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Although eye tracking has been successfully used in science education 

research, exploiting its potential in collaborative knowledge construction 

has remained sporadic. This article presents a novel approach for studying 

collaborative knowledge construction in a simulation-based environment by 

combining both the spatial and temporal dimensions of eye-tracking data 

with video data. For this purpose, we have investigated two undergraduate 

physics student pairs solving an electrostatics problem in a simulation-

based environment via Zoom. The analysis of the video data of the students’ 

conversations focused on the different collaborative knowledge construction 

levels (new idea, explication, evaluation, and non-content-related talk and 

silent moments), along with the temporal visualizations of the collaborative 

knowledge construction processes. The eye-tracking data of the students’ 

gaze, as analyzed by epistemic network analysis, focused on the pairs’ spatial 

and temporal gaze behavior. We illustrate how gaze behavior can shed light on 

collaborative knowledge construction in terms of the quantity of the talk (e.g., 

gaze behavior can shed light on the different activities of the pairs during the 

silent moments), quality of the talk (e.g., gaze behavior can shed light on the 

different approaches when constructing knowledge on physical phenomena), 

and temporality of collaborative knowledge construction processes [e.g., gaze 

behavior can shed light on (the lack of) attempts to acquire the supporting or 

contrasting evidence on the initial ideas on the physical phenomena]. We also 

discuss the possibilities and limitations of gaze behavior to reveal the critical 

moments in the collaborative knowledge construction processes.
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Introduction

In science education, simulation-based environments have 
been used to foster collaborative knowledge construction (CKC) 
and guide students in building on each other’s ideas and thoughts 
while learning about scientific phenomena (Schellens and Valcke, 
2005; Liu et al., 2021). However, productive CKC processes in 
these environments rarely occur automatically (Jeong et  al., 
2019). Even though the (automatic) analysis of students’ verbal 
conversations could provide information to teachers and 
machines so that they can guide CKC processes (Lämsä et al., 
2021b), many nontrivial issues, such as moving from the 
retrospective modeling of learning processes to predictive 
analytics, must be solved before these applications can be more 
broadly adopted (Schneider et  al., 2021). In the field of 
multimodal learning analytics, various data modalities are 
combined to comprehensively understand if and how learning 
occurs (Olsen et  al., 2020). Ultimately, the aim is to use this 
information to support learning.

Collaborative knowledge construction analysis has 
typically focused on the quantity and quality of conversations 
via coding the utterances of video data and evaluation of 
learning outcomes (Jeong et al., 2014, 2019); in this context, 
the temporal analysis of CKC has gained increased attention 
(Lämsä et al., 2021a). In addition to the conversations captured 
with video data, CKC research could benefit from eye tracking 
(Olsen et  al., 2020). Although eye tracking has been 
successfully used in science education research (e.g., Hahn 
and Klein, 2022), only a few studies have investigated the role 
of gaze in CKC in science learning (for an exception, see 
Becker et al., 2021). Gaze similarity among students has been 
associated with higher-quality learning processes and 
outcomes (Olsen et al., 2020; Becker et al., 2021), although 
exceptions do exist (Liu et al., 2021). On the one hand, it is 
essential to develop improved gaze similarity indicators that 
reveal both the focus and timing of gaze and, thus, better 
reflect the kinematics of CKC in simulation-based 
environments. On the other hand, the contextual information 
of CKC processes (such as video data) and eye-tracking data 
would ensure that the processes are interpreted reliably 
(Molenaar, 2021).

In the current article, we  introduce a methodology of 
combined video and eye-tracking data analysis to study CKC 
kinematics in a simulation-based environment. We discuss the 
possibilities of this methodology for designing pedagogical 
practices for science education that can help us in understanding 
and guiding these CKC processes.

Literature review

Collaborative knowledge construction in 
simulation-based environments

Simulations work to model activities and processes by 
omitting irrelevant variables from the perspective of learning goals 
(Chernikova et al., 2020). Moreover, simulations provide users 
with certain control when they accomplish a given task 
(Chernikova et  al., 2020). Simulations have been applied in 
practicing authentic practices and procedures, for example, in the 
aviation (Mavin et al., 2018) and healthcare sectors (Cook et al., 
2013), and in various disciplines as a part of formal education 
(Chernikova et al., 2020). Simulations can be used in nondigital 
settings (e.g., simple patient simulations in healthcare) or digital 
settings (e.g., virtual reality flight simulations in aviation). In the 
current study, we  focus on computer simulations in science 
education. In the context of science education, computer 
simulations are programs that provide a representation of a 
scientific phenomenon through a model (Clark et al., 2009; de 
Jong and Lazonder, 2014). Computer simulations such as PhET 
(University of Colorado Boulder, 2022b) or WISE (UC Berkeley, 
2022) may improve learning outcomes by enhancing other forms 
of instruction, such as lectures or laboratories (Rutten et al., 2012; 
de Jong et  al., 2013). Moreover, simulations may facilitate 
collaboration among students during CKC processes (Lämsä et al., 
2018, 2020). This collaboration among students may be beneficial 
for gaining conceptual and procedural knowledge (Jensen and 
Lawson, 2011; Rutten et al., 2012).

In simulation-based environments, the user can interact with 
the simulation by exploring the effects of the given input variables 
to observe the effects on the output variables (Clark et al., 2009; de 
Jong and Lazonder, 2014). Within computer-mediated settings, the 
interaction between the students and simulation may take different 
forms (Figure 1). First, when using individual-based simulations, 
each student can individually interact with the simulation, 
requiring intensive verbal coordination of CKC processes between 
students (Figure 1A), which can be a challenge (Chang et al., 2017). 
Second, when using collaborative simulations, the students can 
interact with the simulation in a shared space collaboratively; 
hence, the coordination of CKC processes may be further fostered 
by assigning students distinct responsibilities (Figure 1B). Even 
though these latter simulation-based environments may benefit 
from the coordination of the CKC processes and, thus, facilitate 
interactions among students, they do not necessarily lead to 
higher-level CKC processes or learning outcomes compared with 
the former settings (Chang et al., 2017; Liu et al., 2021). Third, the 
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rapid adoption of communication apps, especially during the 
COVID-19 lockdown, shifted face-to-face sessions to Zoom  
or Teams. Sessions with screen sharing can also foster the 
coordination of the CKC process, even if individual-based 
simulations are used (Stevenson et al., 2022). Although one student 
sharing the screen interacts with the simulation and others monitor 
the simulation view from the screen, the sharing student can 
mediate the interaction between the simulation and others by 
implementing requests from others in the simulation environment 
(Figure 1C). In the current study, we focus on this third scenario.

Although this scenario inevitably assigns different roles to the 
students in the CKC processes, both sharing and monitoring 
students should effectively utilize a simulation-based environment 
as an external resource for explicating and evaluating ideas and 
thoughts (Jeong and Hmelo-Silver, 2010). Usually, students share 
their ideas and thoughts without building on previous ones, 
meaning that critical explication and evaluation of others’ ideas 
and thoughts and other higher levels of CKC are rare (Yang et al., 
2018). Students may also have challenges understanding visual 
representations of abstract concepts, such as fields (Klein et al., 
2018). These challenges highlight the role of the teacher and 
simulation-based environment in guiding CKC (Lin et al., 2013; 
Lehtinen and Viiri, 2017). In this respect, the eye-tracking analysis 
provides a view of students’ visual attention that could provide 
teachers and simulation developers with information on 
unnecessary or distracting visual objects, helping guide CKC and 
improve these environments.

Studying collaborative knowledge 
construction with eye tracking

In the current paper, we refer to gaze as “the act of directing 
the eyes toward a location in the visual world” (Hessels, 2020, 

p. 856) and gaze behavior as gaze similarities and dissimilarities 
over time. Tatler et  al. (2014, p. 6) have pointed out that “eye 
movements give us a window onto how perception operates across 
the course of a task, from the first intention to act and through the 
process of carrying out the task itself.” Strohmaier et al. (2020) 
showed that many studies using eye tracking to study learning 
processes assume that when a student’s gaze is focused on an 
artifact, the student processes the information being provided (see 
Just and Carpenter, 1980). This assumption, however, is a 
simplification because, even though the sharp image of the artifact 
is formed within a tiny area of the eye, which is called the fovea 
(Holmqvist et al., 2011, p. 21), humans can process information 
from the wider area around the artifact (parafoveal processing, 
Schotter et al., 2012).

