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This secondary analysis of an earlier eye-tracking experiment investigated how 
triangulating changes in pupil dilation with student-self reports can be used as 
a measure of cognitive load during instructional videos with complex chemical 
representations. We  incorporated three signaling conditions, dynamic, static 
and no signals, into instructional videos to purposefully alter cognitive load. 
Our results indicate that self-reported extraneous cognitive load decreased 
for dynamic signals compared to static or no signals, while intrinsic cognitive 
load was not affected by the signaling condition. Analysis of pupil dilation show 
significantly larger pupils for dynamic signals as compared to the other two 
conditions, suggesting that when extraneous cognitive load decreased, students 
still engaged cognitively with the task. Correlation analyses between measures 
were only significant for pupil dilation and extraneous cognitive load, but not pupil 
dilation and intrinsic cognitive load. We argue that beneficial design choices such 
as dynamic signals lead to more working memory capacity that can be leveraged 
toward learning. These findings extend previous research by demonstrating the 
utility of triangulating self-report and psychophysiological measures of cognitive 
load and effort.
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1. Introduction

To develop learning materials that align with insights from cognitive science, theories of 
human cognitive architecture are used to shape instructional approaches. Particularly in STEM, 
where the subject matter gets increasingly abstract and complex, effective learning materials are 
indispensable. One consensus framework guiding instructional design is Cognitive Load Theory 
(CLT) which proposes that learning occurs when information is initially processed in working 
memory and subsequently stored in long-term memory (Sweller et al., 1998, 2019). The mental 
effort expended in working memory is referred to as cognitive load, and during learning this 
load can be induced by the difficulty of the task (referred to as intrinsic cognitive load, or ICL) 
or by its design (referred to as extraneous cognitive load, or ECL; Sweller et al., 2019). Because 
working memory is limited in capacity and duration, learning is impeded when working 
memory capacity is exceeded, i.e., when one experiences excessive cognitive load. One goal of 
CLT-informed instructional design is to minimize ECL in order to keep enough working 
memory resources free for managing ICL of the material to be learned.
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Following STEM researchers’ and teachers’ interest in 
supporting student learning by altering and optimizing 
instructional design, we investigated the impact of several design 
choices on students’ cognitive load. We  designed instructional 
videos on organic chemistry reaction mechanisms, because (1) 
small alterations can be made to videos to detect differences while 
keeping the overall instruction constant, and (2) reaction 
mechanisms are known to be visually and conceptually demanding 
and thus difficult to learn for students (for reviews, see Gilbert, 
2005; Graulich, 2015; Daniel et  al., 2018). One main student 
challenge in organic chemistry involves understanding the 
domain-specific representations and linking them to the 
underlying chemical concepts. Students often struggle to identify 
the relevant entities (Rodemer et  al., 2020), which induces 
cognitive load (Rodemer et  al., 2022). Since these chemical 
representations are intrinsically complex, unnecessary cognitive 
load might be  counteracted with reducing extraneous load by 
optimized instructional design. To examine the impact of design 
on load, we  chose different signaling techniques derived from 
multimedia learning principles (de Koning et  al., 2009; Mayer, 
2014; van Gog, 2014). By guiding students’ attention to relevant 
parts of the learning material, signals facilitate comprehension and 
reduce cognitive load. Specifically, we compared how cognitive 
load is influenced by three signaling conditions: sequential 
signaling (dynamic), permanent signaling (static), and no signaling 
(control).

Cognitive load can be assessed by using psychophysiological and 
self-reported measures. A well-known and reliable indicator for 
cognitive load is pupil dilation, which can be measured with an eye 
tracker. Pupillometry has been used extensively to investigate 
cognitive load in different learning scenarios (for reviews, see Beatty 
and Lucerno-Wagoner, 2000; Just et al., 2003; van der Wel and van 
Steenbergen, 2018). However, little work has examined the influence 
of different types of load on pupil dilation. The present study is a 
secondary analysis from our prior eye-tracking experiment focusing 
on the impact of signals on learning outcomes, cognitive load and 
attention (Rodemer et al., 2022). In this report, we present the first 
analysis of pupil diameter and its relationship to the previously 
reported cognitive load self-reports.

2. Theoretical background

2.1. Cognitive load theory

Cognitive Load Theory describes that learning capability is 
influenced by human cognitive architecture. More specifically, 
learning capability is limited by the capacity of human working 
memory (Sweller et  al., 1998, 2011, 2019; van Merriënboer and 
Sweller, 2005). The amount of information that can be  processed 
simultaneously in working memory restricts the amount of 
information that can be learned, i.e., information that can be stored in 
long-term memory. The limitation of working memory accounts 
especially for novel information that is obtained through sensory 
systems, since this information must be ordered and integrated (van 
Merriënboer and Sweller, 2005). The acquisition of expertise, or in 
other words, learning, is hindered when working memory capacity is 
exceeded (Sweller et al., 2019).

