routines for each one of the sensing

modalities (e.g., think-alouds, eye-gaze and on-line behavioral

traces). It also provides separate analysis routines for each of

the constructs (e.g., conditions vs. operations vs. products), data

channels, modalities, and criterion variables of which can work

with the time series (or event sequence data) generated by the

previousmodule. In sum, supporting researchers in constructing

meaningful and valid inferences about SRL from multimodal

signals in learners’ data requires building a pipeline architecture

aligned to a theoretical model of SRL. But this begs a key

question. After variables are mapped onto a model of SRL, how

can researchers’ inferences be reasonably adjudicated? How valid

are they?

3 Due to space limitations, we will not go into depth on how the

SPARC pipeline will be structured to capture, operationalize, and process

variables across settings, tasks, and domains that are aligned with the

information-processing theory of SRL, including COPES and SMART.

2. Methods

2.1. Empirical synthesis on monitoring,
analyzing, and understanding of
multimodal data

Setting aside for the moment issues of alignment between

SPARC and the Winne and Hadwin model of SRL, it is

prudent to synthesize empirical research related to what,

when, and how researchers might examine learners’ multimodal

data to model and understand dynamically unfolding SRL

processes. Consequently, we next examine research on humans

(a) monitoring information for patterns, (b) analyzing signals

detected in patterns, and (c) constructing understanding(s) of

this information matrix by monitoring and analyzing stimuli.

Further, we emphasize previous methods and findings in

literature as potential directions for leveraging trace data to

define cognitive and metacognitive aspects of SRL constructs

such as monitoring, analyzing, and understanding of SRL

in researchers, instructors, and learners. Finally, we discuss

challenges and future directions for the field to consider in ways

to leverage multimodal data to advance the design of emerging

technologies in modeling SRL.

2.1.1. Monitoring real-time multimodal data

Cognitive psychological research on information processing

and visual perception—specifically, selective attention, and

bottom-up/top-down attentional mechanisms (Desimone and

Duncan, 1995; Desimone, 1996; Duncan and Nimmo-Smith,

1996)—is a fruitful starting point to examine factors that bear

on how approaches for defining monitoring of SRL signals in

multimodal data. When instructors or researchers encounter

multimodal data, only a select partition of the full information

matrix can be attended to at a time. One factor governing what
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can be inspected is the size of the retina which determines

how much visual information is available for processing. Where

humans look typically reveals foci of attention and, thus, what

information is available for processing (van Zoest et al., 2017).

Multimodal data are typically presented across multiple displays

and, often, as temporal streams of data. Attending to displays,

each representing a particular modality, precludes attending to

other data channels. This gives rise to two key questions: (1)

What is selected? (2) What is screened out? (Desimone, 1996).

One theory describing a mechanism for controlling attention is

the biased-competition theory of selective attention (Desimone,

1996; Duncan and Nimmo-Smith, 1996). It proposes a biasing

system driven by bottom-up and top-down attentional control.

Bottom-up attentional control is driven by stimuli, e.g., peaks in

an otherwise relatively flat progression of values in the learners’

data that SPARC supplies to researchers and instructors.

Bottom-up visual attention is skewed to sample information in

displays based on shapes, sizes, and colors, and motion, while

top-down attentional control is influenced by a researcher’s

or instructors goals and knowledge—declarative, episodic, and

procedural—both of which are moderated by their beliefs and

attitudes (Anderson and Yantis, 2013; Anderson, 2016). In

the context of multimodal data SPARC displays, attention is

directed in part by a researcher’s knowledge about data in a

particular channel, e.g., the relative predictive validity of facial

expressions compared to physiological signals as indicators of

learners’ arousal. Another factor affecting the researcher’s or

instructors attention is the degree of training or expertise in

drawing grounded inferences about an aspect of learners’ SRL—

e.g., recognizing facial expressions of frustration. A third factor

is the researchers’ or instructors preferred model of learning

(e.g., this is what I believe SRL looks like). In the case of

SPARC, this is familiarity with and commitment to the 4-

phase model of SRL and the COPES schema within each phase.