One of the critical questions in CKC is how to capture a joint 
activity between pairs or small groups using eye tracking (e.g., 
Hayashi and Shimojo, 2021). So far, most studies have evaluated 
CKC processes by assessing how often students look at the same 
objects of the learning environment (Olsen et al., 2020; Becker 
et al., 2021; Sharma et al., 2021). For example, Becker et al. (2021) 
found that early gaze similarities concerning laboratory apparatus 
were positively associated with the learning outcomes in a 
collaborative laboratory. However, similar gaze patterns do not 
guarantee productive learning processes and outcomes (Schneider 
et  al., 2018). For example, high gaze similarity may result in 
low-level CKC processes and poor outcomes if the similarity is 
related to irrelevant objects (a synthesis by Hahn and Klein, 2022, 
indicated this to be true when learning individually in simulation-
based environments). Schneider et  al. (2018) addressed this 
challenge in the literature by augmenting spatial information from 
eye-tracking data and verbal information from audio recordings 
into cross-recurrence graphs that indicate “how and the extent to 
which streams of information come to exhibit similar patterns in 
time” (Coco and Dale, 2014, p. 2). Simulations often visualize 

A B C

FIGURE 1

The interactions (double-sided arrows) among the students and simulation with the (A) individual-based simulations, (B) collaborative simulations, 
and (C) individual-based simulations used with the screen-sharing functionality in computer-mediated collaborative knowledge construction. The 
current study focuses on the faded scenario (C), in which student 1 is sharing and student 2 is monitoring the screen.
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concepts that are abstract, nonlocal, and visually absent in the real 
world, such as fields and forces. Thus, rich visualizations result in 
several visual objects, which can complicate the interpretation and 
comparison of cross-recurrence graphs.

The analysis of students’ gaze behavior means identifying the 
temporal co-occurrences of their gaze events (see an overview of the 
temporal analysis methods in Lämsä et al., 2021a). For this purpose, 
an emerging method in the learning sciences is epistemic network 
analysis (ENA; Shaffer et al., 2016). The premise of ENA is that 
co-occurrences of (gaze) events are more important than the events 
as such (Shaffer et al., 2016; Andrist et al., 2018). ENA models the 
co-occurrences of the gaze events with nodes and edges: the areas 
of interest (AOIs) are depicted as nodes, and the co-occurrences of 
the students’ gaze events with these AOIs are depicted as the edges 
between nodes. An advantage of the ENA compared with other 
network analysis methods is that it allows for examining which 
(instead of how) nodes are connected (Bowman et al., 2021); from 
the perspective of CKC processes, this is important to understand 
which features of the simulation-based environment students are 
simultaneously looking at. Moreover, the ENA allows for 
comparisons of the networks by keeping the nodes and edges in the 
same location in the visualization of the networks (Bowman et al., 
2021); this facilitates a comparison of the students’ gaze behaviors 
between the pairs or small groups and between the CKC levels.

In the current study, we  introduce a novel approach for 
exploring CKC kinematics in a simulation-based environment. By 
kinematics, we  refer to the connections between the CKC 
processes and gaze behavior without considering their dynamics, 
which would imply understanding the causes of the observed 
CKC processes or gaze behavior. To illustrate our approach, we use 
video data of student pairs’ conversations to understand their 
CKC processes from the perspectives of the (i) quantity of the talk, 
(ii) quality of the talk, and (iii) temporality. We then apply ENA to 
eye-tracking data to explore what insights the student pairs’ gaze 
behavior provides regarding these CKC processes. We answer the 
following research questions (RQs):

RQ1:   What does the analysis of the video data tell about the 
pairs’ CKC processes?

RQ2:   What does the pairs’ gaze behavior tell about these 
CKC processes?

Materials and methods

Context and participants

The current study was conducted in an introductory electricity 
course at a Finnish university. We focus on the data from two 
student pairs who used the Charges and Fields PhET simulation 
(University of Colorado Boulder, 2022a) to solve an electricity 
problem (Figure 2). The students worked in different rooms via 
Zoom so that both saw the same assignment and simulation views 
of the split screen. One student shared (S) and the other monitored 
(M) the screen; in the rest of this paper, we refer to these students 

as 1S and 1M (the sharing student and monitoring student of pair 
1, respectively), and 2S and 2M (the sharing student and 
monitoring student of pair 2, respectively). The pairs constructed 
knowledge of electric field properties in the presence of a static 
negative charge and positive charge that could be moved about. 
The students were supposed to apply the superposition principle 
to explain how the direction and magnitude of the nonlocal 
electric field change when moving the positive charge.

Data

To answer RQ1, we video recorded the pairs’ conversations in 
Zoom and transcribed the pairs’ conversations (pair 1: 5.3 min. 
with 59 utterances; pair 2: 12.8 min. with 163 utterances) using the 
“unit of meaning” (Henri, 1992, p.  134) to identify episodes 
comprising a few utterances. We  then applied Veerman and 
Veldhuis-Diermanse (2001) to analyze the CKC level through 
theory-driven content analysis. We coded the episodes (13 and 38 
episodes) as either physics content–related talk, including the 
following CKC levels: (i) new idea, (ii) explication (elaboration on 
earlier ideas), and (iii) evaluation (critical discussion of and 
reasoning about earlier ideas), or non-content-related talk, 
including planning and technical talk (e.g., planning procedures 
or wondering how to invoke the simulation). The first author 
prepared a coding manual with the definitions and example 
excerpts of the codes. After this, the first author and the coauthor 
coded all the episodes of the pairs’ conversations, after which the 
disagreements (see the contingency table in Table 1) were resolved 
and definitions of the codes revised by all the authors (see Table 2).

To answer RQ2, we collected the eye-tracking data using Tobii 
Pro Glasses 2 (sampling frequency 50 Hz), which are mobile 
wearable eye trackers. Eye tracking allowed free movement of the 
participants so that the gaze outside the computer screen could 
also be  captured. The scene camera of the eye tracker had a 
resolution of 1,920 × 1,080 pixels, capturing 52° vertically and 82° 
horizontally. We used one-point calibration, and we verified the 
calibration by asking the participants to look at three different 
points on their surroundings (the points were left, right, and in 
front of them). We wanted to keep the data collection situation as 
authentic a learning situation as possible, and we  did not use 
chinrests, control students’ distance to the computer screen, nor 
control the gaze angles; however, the learning situation and 
simulation-based environment (Figure 2) provided satisfactory 
conditions for eye-tracking data collection (e.g., distance to the 
computer screen was approximately 0.5–1.0 m, and the targets in 
the environment were located within narrow area so that no large 
gaze angles were needed that improved the accuracy of the eye 
tracking; Tobii Pro AB, 2017). The data were analyzed in Tobii Pro 
Lab (Tobii Pro AB, 2022). We used the Tobii I-VT (Attention) as 
a gaze filter, which is the default preset for wearable eye trackers. 
The velocity threshold parameter was 100°/second. Blinks and 
saccades were cleaned from the data, and only fixation data were 
used in the coding and further analyses.
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To study the gaze behavior, we  first watched eye-tracking 
recordings to explore where students divided their visual attention 
when solving the given problem. Based on this exploration and 
the expert analysis of the problem itself (five authors have master’s 
or doctoral degrees from physics), we divided the screen view into 
AOIs (see Figure 2 and Table 3; the keyboard was an AOI only for 
the sharing student). The formed AOIs allowed “local analysis” 
(Hahn and Klein, 2022, p. 5), which differentiates the irrelevant 
and relevant features of the simulation view (Figure 2 and Table 3). 
The fixation data were manually coded in Tobii Pro Lab into the 
different AOIs based on the screen capture in Figure 2. The coding 
was done fixation by fixation, clicking that AOI in the screen 
capture to which the student’s gaze was located in the eye-tracking 
recording. The coding decisions were made based on the set of 
objects in the screen capture (e.g., sensor, moving charge, and 
static charge), not on the absolute position of the fixation in the 
eye-tracking recording (e.g., if the student’s visual attention was 
on the moving charge, it was coded as such, even though the 
position of the moving charge in the eye-tracking recording would 

have differed from that presented in Figure 2). Fixations unrelated 
to any AOIs were coded as being “outside screen” and excluded 
from further analysis. Two researchers coded the fixation data of 
one student (562 fixations, of which 160 were “outside screen”). To 
check the interrater reliability of the coding, we then calculated 
Cohen’s kappa (Cohen, 1960) and Shaffer’s rho separately for each 
code (AOI; Table 3) so that a high agreement in one code did not 
hide a low agreement in another code (Shaffer, 2017; Eagan et al., 
2020). Cohen’s kappa was >0.97 for all the codes (AOIs), indicating 
almost perfect agreement between the two coders (Shaffer’s rho 
was <0.05 for all the codes when we set 0.7 as a threshold value of 
Cohen’s kappa to indicate good reliability; Cicchetti, 1994).