Regarding the two types of cognitive load, ICL is determined by 
the expertise of the learner and their interaction with the given nature 
of the learning material (van Merriënboer and Sweller, 2005). It is 
caused by the amount of information that must be  processed 
simultaneously in working memory, i.e., ICL depends on the extent of 
element interactivity of the learning material. The larger the number 
of interacting elements, the more difficult the given content is 
understood. In order to facilitate understanding, these interacting 
elements need to be incorporated into cognitive schemata, which are 
acquired over time through experience with subject material. Thus, 
ICL of a task or material decreases with expertise in a specific domain 
(van Merriënboer and Sweller, 2005). With a specific learning goal and 
learning task at hand, ICL cannot be  altered purposefully by 
instructional interventions (van Merriënboer and Sweller, 2005). In 
contrast, ECL does not contribute to load necessary for understanding 
the material at hand (van Merriënboer and Sweller, 2005). ECL is 
induced by sub-optimal design choices, where a learner has to search 
for relevant information, or by triggering weak problem-solving 
methods (van Merriënboer and Sweller, 2005). Hence, ECL can 
be altered purposefully by instructional interventions.

Intrinsic cognitive load and ECL have an additive relationship to 
each other. If one load is exceeded, working memory capacity is 
exceeded in total, resulting in impeded learning (Paas et al., 2003; 
Cowan, 2010). If a task is perceived as easy, i.e., ICL is low, then a high 
ECL might be manageable for a learner, since the overall working 
memory capacity is kept within its limits. However, if ICL is high, ECL 
must be  decreased in order for a learner to work through a task 
without cognitive overload (Kalyuga, 2011; Sweller et  al., 2019). 
Hence, the goal of well-designed instructional material is to reduce 
ECL so that available cognitive resources can be fully devoted to the 
actual learning process (Mayer, 2005, 2021).

2.2. Multimedia design principles to reduce 
cognitive load

Based on CLT, the Cognitive Theory of Multimedia Learning 
proposes several design principles in order to manage cognitive load 
effectively (Mayer, 2005, 2021). Multimedia formats such as 
instructional videos utilize both the auditory and visual sensory 
channels, which has specific implications for designing these learning 
materials. Building upon this dual-channel assumption (Clark and 
Paivio, 1991), the CTML puts forward that auditory and visual 
information must first be integrated in working memory before they 
can be stored in long-term memory (Mayer, 2021). In line with CLT 
and CTML, attention that is available for each of these two separate 
information processing channels is limited (limited-capacity 
assumption; Mayer, 2014). Multimedia learning material is considered 
effective when each channel is addressed in its natural form, i.e., when 
images or representations are seen and when sounds are heard (Mayer, 
2014). To leverage learning, the modality principle suggests verbal 
explanations better complement visual stimuli as opposed to 
displaying text on screen (Low and Sweller, 2014). Other well-
researched principles for reducing ECL are summarized as follows 
(Mayer and Fiorella, 2014): The coherence principle declares that task-
irrelevant details, such as additional texts or decorative pictures, 
should be  excluded. The redundancy principle emphasizes that 
information that is simultaneously provided through multiple sensory 
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channels places additional cognitive load on the learner, e.g., by 
providing a verbal narration and printed text. The spatial and temporal 
contiguity principle suggests that corresponding words and pictures 
should be presented near to each other or simultaneously rather than 
separately or successively.

Beyond these guidelines for reducing ECL, a great body of 
research is concerned with the signaling principle (for meta-analyses; 
see Richter et al., 2016; Xie et al., 2017; Schneider et al., 2018; Alpizar 
et al., 2020). The signaling principle states that a visual cue or highlight 
that emphasizes relevant parts of the learning material reduces ECL 
by guiding attention, particularly when the amount of information is 
difficult to change. Signals can appear as a circle, arrow, or by coloring 
specific parts. A visual signal is known to support a learner to focus 
on relevant features of a display. The underlying mechanism is that 
cognitive resources that might otherwise be directed toward visual 
search are freed up (de Koning et al., 2009).

2.3. Measuring cognitive load: self-reports 
and pupillometry

Several approaches to measuring cognitive load have been 
proposed. These approaches are based either on subjective judgments 
or on objective measurements, and thus address load either directly, 
e.g., by asking learners to rate their perceived mental load, or 
indirectly, e.g., by using indicators that are thought to reflect learners’ 
mental load, such as performance (Klepsch et al., 2017). Generally, 
the different approaches all show strengths and weaknesses (see 
Brünken et al., 2010). In educational research, subjective ratings of 
cognitive load are the most frequently used approach (e.g., Schmeck 
et al., 2015; Krieglstein et al., 2022). In these approaches, the learner 
is asked, in most cases retrospectively, to rate the perceived amount 
of cognitive load on a Likert scale while working on a task. Generally, 
this approach is considered beneficial due to its economy and 
flexibility. In addition, the retrospective rating does not disturb the 
learning process and impose load by itself, which may be the case in 
other approaches such as dual-task measures (Brünken et al., 2010). 
A recent meta-analysis concluded that self-reports of perceived 
cognitive load also are a valid and reliable measure (Krieglstein et al., 
2022). However, there is empirical evidence that the rating of 
cognitive load depends on certain personal and situational aspects, 
such as the timing of the measurement (Brünken et al., 2010) and 
subjective internal standards for evaluating current load state 
(Klepsch et al., 2017). Furthermore, multidimensional measures of 
cognitive load often show significant correlations between different 
types of cognitive load (e.g., ICL and ECL), which seems inconsistent 
with the additivity hypothesis of the cognitive load theory (Krieglstein 
et al., 2022).