Thus, a key aspect of designing a system like SPARC required

situating multimodal data around the goal of the (a) session

(e.g., detect SRL in a learner’s multimodal data) and (b) the

user’s goals, beliefs, training, education, and familiarity with and

commitment to the 4-phase model of SRL and COPES schema

within each phase. Variables definingmonitoring behaviors need

to be contextualized or evaluated against these criteria or set

of standards.

2.1.2. Data channels that capture monitoring
behaviors

Eye-tracking methodologies have opened a window into

capturing implicit monitoring processes (Scheiter and Eitel,

2017). Mudrick et al. (2019) studied pairs of fixations to identify

implicit metacognitive processing. Participants’ fixations across

text and a diagram were examined for dyads where the

information was experimentally manipulated to be consistent

or inconsistent (e.g., the text described blood flow but

a diagram illustrated lung gas exchange). For each dyad,

participants metacognitively judged how relevant information

in one medium was to information in the other medium.

When information was consistent across dyads, participants

more frequently traversed sources and made more accurate

metacognitive judgments on the relevance of information

in each medium. Eye-gaze data were a strong indicator of

metacognitive monitoring and accuracy of judgments. Eye-gaze

data also signal other properties of metacognition. Participants

in Franco-Watkins et al.’s (2016) study were required to make

a decision in a context of relatively little information. In this

case, they fixated longer on fewer varieties of information. As

variety of information increased, fixations settled onmore topics

for shorter periods of time. Variety and density of information

affected metacognitive choices about sampling information in

their complex information displays (Franco-Watkins et al.,

2016).

These findings forecast how researchers or instructors may

attend to multimodal data with SPARC. For example, if less

information is available—i.e., a learner is not thinking aloud and

displays a facial expression signaling confusion, will researchers

or instructors bias sampling of data in classifying the learner’s

state by fixating longer on a panel displaying facial expression

data, or will they suspend classification to seek data in another

channel? A SPARC system would need to collect information

on if, when, where, and for how long the user attends to a

specific modality or channel, and then prompt the researcher

or instructors to introduce data from another channel before

classifying learner behavior and recommending a shift in learner

behavior. The value of eye-gaze data as proxies for implicit

processes such as attention and metacognitive monitoring lead

us to suggest that SPARC measures researchers’ or instructors’

eye-gaze behaviors. Sequences of saccades, fixations, and

regressions while monitoring multi-panel displays of learners’

multimodal SRL data during a learning activity may reveal

how, when, and what researchers or instructors are monitoring

in the learners’ multimodal data as they strive to synthesize

information across modalities. Furthermore, information on

what the user is attending to would reveal what the user is

not attending to that may be potentially important. It would

be important for SPARC to also define lack of attention

to potentially operationalize the users’ goal or intention and

whether they are aligned with detecting SRL processes across

the data. These data can track whether, when, and for how long

users attend to discriminating or non-discriminating signals,

sequences, and patterns in learners’ multimodal data. Logged

across learners and over study sessions, SPARC’s data could be

mined tomodel a researcher’s or instructors’ biases for particular

channels in particular learning situations. Beyond eye-tracking

data, can other methodologies reveal how researchers analyze

learners’ engagements during a learning session?
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2.2. Analyzing real-time multimodal data

Analyzing and reasoning are complex forms of cognition

(Laird, 2012). They dynamically combine knowledge and

critical-thinking skills such as inductive and deductive

reasoning and may involve episodically-encoded experiences

(Blanchette and Richards, 2010). Theoretically, after researchers

or instructors allocate attention to multimodal data, they must

analyze and then reason about patterns and their sequences in

relation to SRL phases and processes. As such, SPARC needs

to measure how researchers or instructors search and exploit

patterns of multimodal data (relative to other patterns) to make

inferences about learners’ SRL and recommend interventions.