Because the sampling frequency of the eye trackers was 50 Hz 
(a data point for each 20-ms interval), as a result, we had a time 
series of the gaze events in which all AOIs were assigned binary 
data for each 20-ms interval, here corresponding either to student 
visual attention (one) or the absence of student visual attention 
(zero). We excluded five AOIs (settings, objects, measuring tape, 
meters, and reset) because they rarely attracted students’ attention 
(Table  3); this exclusion also eased the interpretation of the 
epistemic networks by decreasing the number of nodes in the 
networks. For both student pairs, synchronization of the video 
and eye-tracking data enabled analysis of the CKC processes from 
the perspectives of the (i) quantity of the talk, (ii) quality of the 
talk, and (iii) temporality and gaze behavior.

Analysis

To answer RQ1 and to study the quantity of the talk, we first 
calculated the relative amount of time that the pairs used for 
non-content-related talk and physics content-related talk, 
including the following CKC levels: (i) new idea, (ii) explication, 
and (iii) evaluation. We also calculated the relative amount of time 

FIGURE 2

The assignment and simulation view the student pairs were looking at when they constructed knowledge on electric field properties in the 
presence of a negative static charge and positive movable charge. The areas of interest are labeled using colored shapes; the labels were not 
visible to the students. The students wrote their answers to the problem in the textbox on the left.

TABLE 1 The contingency table shows the agreements and 
disagreements in the coding of the conversations between two 
coders.

Coder 1

Non-
content-
related

New 
idea Explication Evaluation

Coder 2 Non-content-

related

27 0 0 0

New idea 0 7 0 0

Explication 1 0 12 1

Evaluation 0 0 0 3

All 51 episodes were coded by two authors.
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TABLE 3 The areas of interest (AOIs) and their total fixation durations 
in percentages during the collaborative knowledge construction 
processes of pair 1 (1S and 1M, duration 5.3 min) and pair 2 (2S and 
2M, duration 12.8 min).

AOI/Student 1S (%) 1M (%) 2S (%) 2M (%)

Assignment 13.0 13.6 7.4 3.5

Textbox 16.8 32.1 10.9 4.4

Keyboard 20.5 − 2.6 −

Sensor 4.2 0.4 17.8 15.6

Moving charge 5.8 1.5 12.7 6.8

Static charge 5.6 13.8 14.3 2.9

Settings 1.0 0.8 0.5 0.1

Objects 0.6 0.5 0.8 0.3

Measuring tape 3.3 4.9 0.0 0.0

Meters 0.6 0.1 0.4 0.0

Reset 0.0 0.0 0.0 0.0

Total 72.4 74.1 70.1 46.5

S and M refer to the sharing student and monitoring student, respectively. The shaded 
AOIs are used in further analyses, and the dashed line separates the AOIs referring to 
the problem and simulation view.

for silent moments. Second, to study the quality of the talk, 
we examined the quality of the conversations at the different CKC 
levels in terms of whether students’ ideas (and explication and 
evaluation of those ideas) were correct or not in the context of the 
given problem (Figure 2). Third, we studied the temporality of the 
pairs’ CKC processes by visualizing CKC level and non-content-
related talk as a function of time.

To answer RQ2, we  applied ENA to synchronized, binary 
eye-tracking data (see Shaffer et al., 2016; Andrist et al., 2018). The 
AOIs served as the nodes of the network (Figure 2). We considered 
that the gaze events within a 2-s time interval were connected, so 
we  used the moving windows of the size of a 100 rows (100 

rows × 20 ms/row = 2 s). We chose this 2-s time interval based on 
previous studies on the gaze similarity of pairs (Richardson and 
Dale, 2005; Schneider et al., 2018). The unit of analysis was a pair 
at different CKC levels (along with during non-content-related talk 
and during silent moments), so we created the adjacency matrices 
for both pairs at each CKC level separately. The adjacency matrices 
represent the strength of the connections between the AOIs of the 
two students at the different CKC levels (along with during 
non-content-related conversations and during silent moments). 
We used weighted sums so that more connections between the 
AOIs within a moving window also resulted in stronger 
connections between these AOIs. When building epistemic 
networks, we did not visualize the connections between the AOIs 
of an individual student; in other words, if the student focused on 
several AOIs within the 2-s time interval, the connections between 
these AOIs were not visible in the epistemic networks (Andrist 
et al., 2018). We made this decision to facilitate the interpretation 
of the networks.

After the adjacency matrices for each unit of analysis had been 
created, the matrices were converted into adjacency vectors 
(Bowman et  al., 2021) that were spherically normalized. This 
normalization eased the comparison of the networks when the 
duration of the CKC processes (and, thus, the number of gaze 
events) differed between pairs 1 and 2 (see Table 3). Finally, the 
dimensions of the adjacency vectors were reduced by singular value 
decomposition, after which the network nodes were positioned by 
applying an optimization method (see Bowman et al., 2021). The 
networks included two nodes for each AOI (see Table 3): one node 
for the sharing student and another for the monitoring student. The 
edges connecting the nodes provided a visualization of the gaze 
behavior: the thicker the edge, the more students had simultaneously 
focused on the corresponding AOIs within the two-second time 
interval. Figure  3 demonstrates this process with a fictional, 

TABLE 2 Coding manual for non-content-related talk and physics content–related talk that includes a code for each level of collaborative 
knowledge construction.

Content Code Definition Example excerpt

Non-content-related talk Planning, coordination and 

technical talk

Planning and coordinating procedures or 

wondering how to invoke the simulation

2M: Now we just write down very neatly that the electric fie … 

Hang on a second, the electric field itself …

2S: Yeah, so what was the question? Descr … the electric field …

Physics content–related talk CKC: New idea Presenting a new idea or thought in the 

context of the ongoing conversation

2S: Yes, it [the electric field] is at the smallest when it is here on 

the oppos … other side.

Physics content–related talk CKC: Explication Elaborating further on earlier ideas 2M: Yes, then at the largest when they are so that one [charge] is 

attracting it and another [charge] is pulling it in the same 

direction. Yes.

Physics content–related talk CKC: Evaluation Discussing critically and reasoning about 

earlier ideas

2M: Mm, while approaching how does it … [commenting on the 

written answer in the textbox]

2S: Or it can … What?

2M: How is it approaching … That is, while approaching?

2S: So, it is here like that. Here, when it’s farther away, and then, 

when it is approaching there, then that force starts to increase.

2M: Mm, okay. But does it increase when it is on the side, even 

though it is already approaching?

2S and 2M refer to the sharing student and monitoring student of pair 2.
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simplified dataset. We performed the ENA in RStudio (Version 
1.2.1335) by applying the rENA package (Marquart et al., 2021).

Results

In the following section, we cover the pairs’ CKC processes 
from the perspectives of the (i) quantity of the talk, (ii) quality of 
the talk, and (iii) temporality based on the analysis of the video 
data (RQ1, Section “Pairs’ collaborative knowledge construction 
processes based on the video data”). We  then illustrate what 
insights the pairs’ gaze behavior provides regarding these  
CKC processes (RQ2, Section “Pairs’ collaborative knowledge 
construction processes: Insights based on gaze behavior”).

Pairs’ collaborative knowledge 
construction processes based on the 
video data

Quantity of the talk
Figure 4 shows the relative amount of time that the pairs used 

for non-content-related talk and physics content–related talk, 
including the following CKC levels: (i) new idea, (ii) explication, 

and (iii) evaluation. The relative amount of time for silent 
moments is also shown in Figure  4. Pair 1 had more silent 
moments and less non-content-related talk, such as planning, 
than pair 2 (67% vs. 42 and 15% vs. 25%, respectively). Regarding 
the physics content–related talk, both pairs used a relatively 
similar amount of time to present new ideas (6 and 6%) and 
explicated those (13 and 17%), but pair 2 also evaluated the 
presented ideas 10% of the time.