Another stream of research is concerned with small changes in 
pupil diameter that are attributed to reflect changes in brain activity, 
or, more specifically, human cognition (Beatty and Lucerno-Wagoner, 
2000; Just et al., 2003; van der Wel and van Steenbergen, 2018). In this 
stream, pupil dilation has been used as a proxy measure for many 
cognitive processes, including arousal, attention, and cognitive load 
(Stanners et al., 1979; Klingner et al., 2010; Kang et al., 2014; Miller 
and Unsworth, 2020). Although this relationship between pupil 
dilation and cognitive effort was first reported over 100 years ago (e.g., 
Löwenstein, 1920), it was popularized as a systematic course of study 

with seminal studies in the mid-1960s, which demonstrated that an 
increase in pupil size compared to baseline, up to 0.5 mm, could 
be  discretely correlated with mental effort exerted in increasingly 
complex numerical recall tasks (Hess and Polt, 1964; Kahneman and 
Beatty, 1966). Recent neurobiological studies suggest that this effect is 
due to activation of the noradrenergic system’s locus coeruleus, which 
is activated by stress, and may also play a role in memory consolidation 
(Beatty and Lucerno-Wagoner, 2000; Laeng et al., 2012; van der Wel 
and van Steenbergen, 2018).

Studies on task-evoked pupillary responses (TEPR) focus on how 
changes in attention or cognitive effort during a task can be measured 
through changes to pupil size compared to baseline. This response can 
be  isolated through careful control of the environment, e.g., 
controlling external stimuli such as change in brightness or excessive 
movement that can induce a change in pupil size, and careful design 
of the experiment to reduce the number of conflicting cognitive 
signals (Beatty and Lucerno-Wagoner, 2000; Karch, 2018).

The relationship between experimental design and the nature of 
what is being assessed through pupil dilation is not straightforward. 
Many studies correlate pupil dilation with task demand, e.g., cognitive 
load, particularly for simple tasks such as arithmetic, repeating back 
an increasingly long stream of numbers or letters, or entering a 
difficult password (Hess and Polt, 1964; Kahneman and Beatty, 1966; 
Klingner, 2010; Krejtz et al., 2018; Abdrabou et al., 2021). However, a 
recent meta-review of TEPR studies suggests that this relationship is 
more complicated, and that pupil dilation can better be understood as 
cognitive effort rather than task demand (van der Wel and van 
Steenbergen, 2018). Thus, it is crucial to understand how a participant 
may be experiencing a task in order to interpret their pupil dilation, 
because more novice performers in a task may have higher pupil 
dilations to reflect that they need to put in more effort to grapple with 
the task, and more expert performers may have smaller dilations due 
to the fact that they need to exert less effort (Ahern and Beatty, 1979; 
Szulewski et al., 2017; van der Wel and van Steenbergen, 2018; Zhou 
et al., 2022).

There have been several promising studies that it is possible to 
ascribe meaning to pupil dilations collected in situ, e.g., while one is 
engaged in a task, to understand how engaging with the task involves 
cognitive effort (e.g., Palinko et al., 2010; Krejtz et al., 2020; da Silva 
Castanheira et al., 2021; Shechter and Share, 2021). However, few have 
tried to make claims about the nature of the cognitive load that 
induces this effort, in part because of the difficulty associated with 
interpreting psychophysiological signals (Cacioppo and Tassinary, 
1990). Some have done so through deliberate experimental design. For 
example, Foroughi et al. (2017) found that pupil size decreased as 
participants completed multiple trials of an experiment, suggesting 
they automatized the process. Shechter and Share (2021) conducted 
word recognition experiments, finding significantly larger relative 
changes in pupil size for stimuli associated with higher cognitive 
effort. Another way to investigate pupil dilations may be to triangulate 
other sources of data, such as gaze data (e.g., Klingner, 2010; Karch 
et al., 2019; Miller and Unsworth, 2020), spatio-temporal sensory cues 
(e.g., Sharma et al., 2021), interviews (e.g., Pomerleau-Turcotte et al., 
2021), motivational manipulation by task-switching (da Silva 
Castanheira et al., 2021), microsaccadic responses (Krejtz et al., 2020), 
and through probes mid-task (Franklin et  al., 2013) to try to 
understand the underlying cognitive process reflected in the 
pupil dilation.