A fundamental issue here is to operationally define a pattern

in a manner that achieves consensus among researchers or

instructors and can be reliably identified when multimodal

data range across data channels. SPARC’s capabilities should

address questions such as is there a pattern in eye-gaze data

that is indicative of SRL? What patterns of gaze data does a

researcher use to infer a learner’s use and adaptation of tactics,

or occurrences of metacognitive monitoring prompted by

changing task conditions? In what ways do researchers’ or

instructors’ eye-gaze patterns change over time (e.g., are they

focusing on one data channel or more than one? Does their

degree of attention change to other data channels?) and, if

paired with other modalities, does this change reflect limits or

key features in learners’ SRL? Do changes in one modality of

data indicate changes in other multimodal data and are these

changes related to a user’s instructional decision-making? We

establish a ground truth regarding the validity and reliability of

learners’, instructors’, and researchers’ multimodal data patterns

(see Winne, 2020). SPARC should be capable of detecting

when users are analyzing and reasoning based on multimodal

data describing how the user examined learners’ multimodal

eye-gaze behavior, interactions with the content (logfiles),

physiology profile, facial expressions, and other channels.

Again, researchers’ or instructors’ multimodal data play a key

role in successively tuning the overall system.

2.2.1. Data channels that capture analyzing
behaviors

Some research capturing data to infer implicit processing,

such as analyzing and reasoning, used online behavioral traces

(Spires et al., 2011; Kinnebrew et al., 2015; Taub et al., 2016);

other studies used eye movements data (Catrysse et al., 2018)

or concurrent think-aloud verbalizations (Greene et al., 2018).

Taub et al. (2017) analyzed learners’ clickstream behavior as

relevant or irrelevant to the learning objective (e.g., learn about

biology), and then applied sequential pattern mining analyses.

Two distinct patterns of reasoning differed in efficiency, defined

as fewer attempts toward successfully meeting the objective

of the learning session. Defining logged learner actions based

on relevance to a learning objective is useful for capturing

and measuring analyzing and reasoning behaviors (Taub et al.,

2017). This technique could also be applied to the researchers’

multimodal data as well. For example, do the researchers’ mouse

clicks, keyboard strokes, etc. reflect their analysis of the learners’

multimodal data in relation to meeting the objective of the

learning session—e.g., learning about the circulatory system.

Is the researcher selecting modalities to evaluate whether the

learner is working toward this objective (e.g., the learner is

reading through content that is unrelated to the circulatory

system and so, for instance, the researcher examining what

content the learner is reviewing?) to guide their instructional

decision making? Eye movements may also indicate the how

extensively information is processed during learning (Catrysse

et al., 2018). For instance, when participants reported both deep

and surface-level information processing, they tended to fixate

longer and revisit content more often than participants who

reported only surface-level processing (Catrysse et al., 2018); but

see (Winne, 2018b, 2020) for a critique of the “depth” construct).

Other studies have used think-aloud protocols for data

mining to seek emic descriptions of information processing

and reasoning (Greene et al., 2018). Muldner et al. (2010)

drew inferences from concurrent verbalizations representing

self-explaining, describing connections between problems or

examples, and other key cognitive processes (e.g., summarizing

content) in Physics during learning with an intelligent tutoring

system. Similar analytic approaches were used to understand

clinicians’ diagnostic reasoning (Kassab and Hussain, 2010).

Si et al. (2019) used a rubric to quantify the quality of their

participants’ reasoning about a diagnosis. Quality of reasoning

was positively related to clinical-reasoning skills and accurate

diagnoses. These findings indicate that think-aloud methods

can quantify how and when researchers analyze and reason

about learners’ multimodal data (Si et al., 2019). Multimodal

data about researchers’ engagements with learners’ multimodal

data can inform where researchers’ monitoring and analyzing

behaviors about deciding if, when, and how to scaffold the

learners’ SRL. Negative feedback loops built into SPARC (see

Figure 3) offer pathways for efficiently examining researchers’

understanding of learners’ SRL, and how the researchers’ biases

related to their beliefs about SRL and the effectiveness of their

instructional decision-making. Overall, the studies reviewed

here illustrate compounding of value by coordinating think-

aloud protocols, eye-gaze data, and online behavioral traces

to capture implicit processes such as analyzing and reasoning.