Quality of physics content–related talk
Even though there were no differences between the pairs in 

the relative amount of physics content–related talk in presenting 
new ideas and explicating those (Figure 4), pair 1 exhibited low 
quality of physics content–related talk. The new ideas that the 
monitoring student (1M) presented to the problem did not 
include the magnitude of the electric field, instead focusing only 
on its direction. These ideas about the direction were also incorrect 
because 1M ignored the fact that the direction of the electric field 
was constantly changing when the positive charge was moved 
(starting time of the utterance at t = 1.9 min, see Figure 5A):

1M (Monitoring student): Well, inside those [the electric field 
lines], all of them are pointing toward the negative 
[static charge].

A

B

C

FIGURE 3

A fictional, simplified process for visualizing the epistemic network of two areas of interest (AOI1 and AOI2). S and M after the underscore refer to 
the gaze of the sharing student and monitoring student. (A) Weighted adjacency matrices represent the co-occurrences of gaze events in the two 
different time intervals (moving windows). (B) The cumulative adjacency matrix is calculated by summing the adjacency matrices presented in (A). 
The connections in the AOIs between the sharing and monitoring students are included in further analyses; the connections within an individual 
student are excluded (see the shadings in the matrices). (C) The arbitrary visualization of the epistemic network shows that the connections 
between AOI2_S and AOI1_M were stronger (a thicker edge between the nodes) than the connections between AOI1_S and AOI1_M (a thinner 
edge between the nodes). The sharing student focused their attention neither on the AOI1_S nor on the AOI2_S when the monitoring student was 
looking at AOI2_M.
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FIGURE 4

The relative amount of talk (in %) at the different collaborative knowledge construction (CKC) levels. The amount of non-content-related talk and 
silent moments has also been marked.

A

B

FIGURE 5

Visualization of the collaborative knowledge construction (CKC) process of (A) pair 1 and (B) pair 2. The duration of the CKC process was 5.3 min 
for pair 1 and 12.8 min for pair 2.

1S (Sharing student): Mm. Yes … And outside then … But 
does [the electric field] change if … Mm.

1M: Yes, so then it’s kind of … There, where the positive 
[moving charge] is, so then those [the electric field lines] 

are pointing away from its vicinity, but otherwise, it is 
always pointing toward the negative [static  
charge].

1S: Yes.
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Later, pair 1 only pondered and explicated how 1M’s incorrect 
ideas could be formulated to write in the textbox (starting time at 
t = 2.3 min; see Figure 5A):

1S: So, hmm.

1M: For a), all [the electric field lines] point toward the 
negative [static charge].

1S: Yes.

In contrast, the monitoring student of pair 2 (2M) presented 
fair ideas of the problem, even though 2M also focused more on 
the direction of the electric field than its magnitude (starting time 
at t = 1.4 min, see Figure 5B):

2M (Monitoring student): But it [the electric field] is doing 
that kind of pendular motion there.

2S (Sharing student): So it is. Yeah.

In the explication level, 2M provided physical explanations for 
the presented ideas and thoughts (starting time at t = 2.3 min; see 
Figure 5B):

2M: Let’s write this neatly down so that the direction of the 
force starts to oscillate then and … Then in part a), inside … 
Hmm … The direction of the [electric] field is changing, of 
course, depending on their lengths. Or no, depending on the 
… Hmm … Kind of position where the moving charge is 
going. Thus, a kind of oscillatory motion emerges. Because it 
is rotating 180° or, ahem, pi radians, it is always on the side 
where they kind of constructively interfere and half of which 
are destructive.

Pair 2 also evaluated the presented ideas (see an example in 
Table 2), while this CKC level was absent in pair 1’s conversation.

Temporality of CKC processes
Figure  5A shows that the CKC process of pair 1 moved 

straightforwardly from non-content-related talk to presenting new 
ideas and then to explication without evaluation. Non-content-
related talk, including planning and coordinating actions as 
examples, was rare later in the CKC process (see Section “Quantity 
of the talk”). Thus, pair 1 made their conclusions based on their 
initial and incorrect ideas and thoughts (see Section “Quality of 
physics content–related talk”), which they only explicated on 
further (no transitions from explication to presenting new ideas). 
Thus, pair 1 failed to solve the problem shown in Figure 2 correctly 
because they concluded the following in their joint answer in 
the textbox:

The electric field inside the circumference of the circle always 
points toward the [static] charge Q1.

[Outside the circumference of the circle and] close to the 
[moving] charge Q2, the electric field points away. When 
charge Q2 moves further, the electric field again points toward 
the [static] negative charge.

The answer reveals that pair 1 did pay attention to the 
direction of the electric field but not to its magnitude. They also 
failed to notice how the direction of the electric field constantly 
changed when the positive charge moved around the 
negative charge.

Figure 5B shows that pair 2 had several transitions between 
the CKC levels and non-content-related talk, meaning that pair 2 
frequently planned their actions (Section “Quantity of the talk”). 
These findings may relate to their problem-solving strategy, which 
separately considered the two aspects of the problem: the electric 
field inside (0–7 min) and outside the circle (7–13 min, Figure 5B; 
see also Figure 2). Pair 2 reached the highest CKC level when they 
evaluated their ideas in both parts of the problem. Pair 2 finally 
focused both on the magnitude and direction of the electric field, 
answering the problem more correctly:

[Inside the circumference of the circle], the direction [of the 
electric field] changes periodically; [and] the magnitude [of 
the electric field] increases when the [moving] charge Q2 
approaches the [chosen] point a.

[Outside the circumference of the circle], when the [moving] 
charge Q2 is on the same side of the circumference of the circle 
as the [chosen] point a, the [electric] fields add up.

The answer illustrates that pair 2 made relevant observations 
on electric field properties, despite a few careless statements, such 
as that electric fields add up only under certain conditions (“when 
the [moving] charge Q2 is on the same side of the circumference 
of the circle as the [chosen] point a”). We now explore what kinds 
of insights the pairs’ gaze behavior provides on these three 
perspectives of the CKC processes that we covered in sections 
“Quantity of the talk”, “Quality of physics content–related talk”, 
and “Temporality of CKC processes”.

Pairs’ collaborative knowledge 
construction processes: Insights based 
on gaze behavior

Gaze behavior sheds light on the silent 
moments and non-content-related talk

First, the pairs’ gaze behavior reveals that the silent moments 
had different purposes from the perspective of CKC (see section 
“Quantity of the talk”): Figure 6A indicates that pair 1 used these 
silent moments for writing their answer to the textbox (1S’s visual 
attention was on the keyboard, while 1 M’s visual attention was on 
the textbox). Figure  6B shows that pair 2 used these silent 
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A

B

C

FIGURE 6

Epistemic networks of the gaze behavior of (A) pair 1 and (B) pair 
2 during silent moments. S and M after the underscore refer to 
the gaze of the sharing student (1S/2S) and the monitoring 
student (1M/2M). The difference between epistemic networks 
(A,B) is presented in (C). The red edges show the connections 
between the nodes that were stronger among pair 1 than among 
pair 2. The blue edges show the connections between the nodes 
that were weaker among pair 1 than among pair 2.

moments for working with the simulation (1S’s visual attention 
was on the sensor, moving charge, and static charge, while 1 M’s 
visual attention was on the sensor), and both students also focused 
their visual attention on the textbox. The difference between these 
two networks is presented in Figure 6C, indicating that pair 1 used 
more time for formulating their answer to the textbox and less for 
working with the simulation than pair 2.

Second, the pairs’ gaze behavior indicates that the CKC 
processes during the non-content-related talk differed between 
the pairs, as was the case with the silent moments. The pairs’ gaze 
behavior in Figure 7 shows that the students in pair 1 paid more 

visual attention to the assignment and textbox than the students 
in pair 2 (Figures 7A,C). The students in pair 2 divided their visual 
attention more on the simulation view than the students in pair 1 
(Figures 7B,C).

Gaze behavior sheds light on the knowledge 
construction approaches

In section “Quality of physics content–related talk,” we found 
that pair 1 did not present correct ideas about the direction of the 
electric field, and both pairs ignored the magnitude of the electric 
field at the beginning of their CKC processes. When presenting 

A

B

C

FIGURE 7

Epistemic networks of the gaze behavior of (A) pair 1 and (B) pair 
2 during non-content-related talk. S and M after the underscore 
refer to the gaze of the sharing student (1S/2S) and monitoring 
student (1M/2M). The difference between epistemic networks 
(A,B) is presented in (C). The red edges show the connections 
between the nodes that were stronger among pair 1 than pair 2. 
The blue edges show the connections between the nodes that 
were weaker among pair 1 than pair 2.
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new ideas, pair 1 had gaze dissimilarities, so that both students paid 
attention to the moving charge but not simultaneously (Figure 8A). 
Pair 2 had gaze similarities, and they were both simultaneously 
paying visual attention to the moving charge (Figure 8B); these 
differences are also visible in the difference network in Figure 8C. It 
is remarkable that neither of the monitoring students paid attention 
to the sensor when they presented new ideas to the problem, even 
though the sensor provided information on the direction and 
magnitude of the electric field.