https://doi.org/10.3389/feduc.2023.1062053
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Rodemer et al. 10.3389/feduc.2023.1062053

Frontiers in Education 04 frontiersin.org

2.4. The present study

The goal of the present experiment was twofold. The first was a 
conceptual goal. We wanted to understand how different design choices 
for signaling during instructional videos impacted the cognitive load 
students experienced while watching these videos (RQ1). While there 
is a large body of research supporting the cognitive benefit of signals, 
most of this evidence is based on learning outcomes. Additionally, many 
studies make use of rather simple tasks that require rapid mental 
operations in working memory (e.g., arithmetic or memory scanning) 
and/or that can be solved without substantial prior knowledge but on 
basis of the given instruction. The first research question of this study is:

RQ1: Under which condition is either students’ ICL or ECL reduced 
while watching instructional videos with either dynamic, static, 
or no signals?

Based on the literature, we expect to reduce ECL by providing 
signals in a descending order from control to static to dynamic 
signaling, e.g., that tasks with the control signal will result in the 
highest ECL, whereas tasks with dynamic signaling will have the 
lowest ECL. Furthermore, we  hypothesize that based on our task 
design, ICL will be kept constant across signaling conditions (Richter 
et al., 2016; Xie et al., 2017; Schneider et al., 2018; Alpizar et al., 2020).

The second was a methodological goal. Although pupillometry 
can potentially offer an in situ method to examine how cognitive load 
changes over time, few studies have looked at change in pupil dilation 
while watching instructional videos (Huh et al., 2019), in part because 
pupil signals can be challenging to isolate and interpret. Additionally, 
the relationship between pupil dilation and different types of 
cognitive load is unclear. Traditional TEPR studies focus on the 
relationship between pupil dilation and task difficulty, e.g., ICL (e.g., 
Hess and Polt, 1964; Kahneman and Beatty, 1966; Szulewski et al., 
2017). Some studies have started to look at how altering the design of 
a task to provide visual supports impacts cognitive load, e.g., focusing 
on the relationship between pupil dilation and ECL (Zheng and 
Cook, 2012; Kruger et al., 2013). However, neither of these studies 
conducted a targeted study on the relationship between ECL and 
pupil size, but rather looked at the effect on cognitive load as a whole. 
Mitra et al. (2017) used CLT to show that it is possible to use pupillary 
responses to infer the extent to which students experience different 
types of cognitive load, but their study was conducted using fairly 
straightforward tasks such as question comprehension or mental 
math. Thus, we wanted to understand how pupil dilations change 
when the ECL of an authentic instructional task is altered, due to 
modifying the signaling condition but not the difficulty of the tasks 
(RQ2). By triangulating self-report measures and psychophysiological 
measures of cognitive load, our goal is to contribute to making 
pupillometry a more useful and interpretable measure for educational 
research. Thus, the second research question is:

RQ2: Does pupillometry indicate differences in pupil diameter 
when altering extraneous load across experimental conditions?

Our hypothesis is that pupil diameter is affected by different 
extraneous load conditions. We predict that as extraneous load goes 
down across the three signaling conditions, we will see a corresponding 
decrease in pupil dilation.

3. Materials and methods

3.1. Sample and study design

The study presented here is a re-analysis of prior work from the 
first and last author, which focused primarily on how the signaling 
conditions in the instructional videos impacted students’ attention, 
self-reported cognitive load, and learning outcomes (Rodemer et al., 
2022). In this study, 28 undergraduate chemistry students (50% 
female, 50% male; 0% nonbinary) from a German university 
participated on a voluntary base in winter semester 2019. Participants 
were currently enrolled in an introductory general chemistry course 
to ensure that they had sufficient prior knowledge to potentially 
understand the rather complex chemical reactions that were presented 
in our instructional videos. All participants had normal or corrected-
to-normal vision. None of the participants reported on either color 
vision deficiency or specific learning disabilities (e.g., dyslexia) that 
might have impacted their processing of the videos or their 
cognitive load.

A 1 × 3 within-subject design was employed in which the 
instructional videos were manipulated according to three different 
signaling conditions (i.e., no signaling vs. static signaling vs. dynamic 
signaling). Each participant watched three videos in a constant video 
order but received each video including one of the three signaling 
conditions. To control for potential sequencing effects, each of the 
three signaling conditions were presented according to a 
counterbalanced 3 × 3 Latin Square design to evaluate potential effects 
of treatment position and video content on the dependent variables 
(Tabachnick and Fidell, 2007; see also Figure 1). Participants were 
randomly assigned to one of the three treatment sequences, which 
were implemented as a between-subject factor.

3.2. Material and measures

3.2.1. Instructional videos
Three instructional videos covering introductory organic reaction 

mechanisms at the university level were developed (Eckhard et al., 
2022). Each video focuses on one of three chemical factors that 
influence reaction speed, namely leaving group ability (video 1), 
substrate effects (video 2), and nucleophilic strength (video 3). 
Overall, the difficulty of each video was comparable since the chemical 
factors chosen for each example can be understood independently 
from each other and do not built upon each other. To keep the design 
of the videos constant, representations on the display were arranged 
the same way and verbal explanations that accompanied the task 
followed the same structure. Videos had a length of approximately 
5 min each (for German (original) and English (translated) videos, see: 
https://osf.io/r4sx3/).