Therefore, the SPARC system should be engineered to capture

andmine patterns within researchers’ concurrent verbalizations,

eye movements, and clickstream data to mark with what,

when, how, and how long researchers reason and analyze

learners’ multimodal data as they forge inferences about learners’

SRL. However, data streams sampling researchers’ activation of

monitoring processes and marking instances of analyzing and

reasoning merely set a stage for inquiring whether researchers

Frontiers in Education 11 frontiersin.org

https://doi.org/10.3389/feduc.2022.928632
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Cloude et al. 10.3389/feduc.2022.928632

understand how learners’ multimodal data represent SRL.

Simply tracking researchers’ metacognition is insufficient to

guide instructional decision-making that optimizes scaffolding

learners’ SRL. Researchers’ understanding is also necessary.

2.3. Understanding real-time multimodal
data

People acquire conceptual knowledge by coordinating

schema and semantic networks to encode conceptual and

propositional knowledge (Anderson, 2000). Therefore,

researchers’ understanding of learners’ SRL represented by

multimodal data depends on access to valid schemas and

slots within them, and a well-formed structure of networked

information about learners’ SRL. For example, (Mudrick

et al., 2019) results indicate a learner’s eye fixations oscillating

between text and a diagram (i.e., saccades) should fill a slot

in a schema for metacognitive monitoring within a schema

describing motivation to build comprehension by, for this

slot, resolving confusion. SPARC should detect whether an

instructional decision-maker activates and instantiates schemas

like this. Then, merging that information and other data about

learners and researchers into negative feedback within a pipeline

architecture, the system can iteratively scaffold researchers

toward successively improved decisions about interventions

that optimize learners’ performance and self-regulation.

2.3.1. Data channels capturing understanding

Traditionally, comprehension has been assessed using

aggregated total gain scores drawn from selected-response,

paper, and pencil tests before and after domain-specific

instruction (Makransky et al., 2019). However, process-

oriented and performance-based methods using multimodal

data offer promising alternatives (James et al., 2016). Liu

et al. (2019) sampled multiple data streams over a learning

session using video and audio recordings, physiological sensors,

eye tracking, and online behavioral traces. Their model

formed from multimodal process-based data more strongly

predicted learners’ understanding than models based on a

single modality of data such as online behavioral traces (Liu

et al., 2019). Similarly, Makransky et al. (2019) amalgamated

multimodal data across online behavioral traces, eye tracking,

electrophysiological signals, and heart rate to build models

predicting variance in learners’ understanding of information

taught during a learning session. A unimodal model using

just online behavioral traces explained 57% of the variance

(p < 0.05) in learners’ understanding. A model incorporating

multiple data streams explained 75% of the variance (p <

0.05) in learners’ understanding (Makransky et al., 2019). Thus,

in order for SPARC to capture researchers’ understanding of

learners’ SRL using multimodal data, the system would need

to sample various data channels to learn data indices that

indicate if, when, and how the researcher is understanding the

learners’ SRL. Depending on the researcher’s multimodal data

and their accuracy in understanding a learner’s SRL, over time

SPARC would learn each researcher’s understanding of learners’

data so that the system may make accurate inferences about

when to scaffold researchers to optimize their understanding

of learners’ multimodal data. We suggest that in order to

capture researchers’ understanding of information, SPARC

could be built to automatically capture understanding based

on using eye-gaze behaviors, concurrent verbalizations, mouse-

clicks (e.g., what is the researcher and/or learner attending

to, and is the action related to the objective of the session—

for instance, is the researcher attending to data channels or

modalities signaling an SRL process that needs scaffolding,

such that of a learner attending to text and diagrams that

are irrelevant to the learning objective in which they are

studying. Does the researcher monitor these data channels to

guide their instructional decision-making, and if so, how does

the instructional decision impact the learners’ subsequent SRL

during the session? Using SPARC to sample and model the

multimodal data generated by both researchers and learners

could help answer these questions and advance research on the

science of learning.