The pairs’ gaze behavior during the explication shows 
their different approaches when constructing knowledge on 
the properties of the electric field. Figure 9A shows that both 

1M and 1S focused on the textbox, with only a few fixations 
on the simulation view (note what we  found in section 
“Quality of physics content–related talk”: pair 1 explicated 
how 1M’s incorrect ideas could be  formulated in the 
textbox). In contrast, Figure  9B shows that 2S and 2M 
focused their attention on the sensor, while 2S also focused 
on the moving charge (note that pair 2 aimed to provide 
physical explanations of the presented ideas during the 
explication, as we  found in section “Quality of physics 
content–related talk”). These differences between the pairs’ 
gaze behaviors are also visible in the difference network in 
Figure 9C.

A

B

C

FIGURE 8

Epistemic networks of the gaze behavior of (A) pair 1 and (B) pair 
2 when presenting new ideas. S and M after the underscore refer 
to the gaze of the sharing student (1S/2S) and monitoring student 
(1M/2M). The difference between epistemic networks (A,B) is 
presented in (C). The red edges show the connections between 
the nodes that were stronger among pair 1 than among pair 2. 
The blue edges show the connections between the nodes that 
were weaker among pair 1 than among pair 2.

A

B

C

FIGURE 9

Epistemic networks of the gaze behavior of (A) pair 1 and (B) pair 
2 during explication. S and M after the underscore refer to the 
gaze of the sharing student (1S/2S) and the monitoring student 
(1M/2M). The difference between epistemic networks (A,B) is 
presented in (C). The red edges show the connections between 
the nodes that were stronger among pair 1 than among pair 2. 
The blue edges show the connections between the nodes that 
were weaker among pair 1 than among pair 2.
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Gaze behavior sheds light on the temporality 
of CKC processes

As we have seen in sections “Gaze behavior sheds light on the 
silent moments and non-content-related talk” and “Gaze behavior 
sheds light on the knowledge construction approaches”, both 
students of pair 1 focused on the assignment, textbox, and 
keyboard, except during the short phase when they presented new 
ideas regarding the problem and focused on the simulation view 
(Figure 8A). This kind of gaze behavior implies that pair 1 had a 
few moments when they could have questioned the presented 
incorrect ideas to the problem; for example, monitoring student 
1M hardly focused their visual attention on the sensor that 
provided information on the direction and magnitude of the 
electric field. Even though the sharing student (1S) focused their 
attention on the sensor when they presented new ideas, 1S did not 
question 1M’s incorrect ideas about the problem (see section 
“Quality of physics content–related talk”). Based on the gaze 
behavior in the explication level (Figure 9A), neither 1M nor 1S 
tried to find supporting or contrasting evidence to the presented 
ideas because neither student consulted the simulation view 
during this CKC level.

Regarding pair 2, the edges (the blue lines) between the nodes 
(the AOIs) in Figures 6–10 show that pair 2 was more focused on 
the simulation view than pair 1 (particularly, see Figures 6C–10C). 
During the physics content–related talk, the visual attention of 1M 
and 1S was almost entirely on the simulation view (see new idea 
in Figure  8B, explication in Figure  9B, and evaluation in 
Figure 10). Pair 2 also used silent moments and non-content-
related talk both for working with the simulation and formulating 

their solution to the problem in the textbox. This kind of gaze 
behavior constantly gave food for thought to the students (making 
new observations, explicating and evaluating those, and writing 
them down) that might be associated with the frequent transitions 
between the CKC levels and non-content-related talk that 
we found in section “Temporality of CKC processes.”

Discussion

By combining video and eye-tracking data, we  have 
introduced a novel approach to exploring CKC kinematics in a 
simulation-based environment. To illustrate our approach, 
we  used video data of two student pairs’ conversations to 
understand their CKC processes from the perspectives of the (i) 
quantity of the talk, (ii) quality of the talk, and (iii) temporality 
(RQ1). We then applied ENA to eye-tracking data to explore how 
gaze behavior can shed light on CKC processes in terms of these 
three perspectives (RQ2). As examples, we  found that gaze 
behavior can shed light on (i) the learning activities of the pairs 
during the silent moments and non-content-related talk; (ii) the 
chosen approaches when constructing knowledge on physical 
phenomena; and (iii) (the lack of) attempts to acquire the 
supporting or contrasting evidence on the initial ideas on the 
physical phenomena.

Many studies have indicated that students’ gaze similarities 
play a role in the learning processes and outcomes in collaborative 
learning settings (Schneider, 2019; Olsen et al., 2020; Becker et al., 
2021). Our findings emphasize that instead of treating gaze 

FIGURE 10

Epistemic networks of the gaze behavior of pair 2 during the evaluation (pair 1 did not evaluate their collaborative knowledge construction 
process). S and M after the underscore refer to the gaze of the sharing student (2S) and monitoring student (2M).

https://doi.org/10.3389/feduc.2022.942224
https://www.frontiersin.org


Lämsä et al. 10.3389/feduc.2022.942224

Frontiers in Education 13 frontiersin.org

similarity merely as a binary variable and investigating the extent 
to which students are or are not looking at the same objects, 
comprehensive attention should be paid to investigating how gaze 
behavior can facilitate or hinder the ongoing CKC processes. In our 
study, pair 1 had a straightforward transition from presenting new 
ideas to explicating them (RQ1), and they hardly consulted the 
simulation view at the higher levels of their CKC process (RQ2, 
Figure 9). From the perspective of guiding students in their CKC 
processes, it is crucial to capture the critical moments of their CKC 
processes, such as the phase in which pair 1 presented new idea 
about the problem (Sections “Quality of physics content–related 
talk” and “Gaze behavior sheds light on the knowledge construction 
approaches”, Figure 8). The analysis showed that student 1 M did 
not focus their visual attention on the sensor but only on the static 
and moving charges that did not provide information about the 
electric field. After that, pair 1 started the explication level by 
writing down their ideas and thoughts in the textbox, here without 
critical explication and evaluation of the presented ideas (Sections 
“Temporality of CKC processes” and “Gaze behavior sheds light on 
the temporality of CKC processes”, Figure 9). As a form of guidance 
in these situations, students could be made aware of each other’s 
gaze behavior and prompted to focus their visual attention on the 
relevant features of the simulation (Hayashi, 2020). The 
information on students’ gaze behavior and its relation to the CKC 
process can also help teachers and developers of educational 
technology, for example, in how to visualize abstract concepts, such 
as fields, so that the selected representations can be  effectively 
utilized as external resources of learning (Klein et al., 2018).

When considering the gaze behavior of the pairs, attention 
should also be paid to student roles during the CKC process. In our 
study, both pairs had one student sharing the screen and another 
student monitoring the screen. These different roles were visible in 
the gaze behavior of the students of pair 2. We  found that the 
sharing student’s (2S) gaze behavior was more scattered compared 
with the monitoring student’s (2M) gaze behavior during the 
physics content–related talk (Figures  8B, 9B). This behavior is 
logical because 2S had to divide their visual attention between 
multiple objects in the simulation view while controlling everything 
on the screen. Respectively, during the explication level, 2M was 
able to monitor the electric field by focusing their visual attention 
on the sensor (Figure 9B). From the perspective of these different 
roles, gaze dissimilarities between the students seem inevitable, 
emphasizing the consideration of contextual information on CKC 
processes when interpreting eye-tracking data and analysis (Liu 
et al., 2021). At best, the gaze dissimilarities between students could 
trigger critical discussion of the presented ideas and lead to higher 
CKC levels and improved learning outcomes.