Each video was presented as a case comparisons of nucleophilic 
substitution reactions. This task format is common in chemistry 
entailing complex representations, such as structural formulas and 
electron-pushing arrows (Caspari et al., 2018; Graulich and Schween, 
2018; Bodé et al., 2019). Students needed to compare commonalities 
and differences between the representations, connect these features to 
chemical factors from the verbal explanation, and critically weigh the 
factors in terms of their influence on the reaction speed. The 
corresponding verbal explanations were narrated in line with 

https://doi.org/10.3389/feduc.2023.1062053
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://osf.io/r4sx3/


Rodemer et al. 10.3389/feduc.2023.1062053

Frontiers in Education 05 frontiersin.org

recommendations based on the modality principle (Ayres and Sweller, 
2014). The explanations followed a step-by-step structure that are 
commonly used in worked examples (Renkl, 2014). The only aspect 
in which the videos differed from each other were the example 
reactions that were chosen to highlight different factors that influence 
reaction speed. The structure of the explanation was kept comparable 
across instructional videos.

Concerning the experimental factor signaling condition, either no 
signals (i.e., control condition), static signals (i.e., permanent coloring 
of specific representational features), or dynamic signals (i.e., a 
sequential red dot) were added to the videos. The dynamic signal was 
embedded when the narration mentioned specific relevant features of 
the representations, lasting anywhere from single words to several 
consecutive sentences. For each instructional video (i.e., Videos 1, 2, 
and 3), the narrated explanation was identical in all signaling 
conditions but differed between instructional videos based on the 
content they present.

3.2.2. Pupil diameter recording and data 
pre-processing

The instructional videos were presented on a 24-inch screen with 
a 1920 × 1080 pixel resolution using the software Tobii Pro Lab. 
Participants sat in front of the screen at approximately 60-cm distance 
with headsets to follow the verbal explanation of the videos without 
distractions. Participants’ pupil diameters were recorded using a Tobii 
Pro Spectrum, an eye tracking device with a 200 Hz sampling rate 
which estimates true pupil size based on the participants’ distance 
from the eye tracker and shape of their cornea (Karch, 2018). The 
system was calibrated using 9-point calibration and subsequent 
validation. The calibration accuracy was below 0.5° for all participants 
(M = 0.30°, SD = 0.21°).

To prepare pupillometric data for analysis, raw data with Tobii 
I-VT Fixation Filter with a threshold of 30°/s were exported from 
Tobii Pro Lab. Raw data were uploaded to and processed in RStudio. 
Following Mathôt’s (2018) guidelines on pre-processing pupil data and 

adapting code from the second author (Karch, 2018), blinks were 
removed by calculating a velocity profile to identify when there were 
rapid changes in pupil size, indicating that the eyes closed, and 
removing points that fell outside of the threshold of three standard 
deviations from the median velocity (Leys et al., 2013; Kret and Sjak-
Shie, 2019). Then data were smoothed using a rolling average over 
three data points (a window of 15 ms) to remove potential noise at 
very high frequencies from instrument error. Finally, for each video, 
baseline values calculated based on the median of the first ten samples 
were subtracted from all pupil size values to give dilation data. These 
baseline-subtracted dilation values were then used for all statistical 
analyses described below (processing code can be accessed online at: 
https://osf.io/r4sx3/).

3.2.3. Cognitive load measures
We used the established self-report scales by Klepsch et al. (2017) 

to measure intrinsic and extraneous cognitive load. Participants rated 
their perceived cognitive load on a 7-point rating scale (1 = low, 
7 = high) immediately after each video. The cognitive load items were 
presented on the computer screen and were read aloud by the test 
supervisor. To adapt the measure according to the context of the study, 
the wording in the items were changed from “task” to “video.” 
Cronbach’s α indicated a sufficiently high reliability of the two scales 
(αICL = 0.91; αECL = 0.85).

3.2.4. Procedure
The study followed ethical standards recommended by the 

German Research Foundation: Upon arrival, participants were fully 
informed about the voluntary nature, goals, process, and data handling 
of this study. All participants signed a written informed consent and 
were aware that they could withdraw their consent at any time.

The study was performed in single sessions of 1.5 h in a light-
controlled environment. After completing a pen and paper 
questionnaire about demographics, participants were familiarized 
with the eye tracker and the calibration procedure. Calibration was 

FIGURE 1

Experimental 3 × 3 Latin Square design showing signaling condition, instructional video and treatment sequence. The boxes display a screenshot from 
the chemical representations that were explained in the videos and the design of the signaling conditions. All participants received the instructional 
videos in the same order with regards to content, while the order of the signaling condition differed according to their treatment sequence.
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repeated until high accuracy was reached. Then, participants were 
instructed to watch the three instructional videos carefully and that 
they could not pause or rewind. In between each video, the cognitive 
load items were asked. Once the instruction was completed, 
participants received a monetary compensation. The procedure was 
kept constant for all participants.