3. Results

3.1. Theoretically- and empirically-based
system guidelines for SPARC

SPARC should be engineered to offload tasks that overload

researchers’ attention and working memory to key analytics

describing learners’ SRL and integration of those analytics

in forming productive instructional decisions. We describe

here how SPARC can address these critical needs. Some of

SPARC’s functionality can be adapted from existing multimodal

analytical tools such as SSI (Wagner et al., 2013; Noroozi et al.,

2019). SSI’s machine-learning pipeline automatically aligns,

processes, and filters multimodal data as they are generated

in real-time. SPARC will incorporate this functionality and

augment it according to theoretical frameworks and empirical

findings mined from learning science. Specifically, SPARC’s

pipeline will be calibrated to weight data channels (e.g., eye

gaze, concurrent verbalizations), modalities (e.g., fixation vs.

saccades in eye gaze, frequency vs. duration of fixations, etc.),

and combinations of data to reflect meaningful and critical

learning and SRL processes. For example, facial expressions and

physiological sensor data would be assigned greater weight in

modeling affect and affective state change, such as frustration,

while screen recordings, concurrent verbalizations, and eye-

movement data would be assigned greater weights to model

cognitive strategy use).
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FIGURE 5

Scaling from a global view of SRL constructs at the hour temporal scale to the minute, second, and millisecond temporal scale of signals. C,

cognitive; A, a�ective; M, meta-cognitive; M*, motivation.

Moreover, the SPARC system will use automated-

recognition routines to detect and classify learners’ and

researchers’ SRL activities separately while analyzing data

from the activities concurrently to guide the scaffolding

of the researcher and assessment of how the instructional

prescriptions of the researcher are impacting the learners’ SRL

and performance. For example, when capturing conditions

marked by the COPES model (Winne, 2018a), eye-gaze, and

think-aloud data may best indicate conditions learners perceive

about a learning task and the learning environment. SPARC’s

algorithms would assign these data greater weight compared

to clickstream and physiological sensor data to represent

conditions from the learner’s perspective. It is important to note

algorithms should reflect a full scan of conditions regarding

signals about conditions present and conditions absent (Winne,

2019). Theory plays a key role here because it is the source for

considering potential roles for a construct that has zero value in

the data vector. Temporal dimensions (see Figure 5) are a critical

feature in SPARC’s approach to modeling a learner’s multimodal

data considering that different learning processes may unfold

across varying time scales. Data within and across channels

collected over time helps to ensure adequate sampling (e.g.,

how long does an affective state last?) and multiple contextual

cues (e.g., what did the learner do before and after onset of an

affective state?). This wider context enhances interpretability

beyond single-channel, single time-point data. For example, a

250 Hz eye tracker supplying 250 data points per second may

be insufficient to infer learner processing in the one-second

sample. Other data, e.g., sequence of previewing headings,

reading, and re-reading indicating multiple metacognitive

judgments augmented by screen recording and concurrent

verbalizations across several minutes provide a more complete

structure for a researcher to draw inferences about the learner’s

engagement in a task (Mudrick et al., 2019; Taub and Azevedo,

2019).

As such, SPARC features will allow a researcher to

scale up—i.e., scale upsampling rates to a uniform temporal

scale such as from milliseconds to seconds, or seconds to

minutes, or down—i.e., scale downsampling rates to a uniform

temporal scale such as from seconds to milliseconds, to

pinpoint how, when, why, and what learning processes were

occurring (Figure 5). When researchers scale up or down, it

also captured critical information revealing how the researcher

is selecting, monitoring, analyzing, and understanding learners’

multimodal data representing operations in the COPES model

and modulations of operations that represent SRL. The

opportunity for the researcher to explore the learner’s temporal

learning progression is a critical feature that researchers need

to guide their instructional decision making related to adaptive

scaffolding and feedback to the learners (Kinnebrew et al., 2014,

2015; Basu et al., 2017). For SPARC to continuously capture data

and update its models of learners and researchers, it should apply

predictive models to track the learners’ trajectories and project

future learning events prompted by researcher intervention.