Our study has certain limitations, such as using only two 
student pairs to illustrate our approach. This limit could 
be overcome in the future because the ENA scores (the summary 
statistic of the corresponding network) could be used to study the 
similarities and differences in the pairs’ gaze behavior with larger 
sample sizes (for more details, see Shaffer et al., 2016; Andrist et al., 
2018). In these cases, it is important to include only the necessary 

AOIs (the nodes of the epistemic networks) into the analysis so that 
the epistemic networks are easily interpretable. Moreover, the 
eye-tracking data analysis has some limitations when the data are 
collected in authentic, uncontrollable settings, as in our case: for 
example, the students were able to move freely during the data 
collection, so their visual scene was constantly changing when they 
moved their head and moved the objects in the simulation view. In 
our study, we aimed to improve the validity and reliability of the 
interpretations by analyzing the video data from three perspectives: 
the quantity of the talk, the quality of the physics content–related 
talk, and the temporality of CKC processes; and then exploring 
how eye-tracking data and analysis can shed light on CKC 
processes in terms of these three perspectives.

Despite these limitations, our study has several implications for 
future research. We  illustrated how gaze behavior reflects the 
overall progress of CKC processes (Sections “Temporality of CKC 
processes” and “Gaze behavior sheds light on the temporality of 
CKC processes”) and the different CKC levels (Sections “Quality of 
physics content–related talk” and “Gaze behavior sheds light on the 
knowledge construction approaches”). In particular, gaze behavior 
could be used to capture the different activities that the pairs (or 
groups, in general) conduct within a specific CKC level, during 
non-content-related talk, or during silent moments. For example, 
even though the students were silent even over half of the time (as 
was the case with pair 1), their gaze behavior during these silent 
moments may help us understand their success or failures in the 
CKC process. In our study, the gaze behavior of pair 1 indicated 
that they used these silent moments for writing their answers in the 
textbox, even though they had not made proper observations of the 
properties of the electric field. The gaze behavior of pair 2 indicated 
that they also used these silent moments for working with the 
simulation; this behavior might contribute to their iterative CKC 
process, in which they moved back and forth between the CKC 
levels and non-content-related talk.

As a methodological implication, we followed and extended 
Andrist et al.’s (2018) work by applying ENA to study gaze behavior 
in an authentic simulation-based environment. Our approach 
considered the spatial and temporal dimensions of the eye-tracking 
data, both of which provided essential information about the CKC 
processes. Our approach complements (instead of compensating 
for) the cross-recurrence quantification analysis, in which the focus 
is on the temporal alignment of students’ gazes, here without 
spatial information about their visual attention. Thus, our study 
provides a novel approach for exploring CKC processes by 
combining video data and both spatial and temporal information 
from eye-tracking data. In the future, these explorations, together 
with learning outcomes, should be further investigated with larger 
sample sizes and in more diverse contexts. Future studies should 
also focus not only on the kinematics, but also the dynamics of 
these constructs, hence examining whether and why similar gaze 
behavior can lead to dissimilarities in the CKC process and its 
quality. Visualizations of CKC processes and gaze behavior could 
help the teachers and developers of educational technology design, 
implement, and refine productive CKC processes in 
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simulation-based environments with appropriate forms of 
guidance. Contrary to the mobile, wearable eye trackers that 
we used in the current study, screen-based eye trackers could ease 
eye-tracking data analysis and visualization in computer-supported 
settings. Through the understanding of gaze behavior, one could 
envision a future where teachers use such trackers to guide and 
synchronize students’ gaze in real time. Therefore, it is crucial to 
involve teachers and students in co-designing these visualization 
tools to increase their usability, transparency, and acceptability 
among practitioners (Buckingham Shum et al., 2019).

Conclusion

Typically, eye-tracking data analysis in CKC settings has 
focused on whether students are looking at the same objects but 
has done so without analyzing whether these objects are relevant 
to the problem at hand. We have illustrated how gaze behavior 
can shed light on CKC regarding the quantity of the talk, quality 
of the physics content–related talk, and temporality of CKC 
processes. These kinds of approaches may help teachers, 
researchers, and developers of educational technologies 
understand and guide CKC processes by showing the critical 
moments in these processes and revealing the features in the 
simulation environment that attract unnecessary visual attention. 
In the future, which kind of gaze-based indicators appropriately 
reflect the temporality of CKC processes and complement cross-
recurrence quantification analyses should be  considered. For 
example, when the CKC processes have low quality or move in 
the wrong direction, gaze dissimilarities could trigger critical 
discussion of the presented ideas and lead to higher CKC levels 
and better learning outcomes. Therefore, gaze dissimilarity can 
occasionally be essential for rising to higher-level CKC processes 
and for favorably advancing the solutions to a given problem.

Data availability statement

The datasets presented in this article are not readily available 
because video and eye-tracking data analyzed cannot be public 
due to personal data protection. More information on the data can 
be requested from the corresponding author. Requests to access 
the datasets should be directed to joni.lamsa@oulu.fi.

Ethics statement

The study was reviewed and approved by the Human Sciences 
Ethics Committee of the University of Jyväskylä. The participants 
provided their written informed consent to participate in 
this study.

Author contributions

JL: conceptualization, methodology, formal analysis, 
investigation, data curation, writing (original draft, plus review, 
and editing), and visualization. JiK: conceptualization, 
investigation, data curation, and writing (review and editing). AL, 
PK, and TM: conceptualization and writing (review and editing).
JaK: conceptualization, investigation, and writing (review and 
editing). RH: funding acquisition, conceptualization, and writing 
(review and editing). All authors contributed to the article and 
approved the submitted version.

Funding

This research was funded by the Academy of Finland (grant 
number 318905, the Multidisciplinary Research on Learning and 
Teaching profiles II of the University of Jyväskylä).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Andrist, S., Ruis, A. R., and Shaffer, D. W. (2018). A network analytic approach to 

gaze coordination during a collaborative task. Comput. Hum. Behav. 89, 339–348. 
doi: 10.1016/j.chb.2018.07.017

Becker, S., Mukhametov, S., Pawels, P., and Kuhn, J. (2021). “Using mobile eye 
tracking to capture joint visual attention in collaborative experimentation,” in 
Physics Education Research Conference 2021 Proceedings. (eds.) M. Bennett, B. Frank, 
and R. Vieyra; College Park, US: American Association of Physics Teachers, 39–44.

Bowman, D., Swiecki, Z., Cai, Z., Wang, Y., Eagan, B., Linderoth, J., et al. (2021). “The 
mathematical foundations of epistemic network analysis,” in Proceedings of the Advances 

in Quantitative Ethnography: Second International Conference—ICQE 2020, eds. A. R. 
Ruis and S. B. Lee; Switzerland: Springer, 91–105

Buckingham Shum, S., Ferguson, R., and Martinez-Maldonado, R. (2019). 
Human-centerd learning analytics. J. Learn. Analy. 6, 1–9. doi: 10.18608/
jla.2019.62.1

Chang, C.-J., Chang, M.-H., Liu, C.-C., Chiu, B.-C., Fan Chiang, S.-H., Wen, C.-T., 
et al. (2017). An analysis of collaborative problem-solving activities mediated by 
individual-based and collaborative computer simulations. J. Comput. Assist. Learn. 
33, 649–662. doi: 10.1111/jcal.12208

https://doi.org/10.3389/feduc.2022.942224
https://www.frontiersin.org
mailto:joni.lamsa@oulu.fi
https://doi.org/10.1016/j.chb.2018.07.017
https://doi.org/10.18608/jla.2019.62.1
https://doi.org/10.18608/jla.2019.62.1
https://doi.org/10.1111/jcal.12208


Lämsä et al. 10.3389/feduc.2022.942224

Frontiers in Education 15 frontiersin.org

Chernikova, O., Heitzmann, N., Stadler, M., Holzberger, D., Seidel, T., and 
Fischer, F. (2020). Simulation-based learning in higher education: a meta-analysis. 
Rev. Educ. Res. 90, 499–541. doi: 10.3102/0034654320933544

Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating 
normed and standardized assessment instruments in psychology. Psychol. Assess. 6, 
284–290. doi: 10.1037/1040-3590.6.4.284

Clark, D., Nelson, B., Sengupta, P., and D’Angelo, C. (2009). Rethinking Science 
Learning Through Digital Games and Simulations: Genres, Examples, and Evidence. 
Washington, DC: Learning Science: Computer Games, Simulations, and Education 
Workshop Sponsored by the National Academy of Sciences.