3.2.5. Data analyses
Our analyses of variance were focused on the effects of the 

experimental signaling conditions (within-subject measure), potential 
differences across the three instructional videos, and also included the 
sequence of experimental conditions (see Figure  1) as a between-
subject factor. To answer our research questions, we  were most 
interested in the main effects of the three signaling conditions. Position 
and sequence effects were investigated to control for potential content 
or carryover effects across conditions in our within-subject design. 
Post-hoc pairwise comparisons were performed using Benjamini-
Hochberg adjustment. As measure for the effect size (partial) η2 and 
the correlation coefficient r are reported, where values are interpreted 
according to Cohen (1988). Statistical analyses were performed using 
R Version 4.0.4 and several packages, notably ‘tidyverse’, ‘ExpDes’, 
‘rmcorr’, and ‘lme4’ (Bates et al., 2015; Bakdash and Marusich, 2017; 
Wickham et al., 2019; Batista Ferreira et al., 2021; R Core Team, 2021).

4. Results

4.1. Self-reports of cognitive load

As expected, our analysis of ICL showed no main effect for the 
experimental factor signaling condition (F(2,83) = 0.26, p = 0.769, η2 = 0.05; 
Figure 2, left). Further, we found no significant effect for the instructional 
video (F(2,83) = 2.24, p = 0.113, η2 < 0.01), whereas a significant effect was 
present for the factor treatment sequence (F(2,83) = 5.69, p = 0.005, 
η2 = 0.13). Regarding the treatment sequence, pairwise comparisons 
indicated that Sequence 2 (dynamic/static/control) showed significantly 
lower ICL compared to both Sequence 1 (control/dynamic/static, 
p = 0.003) and Sequence 3 (static/control/dynamic, p = 0.048). Sequences 
1 and 3 did not differ significantly (p = 0.319).

As predicted, the analysis of ECL showed a significant main effect 
for the experimental factor signaling condition (F(2,83) = 8.89, 

p < 0.001, η2 = 0.19; Figure 2, center). Pairwise comparisons indicated 
a significant lower ECL for the condition with dynamic signals 
compared to the condition with static signals or no signals in the 
control condition (both p < 0.001). There was no difference between 
the static and control condition (p = 1.00). Furthermore, we found no 
significant effects for the factor instructional video (F(2,83) = 1.54, 
p = 0.221, η2 = 0.04) or the factor treatment sequence (F(2,83) = 2.88, 
p = 0.062, η2 = 0.07).

4.2. Pupil diameter

With regard to mean pupil dilation values, the analysis showed a 
significant main effect for the experimental factor signaling condition 
(F(2,83) = 3.24, p = 0.045, η2 = 0.08; Figure 2, right), no significant effect 
for the instructional video (F(2,83) = 1.72, p = 0.186, η2 = 0.04), and no 
significant effect for the factor treatment sequence (F(2,83) = 1.04, 
p = 0.355, η2 = 0.03). Although the average measures for all pupil data 
suggest that during task participants’ eyes were constricted compared 
to baseline, pairwise comparisons indicated a significant larger relative 
dilation for the condition with dynamic signals compared to the 
condition with no signals in the control condition (p = 0.001). There 
was no significant difference between the static and control condition 
(p = 0.065) and between the static and the dynamic condition 
(p = 0.195).

To gain more fine-grained insights into the processes of the video 
consumption, students’ pupil dilation has been analyzed across time 
for each of the videos. Figure  3 illustrates the time course of the 
average pupil dilation across participants for each of the three videos 
and separated by treatment condition. Peaks and valleys represent 
changes in pupil dilation over time, where peaks represent instances 
of higher cognitive load. These graphs show that the dilatory response 
to videos 1 and 3 were consistently higher in the dynamic condition 
compared to the control and static condition, and that the control 
condition was the lowest, while the mean dilations across time for 
video 2 tended to be more similar. Additionally, the shapes of the 
graphs, i.e., where there tended to be peaks and valleys, were relatively 
similar across all three conditions, suggesting that students may have 
experienced stimuli that induced cognitive load at similar points. This 
is what we would anticipate, as the scripts and video were identical 
across all three conditions. These time course graphs provide 

FIGURE 2

Means for intrinsic cognitive load (left), extraneous cognitive load (center), and pupil dilation (right) by signaling condition. Points indicate mean-values, 
error bars 95% confidence intervals. Results of pairwise comparisons are indicated by significance levels (NS. p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001).
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additional qualitative evidence that the mean pupil dilations shown in 
Figure 2 (right) reflected differences that were maintained across the 
entire course of each instructional video.