For instance, if the researcher gave learners feedback and

redirected a learner to another section content more relevant
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to learning objectives, SPARC should forecast the probability

of learner uptake of that recommendation and patterns of

multimodal data that confirm uptake. Iterating across learning

sessions, this allows SPARC to dynamically converge models

to more accurately predict both behavior by the learner and

the researcher.

4. Discussion

Emerging research on SRL sets the stage for using temporally

sequenced multimodal data to examine the dynamics of

multiple processes and interventions to adapt those processes

in emerging technologies. Using large volumes of multimodal

data to analyze and interpret learners’ SRL processes in

near real-time is theoretically and algorithmically challenging

(Cloude et al., 2020; Emerson et al., 2020). We crafted a

theoretical, conceptual, and empirically grounded framework

for designing a system that guides researchers and instructors

in analyzing and understanding the complex nature of SRL.

A novel aspect of the SPARC system is modeling all players

in instruction—learner and instructional decision maker—to

dynamically upgrade capabilities to enhance learning, SRL, and

the empirical foundations for understanding those processes.

Further, including insights gained from data collected on

researchers and SRL experts could potentially contribute

to enhancing our understanding of how to automatically

build detectors of SRL processes on both instructors and

learners. Emerging research using multimodal data shows

promise in approaching this goal, but this research stream

has not yet tackled major challenges facing interdisciplinary

and international researchers and instructors in monitoring,

analyzing, and understanding learners’ SRL multimodal data

based on what, where, when, how, and with what learners

self-regulate to understand content. In particular, the SPARC

system we outline defines and sets a framework for addressing

a new and fundamental question. How do researchers and

instructors monitor, analyze, and understand learners’ and

groups of learners’ multimodal data; and, how can data about

those processes be merged with data about learners to bootstrap

the full system involving learners, instructional decision makers,

and interventions? The SPARC system we suggest takes the

first steps toward addressing major conceptual, theoretical,

methodological, and analytical issues associated with using real-

time multimodal data (Winne, 2022).

4.1. Implications and future directions

Implications of this research are threefold. First, leveraging

insights gained from researchers’ and SRL experts’ multimodal

data based on their understanding of both (1) instructors’

and (2) learners’ multimodal data could be used to build

valid algorithms for SRL detection. For example, the SRL

expert could potentially tag whether the instructor identified

the learners’ misuse of SRL while viewing materials? If

the instructor did identify this behavior, did they intervene

accordingly based on their own SRL and understanding of the

learner’s processes to make an informed instructional decision?

Utilizing the information that the SRL expert or researcher

referenced could be used to build SRL detectors. Training AI

on how researchers, instructors, and learners monitor, infer,

and understand information across multiple data sources has

the potential to build valid algorithms that are empirically

and theoretically based derived. Building valid AI is a current

challenge for the field, where most AI is built by experts that

have little knowledge about SRL theory. Instead, AI algorithms

are data-driven such that the steps are built to maximize the

detection of significant findings with the highest accuracy.

This approach slows progress on deriving meaningful insights

from relationships present in multiple data sources. Through

utilizing SPARC, it would ensure that the best algorithms/data

channels/modalities/dependent variables are selected based on

a combination of the researchers’, instructors’, and learners’

information as a whole. Furthermore, this would also spark

researchers, instructors, and learners to think critically about

what the algorithm should be doing to facilitate understanding

of SRL for supporting informed instructional decision-making.