Coco, M. I., and Dale, R. (2014). Cross-recurrence quantification analysis of 
categorical and continuous time series: an R package. Front. Psychol. 5:510. doi: 
10.3389/fpsyg.2014.00510

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educ. Psychol. 
Meas. 20, 37–46. doi: 10.1177/001316446002000104

Cook, D. A., Brydges, R., Zendejas, B., Hamstra, S. J., and Hatala, R. (2013). 
Technology-enhanced simulation to assess health professionals: a systematic review 
of validity evidence, research methods, and reporting quality. Acad. Med. 88, 
872–883. doi: 10.1097/ACM.0b013e31828ffdcf

de Jong, T., and Lazonder, A. W. (2014). “The guided discovery learning principle 
in multimedia learning,” in The Cambridge Handbook of Multimedia Learning. ed. 
R. E. Mayer, vol. 1 (Cambridge: Cambridge University Press), 371–390.

de Jong, T., Linn, M. C., and Zacharia, Z. C. (2013). Physical and virtual 
laboratories in science and engineering education. Science 340, 305–308. doi: 
10.1126/science.1230579

Eagan, B., Brohinsky, J., Wang, J., and Shaffer, D.W. (2020). “Testing the reliability 
of inter-rater reliability,” in Proceedings of the Tenth International Conference on 
Learning Analytics and Knowledge (LAK '20) (New York, USA: Association for 
Computing Machinery), 454–461

Hahn, L., and Klein, P. (2022). Eye tracking in physics education research: a 
systematic literature review. Phys. Rev. Phys. Educ. Res. 18:013102. doi: 10.1103/
PhysRevPhysEducRes.18.013102

Hayashi, Y. (2020). Gaze awareness and metacognitive suggestions by a 
pedagogical conversational agent: an experimental investigation on interventions to 
support collaborative learning process and performance. Int. J. Comput.-Support. 
Collab. Learn. 15, 469–498. doi: 10.1007/s11412-020-09333-3

Hayashi, Y., and Shimojo, S. (2021). “Investigating gaze behavior of dyads in a 
collaborative explanation task using a concept map: Influence of facilitation prompts 
on perspective taking,” in Proceedings of the 14th International Conference on 
Computer-Supported Collaborative Learning—CSCL 2021. eds. C.E. Hmelo-Silver, B. 
De Wever, and J. Oshima (Bochum, Germany: International Society of the Learning 
Sciences), 149–152.

Henri, F. (1992). “Computer conferencing and content analysis,” in Collaborative 
Learning Through Computer Conferencing. The Najadan Papers. ed. A. R. Kaye 
(Berlin, Heidelberg: Springer-Verlag), 117–136.

Hessels, R. S. (2020). How does gaze to faces support face-to-face interaction? A 
review and perspective. Psychon. Bull. Rev. 27, 856–881. doi: 10.3758/
s13423-020-01715-w

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., and van 
de Weijer, J. (2011). Eye Tracking: A Comprehensive Guide to Methods and Measures. 
Oxford: Oxford University Press

Jensen, J. L., and Lawson, A. (2011). Effects of collaboration and inquiry on 
reasoning and achievement in biology. CBE Life Sci. Educ. 10, 64–73. doi: 10.1187/
cbe.10-07-0089

Jeong, H., and Hmelo-Silver, C. E. (2010). Productive use of learning resources in 
an online problem-based learning environment. Comput. Hum. Behav. 26, 84–99. 
doi: 10.1016/j.chb.2009.08.001

Jeong, H., Hmelo-Silver, C. E., and Jo, K. (2019). Ten years of computer-supported 
collaborative learning: a meta-analysis of CSCL in STEM education during 
2005–2014. Educ. Res. Rev. 28:100284. doi: 10.1016/j.edurev.2019.100284

Jeong, H., Hmelo-Silver, C., and Yu, Y. (2014). An examination of CSCL 
methodological practices and the influence of theoretical frameworks 2005–2009. 
Int. J. Comput.-Support. Collab. Learn. 9, 305–334. doi: 10.1007/s11412-014- 
9198-3

Just, M. A., and Carpenter, P. A. (1980). A theory of reading: from eye fixations to 
comprehension. Psychol. Rev. 87, 329–354. doi: 10.1037/0033-295X.87.4.329

Klein, P., Viiri, J., Mozaffari, S., Dengel, A., and Kuhn, J. (2018). Instruction-based 
clinical eye-tracking study on the visual interpretation of divergence: how do 
students look at vector field plots? Phys. Rev. Phys. Educ. Res. 14:010116. doi: 
10.1103/PhysRevPhysEducRes.14.010116

Lämsä, J., Hämäläinen, R., Koskinen, P., and Viiri, J. (2018). Visualising the 
temporal aspects of collaborative inquiry-based learning processes in technology-
enhanced physics learning. Int. J. Sci. Educ. 40, 1697–1717. doi: 10.1080/09500693. 
2018.1506594

Lämsä, J., Hämäläinen, R., Koskinen, P., Viiri, J., and Lampi, E. (2021a). What do 
we do when we analyse the temporal aspects of computer-supported collaborative 
learning? A systematic literature review. Educ. Res. Rev. 33:100387. doi: 10.1016/j.
edurev.2021.100387

Lämsä, J., Hämäläinen, R., Koskinen, P., Viiri, J., and Mannonen, J. (2020). The 
potential of temporal analysis: combining log data and lag sequential analysis to 
investigate temporal differences between scaffolded and non-scaffolded group 
inquiry-based learning processes. Comput. Educ. 143:103674. doi: 10.1016/j.
compedu.2019.103674

Lämsä, J., Uribe, P., Jiménez, A., Caballero, D., Hämäläinen, R., and Araya, R. 
(2021b). Deep networks for collaboration analytics: promoting automatic analysis 
of face-to-face interaction in the context of inquiry-based learning. J. Learn. Analy. 
8, 113–125. doi: 10.18608/jla.2021.7118

Lehtinen, A., and Viiri, J. (2017). Guidance provided by teacher and simulation 
for inquiry-based learning: a case study. J. Sci. Educ. Technol. 26, 193–206. doi: 
10.1007/s10956-016-9672-y

Lin, T.-J., Duh, H. B.-L., Li, N., Wang, H.-Y., and Tsai, C.-C. (2013). An 
investigation of learners’ collaborative knowledge construction performances and 
behavior patterns in an augmented reality simulation system. Comput. Educ. 68, 
314–321. doi: 10.1016/j.compedu.2013.05.011

Liu, C. C., Hsieh, I. C., Wen, C. T., Chang, M. H., Fan Chiang, S. H., Tsai, M.-J., 
et al. (2021). The affordances and limitations of collaborative science simulations: 
the analysis from multiple evidences. Comput. Educ. 160:104029. doi: 10.1016/j.
compedu.2020.104029

Marquart, C.L., Swiecki, Z., Collier, W., Eagan, B., Woodward, R., and Shaffer, D.W. 
(2021). rENA: epistemic network analysis (0.2.3). Available at: https://CRAN.R-
project.org/package=rENA

Mavin, T. J., Kikkawa, Y., and Billett, S. (2018). Key contributing factors to 
learning through debriefings: commercial aviation pilots’ perspectives. Int. J. Train. 
Res. 16, 122–144. doi: 10.1080/14480220.2018.1501906

Molenaar, I. (2021). “Personalisation of learning: towards hybrid human-AI 
learning technologies,” in OECD Digital Education Outlook 2021: Pushing the 
Frontiers With Artificial Intelligence, Blockchains and Robots. ed. S. Vincent-Lancrin, 
vol. 1 (Paris: OECD Publishing), 57–78.

Olsen, J. K., Sharma, K., Rummel, N., and Aleven, V. (2020). Temporal analysis of 
multimodal data to predict collaborative learning outcomes. Br. J. Educ. Technol. 51, 
1527–1547. doi: 10.1111/bjet.12982

Richardson, D. C., and Dale, R. (2005). Looking to understand: the coupling 
between speakers’ and listeners’ eye movements and its relationship to discourse 
comprehension. Cogn. Sci. 29, 1045–1060. doi: 10.1207/s15516709cog0000_29

Rutten, N., van Joolingen, W. R., and van der Veen, J. T. (2012). The learning 
effects of computer simulations in science education. Comput. Educ. 58, 136–153. 
doi: 10.1016/j.compedu.2011.07.017

Schellens, T., and Valcke, M. (2005). Collaborative learning in asynchronous 
discussion groups: what about the impact on cognitive processing? Comput. Hum. 
Behav. 21, 957–975. doi: 10.1016/j.chb.2004.02.025

Schneider, B. (2019). “Unpacking collaborative learning processes during hands-
on activities using mobile eye-trackers,” in A Wide Lens: Combining Embodied, 
Enactive, Extended, and Embedded Learning in Collaborative Settings, 13th 
International Conference on Computer Supported Collaborative Learning (CSCL). eds. 
K. Lund, G.P. Niccolai, E. Lavoué, C. Hmelo-Silver, G. Gweon, and M. Baker (Lyon, 
France: International Society of the Learning Sciences), Vol. 1, 41–48.