4.3. Correlation between cognitive load 
and pupil dilation

Repeated measures correlation coefficients for pairwise 
correlations between self-reported cognitive load scales (ICL and 
ECL) and pupil dilation were calculated to analyze the relationship 
between these measures. Findings indicate a negative association 
between ECL and pupil dilation, rrm (55) = −0.25, 95% CI [−0.48, 
−0.02], p = 0.06 (Figure  4, left), i.e., when students report higher 
extraneous cognitive load after watching the video, their mean pupil 
dilation is more negative, indicating smaller pupil size. The association 
between ICL and pupil dilation is also negative, but smaller and not 
significant (rrm (55) = −0.10, 95% CI [−0.30, 0.17], p = 0.46; Figure 4, 
center). The association between ICL and ECL is positive (rrm 
(55) = 0.53, 95% CI [0.33, 0.72], p < 0.01; Figure 4, right).

5. Discussion

This secondary analysis followed a conceptual and a 
methodological goal. The first goal was to investigate how different 

types of signaling impacted students’ cognitive load while watching 
instructional videos containing complex chemical representations. 
The second goal was to examine the relationship between pupil 
dilation and self-reports while altering different types of cognitive 
load. To approach these goals we implemented dynamic, static, or no 
signaling in instructional videos and recorded pupil dilations with an 
eye-tracker as well as collected self-reports on intrinsic and extraneous 
cognitive load with an established questionnaire.

The analysis of ICL self-reports showed no main effect for the 
experimental factor signaling condition. This result was expected 
since the difficulty of each instructional video was kept comparable. 
A main effect was found for the treatment sequence, indicating that 
participants perceived the instructional videos to be easier when they 
received them in the order dynamic–static–control. This finding may 
possibly be  attributed to fading-out support over time—an 
instructional principle that is well-known in research concerning 
worked examples (Renkl, 2014). In such a fading procedure, full 
support is provided in the first example. Then, in the following 
examples, the amount of support decreases until only the problem that 
is to be solved is left.

Results of ECL self-reports showed a significant reduction for 
dynamic signals as compared to static or no signals. Consistent with 
CLT and CTML (Sweller et al., 2019; Mayer, 2021), the reduction of 
ECL through dynamic signals can be attributed to a reduction of 
search space. Showing a dynamic signal facilitated information 
selection from the visual representations. Furthermore, the dynamic 

FIGURE 3

Pupil dilation over time per video and across different signaling conditions.

FIGURE 4

Repeated measures correlation plots for the association between pupil dilation and extraneous cognitive load (ECL; Left) and intrinsic cognitive load 
(ICL; Center), respectively, as well as between ECL and ICL (Right). Each participant provides three data points (one per video) that are shown in a 
different color. The colored lines show repeated measurement correlation fits for each participant. The black line indicates the overall regression line.
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signal supported integrating the audible explanation and the visual 
representation. Based on the dual-coding assumption and the CTML, 
we  argue that the dynamic signal from our instructional video 
supports the integration of the auditory and visual information in 
working memory by increasing attention to relevant entities, and, thus 
freeing up working memory capacity that otherwise would 
be  attributed to searching the relevant representations that are 
mentioned in the explanation. Considering the intrinsic complexity 
of the chemical representations, reducing unnecessary load might 
support students in overcoming their difficulty in connecting these 
representations with the underlying concepts (Graulich, 2015).

Given this finding, we  would have expected there to be  a 
corresponding decrease in cognitive load as measured by pupil 
dilation. However, results showed significantly larger pupils in the 
dynamic signaling condition as compared to the control condition 
without signals, but not significantly different for the comparisons 
dynamic—static and static—control. This result is surprising because 
we anticipated that a dynamic signal would decrease cognitive load, 
and thus lead to smaller pupil dilation (Hess and Polt, 1964; Klingner 
et al., 2010). A possible explanation might be that dynamic signaling 
increased cognitive processing, e.g., working memory allocated to 
productive mental effort, as opposed to cognitive load, e.g., working 
memory allocated to deal with a task (Krejtz et al., 2020; Shechter and 
Share, 2021). Comparing both results, the reduction of ECL by self-
reports and the increase of pupil dilation, supports the interpretation 
of increased cognitive processing. When ECL is reduced and ICL stays 
constant, more working memory capacity can be directed toward 
(productive) mental effort, such as cognitive schemata formation, 
which is in line with findings described in TERP-literature (Mitra 
et  al., 2017; van der Wel and van Steenbergen, 2018; da Silva 
Castanheira et al., 2021; Shechter and Share, 2021; Zhou et al., 2022). 
Another explanation might be  that dynamic signals increased 
curiosity because of their movement, which would also be reflected in 
pupil diameter changes (van der Wel and van Steenbergen, 2018). 
Although we applied a tight research design varying only one factor, 
we  cannot rule out this explanation because we  did not collect 
additional affective variables. Consequently, further research is needed 
to inform a valid interpretation of findings based on changes in pupil 
diameter in the context of multimedia learning and complex, domain-
specific representations.