This research may highlight areas for teaching training, such

as integrating data science and visualizations courses in the

curriculum since data are being increasingly used in the

classroom to enhance the quality of education. Was this

monitoring or behavior? If not, why did the algorithm fire to

suggest it was so? It could provide a world of information about

where the researcher is doing quality control on the algorithm

to assess if they are working properly in all contexts. This could

generate a library of open-source algorithms/production rules

for a range of contexts, domains, users, countries, theories,

and many others. Another important area is leveraging SPARC

to reveal user biases. For example, is an instructor focusing

on specific data sources or all data sources? Is the instructor

supporting all learners in the same way? SPARC would allow

us to compare and contrast where users could be biased toward

certain data channels relative to others, and potential shed light

on these behaviors to mitigate bias and draw awareness to our

perspectives when we are not using SPARC, thus potentially

enhancing our objectivity as scientists and instructors.

One area of future research that could advance this work is

moving away from solely relying on a linear paradigm to define

SRL such as linear regression. It is imperative that we utilize

sophisticated statistical techniques to model the complexity and

dynamics that emerge within multimodal data across varying

system levels such as multimodal data collected from the

researcher or instructor in their understanding of analytics

presented back to the user. An interdisciplinary approach

toward data processing and analysis may provide the analytical
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tools needed to exploit meaningful relationships and insights

within the data. Specifically, we need to go beyond information-

processing theory which assumes that self-regulated learning

results from linear sequences of learning processes as assumed

in linear models. We challenge research to make a paradigmatic

shift toward dynamic systems thinking (Van Gelder and Port,

1995) to investigate researchers’, instructors’, and learners’ SRL

processes as self-organizing, dynamically emergent, and non-

linear phenomena. Leaning on nonlinear dynamical analyses

to study SRL is starting to gain momentum (Dever et al.,

2022; Li et al., 2022). This interdisciplinary approach would

allow us to study SRL across multiple levels and nonlinear

dynamical analyses offer more flexibility in utilizing multiple

data sources that do not need to adhere to rigid assumptions

of normality, equal variation, and independence of observation.

Finally, SPARC offers implications for building AI-enabled

adaptive learning systems that repurpose information back to

instructors, learners, and research to augment both teaching

and learning Kabudi et al. (2021). As outlined by Kabudi et al.

(2021), AI-enabled adaptive learning systems could detect and

select the appropriate learning intervention using evidence from

SRL experts, researchers, instructors, and learners. data collected

during learning activities should not only be predictive analytics

but rather leverages data in various ways depending on the (a)

user and (b) objective of the session. Specifically, analytics fed

back to users such as instructors should include both prescriptive

and descriptive analytics. (go into prescriptive, descriptive,

and predictive; Kabudi et al., 2021) as these all hold different

implications for teaching and learning.

5. Conclusions

Much work remains to realize SPARC. New research is

needed to widen and deepen understandings of (1) how to

map researchers’ and learners’ multimodal data onto COPES

constructs, (2) how differences in these mappings suggest

interventions and the degree to which this may vary by country,

and (3) how a pipeline architecture should be designed to iterate

over these results to optimize both learner’s SRL, instructor’s

SRL, and instructional decision making. Our next steps in

building and implementing a prototype system like SPARC

are to begin collecting real-time data about how researchers

examine and use learners’ multimodal data in specific learning

and problem-solving scenarios, e.g., learning with serious games,

intelligent tutoring systems, and virtual reality. This requires

recruiting a number of leading experts within the field of self-

regulated learning across a range of emerging technologies,

but also a range of SRL theories including socially-shared self-

regulated learning and co-regulation. Each scenario presented to

participants (i.e., researchers/experts) will encompass gathering

their multimodal data while they review learners’ multimodal

data and provide annotations that classify various SRL processes

and strategies. This study will allow further understanding

of how researchers monitor, analyze, and make inferences

about SRL using multimodal data. Results will guide system

architecture and design for a theoretically- and empirically-

based system that supports researchers and instructors in

monitoring, analyzing, and understanding learners’ multimodal

data to make effective instructional decisions and foster

self-regulation (Hwang et al., 2020). Through training AI

using the multiple data channels collected from leading

researchers and experts within the field of self-regulated

learning, in conjunction with instructors and learners, it

opens opportunities to build valid and reliable AI that goes

beyond data-driven techniques to determine when theoretically-

relevant constructs emerge across a range of data channels

and modalities.
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