Schneider, B., Dowell, N., and Thompson, K. (2021). Collaboration analytics—
current state and potential futures. J. Learn. Analy. 8, 1–12. doi: 10.18608/
jla.2021.7447

Schneider, B., Sharma, K., Cuendet, S., Zufferey, G., Dillenbourg, P., and Pea, R. 
(2018). Leveraging mobile eye-trackers to capture joint visual attention in co-located 
collaborative learning groups. Int. J. Comput.-Support. Collab. Learn. 13, 241–261. 
doi: 10.1007/s11412-018-9281-2

Schotter, E. R., Angele, B., and Rayner, K. (2012). Parafoveal processing in reading. 
Atten. Percept. Psychophysiol. 74, 5–35. doi: 10.3758/s13414-011-0219-2

Shaffer, D.W. (2017). Quantitative Ethnography. Madison, Wisconsin: Cathcart Press

Shaffer, D. W., Collier, W., and Ruis, A. R. (2016). A tutorial on epistemic network 
analysis: analyzing the structure of connections in cognitive, social, and interaction 
data. J. Learn. Analy. 3, 9–45. doi: 10.18608/jla.2016.33.3

Sharma, K., Olsen, J.K., Verma, H., Caballero, D., and Jermann, P. (2021). 
“Challenging joint visual attention as a proxy for collaborative performance,” in 
Proceedings of the 14th International Conference on Computer-Supported 
Collaborative Learning—CSCL 2021, eds. C.E. Hmelo-Silver, B. De Wever, and J. 
Oshima (Bochum, Germany: International Society of the Learning Sciences), 
91–98.

Stevenson, M., Lai, J. W. M., and Bower, M. (2022). Investigating the pedagogies 
of screen-sharing in contemporary learning environments—a mixed methods 
analysis. J. Comput. Assist. Learn. 38, 770–783. doi: 10.1111/jcal.12647

https://doi.org/10.3389/feduc.2022.942224
https://www.frontiersin.org
https://doi.org/10.3102/0034654320933544
https://doi.org/10.1037/1040-3590.6.4.284
https://doi.org/10.3389/fpsyg.2014.00510
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1097/ACM.0b013e31828ffdcf
https://doi.org/10.1126/science.1230579
https://doi.org/10.1103/PhysRevPhysEducRes.18.013102
https://doi.org/10.1103/PhysRevPhysEducRes.18.013102
https://doi.org/10.1007/s11412-020-09333-3
https://doi.org/10.3758/s13423-020-01715-w
https://doi.org/10.3758/s13423-020-01715-w
https://doi.org/10.1187/cbe.10-07-0089
https://doi.org/10.1187/cbe.10-07-0089
https://doi.org/10.1016/j.chb.2009.08.001
https://doi.org/10.1016/j.edurev.2019.100284
https://doi.org/10.1007/s11412-014-9198-3
https://doi.org/10.1007/s11412-014-9198-3
https://doi.org/10.1037/0033-295X.87.4.329
https://doi.org/10.1103/PhysRevPhysEducRes.14.010116
https://doi.org/10.1080/09500693.2018.1506594
https://doi.org/10.1080/09500693.2018.1506594
https://doi.org/10.1016/j.edurev.2021.100387
https://doi.org/10.1016/j.edurev.2021.100387
https://doi.org/10.1016/j.compedu.2019.103674
https://doi.org/10.1016/j.compedu.2019.103674
https://doi.org/10.18608/jla.2021.7118
https://doi.org/10.1007/s10956-016-9672-y
https://doi.org/10.1016/j.compedu.2013.05.011
https://doi.org/10.1016/j.compedu.2020.104029
https://doi.org/10.1016/j.compedu.2020.104029
https://CRAN.R-project.org/package=rENA
https://CRAN.R-project.org/package=rENA
https://doi.org/10.1080/14480220.2018.1501906
https://doi.org/10.1111/bjet.12982
https://doi.org/10.1207/s15516709cog0000_29
https://doi.org/10.1016/j.compedu.2011.07.017
https://doi.org/10.1016/j.chb.2004.02.025
https://doi.org/10.18608/jla.2021.7447
https://doi.org/10.18608/jla.2021.7447
https://doi.org/10.1007/s11412-018-9281-2
https://doi.org/10.3758/s13414-011-0219-2
https://doi.org/10.18608/jla.2016.33.3
https://doi.org/10.1111/jcal.12647


Lämsä et al. 10.3389/feduc.2022.942224

Frontiers in Education 16 frontiersin.org

Strohmaier, A. R., MacKay, K. J., Obersteiner, A., and Reiss, K. M. (2020). Eye-
tracking methodology in mathematics education research: a systematic literature 
review. Educ. Stud. Math. 104, 147–200. doi: 10.1007/s10649-020-09948-1

Tatler, B. W., Kirtley, C., MacDonald, R. G., Mitchell, K. M. A., and Savage, S. W. 
(2014). “The active eye: perspectives on eye movement research” in Current Trends 
in Eye Tracking Research. eds. M. Horsley, M. Eliot, B. A. Knight and R. Reilly 
(Switzerland: Springer International Publishing), 3–16.

Tobii Pro AB (2017). Eye tracker data quality report: Accuracy, precision and 
detected gaze under optimal conditions—Controlled environment: Tobii Pro glasses 
2 firmware v1.61. Available at: https://www.tobiipro.com/siteassets/tobii-pro/
accuracy-and-precision-tests/tobii-pro-glasses-2-accuracy-and-precision-test-
report.pdf

Tobii Pro AB (2022). Pro Lab user manual v1.181. Available at: https://www.
tobiipro.com/siteassets/tobii-pro/user-manuals/Tobii-Pro-Lab-User-Manual/

UC Berkeley (2022). Web-based inquiry science environment. WISE. Available 
at: https://wise.berkeley.edu/

University of Colorado Boulder (2022a). Charges and fields PhET simulation. 
Available at: http://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-
and-fields_en.html

University of Colorado Boulder (2022b). PhET interactive simulations. Available 
at: https://phet.colorado.edu/

Veerman, A., and Veldhuis-Diermanse, E. (2001). “Collaborative learning through 
computer-mediated communication in academic education,” in Proceedings of the 
Euro CSCL 2001 Conference. eds. P. Dillenbourg, A. Eurelings, and K. Hakkarainen; 
Maastricht, The Netherlands: University of Maastricht, 625–632.

Yang, X., Li, J., and Xing, B. (2018). Behavioral patterns of knowledge construction 
in online cooperative translation activities. Internet High. Educ. 36, 13–21. doi: 
10.1016/j.iheduc.2017.08.003

https://doi.org/10.3389/feduc.2022.942224
https://www.frontiersin.org
https://doi.org/10.1007/s10649-020-09948-1
https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-pro-glasses-2-accuracy-and-precision-test-report.pdf
https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-pro-glasses-2-accuracy-and-precision-test-report.pdf
https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-pro-glasses-2-accuracy-and-precision-test-report.pdf
https://www.tobiipro.com/siteassets/tobii-pro/user-manuals/Tobii-Pro-Lab-User-Manual/
https://www.tobiipro.com/siteassets/tobii-pro/user-manuals/Tobii-Pro-Lab-User-Manual/
https://wise.berkeley.edu/
http://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-fields_en.html
http://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-fields_en.html
https://phet.colorado.edu/
https://doi.org/10.1016/j.iheduc.2017.08.003

	The focus and timing of gaze matters: Investigating collaborative knowledge construction in a simulation-based environment by combined video and eye tracking
	Introduction
	Literature review
	Collaborative knowledge construction in simulation-based environments
	Studying collaborative knowledge construction with eye tracking

	Materials and methods
	Context and participants
	Data
	Analysis

	Results
	Pairs’ collaborative knowledge construction processes based on the video data
	Quantity of the talk
	Quality of physics content–related talk
	Temporality of CKC processes
	Pairs’ collaborative knowledge construction processes: Insights based on gaze behavior
	Gaze behavior sheds light on the silent moments and non-content-related talk
	Gaze behavior sheds light on the knowledge construction approaches
	Gaze behavior sheds light on the temporality of CKC processes

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	 References