One limitation of studies with pupillary data is that they 
cannot be interpreted in isolation, because pupillary signals may 
have many confounding sources. However, secondary sources of 
evidence can be used to support interpretation of pupillary data 
(e.g., Franklin et al., 2013; Krejtz et al., 2020; Miller and Unsworth, 
2020; da Silva Castanheira et al., 2021). Our first secondary source 
of evidence are the self-reports of cognitive load, as discussed 
above. Our second source is evidence from two earlier studies from 
our research group that found gains in overall learning 
performance and retention moderated through dynamic signals in 
instructional videos (Rodemer et al., 2021, 2022). In the case of the 
control condition without signaling, ECL was higher and pupil 
dilation was lower, indicating that cognitive resources might 
be  occupied by a visuospatial searching process. Without 
appropriate support, cognitive resources may have been 
overloaded, leading to participants’ disengagement with the 
instruction, which is reflected in smaller pupil size and thus less 
mental effort (Peavler, 1974; Krejtz et al., 2018; van der Wel and 

van Steenbergen, 2018). In the case of the dynamic signaling, ECL 
was lower and pupil dilation was higher, and learning gains were 
increased, suggesting that the additional cognitive effort indicated 
by pupil dilation was a result of productive mental effort that led 
to these increased learning gains (Mitra et al., 2017; van der Wel 
and van Steenbergen, 2018).

Repeated measures correlation analyses show a significant 
correlation between pupil dilation and ECL but not ICL. This suggests 
the perceived inherent difficulty of the videos to be unrelated to the 
extent of cognitive processing, while the video design, e.g., the 
signaling condition, seems to be the more important factor, at least in 
the present study. Mitra et al. (2017) showed that pupils dilated to 
different types of cognitive load. In their study, they altered the 
intrinsic difficulty (ICL) of the tasks while keeping the extraneous 
difficulty (ECL) constant. However, their study used very simple tasks 
that are hardly comparable to the rather complex instructional videos 
we  used in our experiment, since the chemical representations 
presented require specific domain-specific understanding which is not 
the case for the graphs used in the study by Mitra and colleagues. 
Although our results indicate a crucial role of the instructional design 
that takes the extraneous difficulty into account, more systematic 
research is needed to further investigate the relations between different 
types of cognitive load and pupil dilation, particularly during domain-
specific learning tasks.

6. Implications for practice and 
research

When designing this experiment, we argued that instructional 
design should be  modified with the goal to reduce extraneous 
cognitive load, e.g., by implementing dynamic signals. The results 
from this study suggests that not only do dynamic signals reduce 
ECL, this reduction may free up enough mental resources that 
students have a larger capacity to grapple with the task itself or with 
learning processes. This is suggested by the presence of larger pupil 
sizes during tasks with lower reported ECL, suggesting that students 
were still cognitively engaged and putting mental effort into the task. 
This has several implications for practice. First, implementing 
dynamic signaling in instructional videos may support student 
learning in the class. Second, although the videos in our study were 
designed to all have the same relative level of difficulty, it is possible 
that the resources freed up by reducing ECL may free up space for 
higher levels of ICL. That is, dynamic signaling may be  a useful 
scaffold when instructors introduce more intrinsically difficult tasks. 
Third, our study provides support for a transfer of the fading principle 
to the application of signaling in instructional videos. The fading 
principle describes gradually fading support over time which was 
originally described in Renkl’s (2014) theory of example-based 
learning. Finally, although our study focuses on the use of dynamic 
signaling in organic chemistry instructional videos, the theoretical 
foundation of the work is not drawn from chemistry but rather 
CMTL, thus it may be possible that our findings on the effect of 
dynamic signaling in instructional videos may be  applicable to 
other domains.

With regards to research, we  demonstrated the utility of 
triangulating findings from self-report cognitive load measures and 
pupillometric data. In particular, we showed that combining these two 
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streams of data facilitated a more nuanced analysis of the possible 
effect of reducing ECL, e.g., freeing up resources for students to engage 
and provide effort in other ways when working with the task. Our 
research demonstrates promising potential that in combination with 
secondary data sources (self-reports and student outcomes), pupillary 
data can be meaningfully interpreted in more naturalistic and complex 
educational tasks, such as the case comparisons reported here. Future 
research should investigate pupil dilation by systematically varying 
stimuli with different levels of difficulty to induce different amounts 
of intrinsic cognitive load.

7. Conclusion

This study found that dynamic signals as compared to static or no 
signals reduced students’ self-reported extraneous cognitive load 
without impacting intrinsic cognitive load during the consumption of 
instructional videos containing complex chemical representations. 
Furthermore, significant correlations were only found between pupil 
dilation and self-reported extraneous cognitive load, but not intrinsic 
cognitive load. Our results call for a stronger emphasis on instructional 
design to manage cognitive load. Based on the assumption that pupil 
dilation indicates mental effort, more systematic research is needed 
that investigates different types of cognitive load across tasks and 
instructions that vary in context and complexity.
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