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This paper discusses the potential of two computational modeling approaches in 
moving students from simple linear causal reasoning to applying more complex 
aspects of systems thinking (ST) in explanations of scientific phenomena. While 
linear causal reasoning can help students understand some natural phenomena, 
it may not be sufficient for understanding more complex issues such as global 
warming and pandemics, which involve feedback, cyclic patterns, and equilibrium. 
In contrast, ST has shown promise as an approach for making sense of complex 
problems. To facilitate ST, computational modeling tools have been developed, 
but it is not clear to what extent different approaches promote specific aspects of 
ST and whether scaffolding such thinking should start with supporting students 
first in linear causal reasoning before moving to more complex causal dimensions. 
This study compares two computational modeling approaches, static equilibrium 
and system dynamics modeling, and their potential to engage students in applying 
ST aspects in their explanations of the evaporative cooling phenomenon. To make 
such a comparison we analyzed 10th grade chemistry students’ explanations of 
the phenomenon as they constructed and used both modeling approaches. The 
findings suggest that using a system dynamics approach prompts more complex 
reasoning aligning with ST aspects. However, some students remain resistant to 
the application of ST and continue to favor linear causal explanations with both 
modeling approaches. This study provides evidence for the potential of using 
system dynamics models in applying ST. In addition, the results raise questions 
about whether linear causal reasoning may serve as a scaffold for engaging 
students in more sophisticated types of reasoning.
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1. Introduction

Systems thinking (ST) has gained recognition as a necessary approach for addressing 
complex problems in various domains (Assaraf and Orion, 2005; Jacobson and Wilensky, 2006; 
Meadows, 2008). Although much of the research in ST was in disciplines such as biology and 
Earth science (Yoon et al., 2018), lately there has been a growing awareness and advancement 
in integrating ST in chemistry education (Flynn et al., 2019; Orgill et al., 2019; York et al., 2019), 
moving the field forward in an effort to apply ST across disciplines. In recent years, the 
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integration of ST into science education standards has been adopted 
by a number of countries (National Research Council, 2012; Reynolds 
et al., 2018; Chiu et al., 2019). According to Meadows (2008), a system 
is an interconnected set of elements that demonstrates behavior that 
cannot be understood by examining individual elements in isolation. 
There have been numerous efforts to operationalize ST and develop 
frameworks for evaluating its application (Richmond, 1993; Assaraf 
and Orion, 2005; Hmelo-Silver et al., 2007b).

Despite various approaches in developing students’ understanding 
of ST, educators continue to face challenges in its application. Many 
students explain complex phenomena using simple linear cause and 
effect relationships (Sweeney and Sterman, 2000; Chi, 2005; Chi et al., 
2012; Grotzer et al., 2013; Tripto et al., 2013). However, simple linear 
cause and effect mechanisms cannot account for phenomena that 
involve equilibrium, feedback, cyclic patterns, and perturbations 
(Richmond, 1993). Hence, there is a need to facilitate student 
understanding of non-linear system behaviors to cultivate scientific 
reasoning and produce scientifically literate citizens (Meadows, 2008; 
Ke et al., 2021). Despite attempts to engage students in mechanisms 
that go beyond linear causal thinking, students have shown resistance 
to adopting an ST approach (Assaraf and Orion, 2005; Chi, 2005; 
Hmelo-Silver et al., 2007a; Chi et al., 2012).

It has been nearly four decades since scholars began attempting to 
utilize technology to enhance students’ understanding of ST 
(Costanza, 1987; Mandinach, 1989; Metcalf et  al., 2000). 
Computational modeling tools have emerged as a promising avenue. 
There are three main approaches in the field: static equilibrium 
modeling, system dynamics modeling, and agent-based modeling. 
Static equilibrium modeling is a computational approach that 
facilitates the creation of linear and/or branching cause and effect 
relationships such that changes to one variable are instantly reflected 
by changes in the values of related linked variables (Bielik et al., 2018). 
Unlike static equilibrium modeling, system dynamics modeling allows 
representation of changes in a system over time (Sterman, 2002; 
Martinez‐Moyano and Richardson, 2013), opening the door for 
representing dynamic equilibrium and feedback. Agent-based 
modeling, another time-based modeling system, enables users to 
explore the actions of individual agents in the system and observe the 
impact of their interactions on the emergent behavior of the system 
(Wilensky and Resnick, 1999; Jacobson and Wilensky, 2006). All of 
the approaches enable users to test and evaluate their models (Bielik 
et al., 2018). In this paper, we focus on static equilibrium and system 
dynamics modeling. There are two main reasons to prioritize these 
two approaches. Firstly, both approaches share similar underlying 
affordances that enable the setting of causal relationships between 
variables. Secondly, from a practical standpoint, there is a software 
tool that we  will discuss in detail later, which facilitates seamless 
switching between these approaches. This feature significantly reduces 
the learning curve associated with adapting to a new 
digital environment.

Few studies have compared the effects of various modeling 
approaches on students’ application of ST (Carolyn and Lee, 2019). In 
this study, we advance our understanding of how to support students 
in system modeling by analyzing the effects of static equilibrium and 
system dynamics modeling on students’ explanations and the 
mechanisms they use to understand complex phenomena. We also 
explore to what extent engagement in a simpler modeling approach 
serves as a scaffold to support students in applying more complex 

aspects of ST. Our goal is to gain insights into computational tools and 
scaffolds that can expand students’ ideas from linear to more complex 
non-linear thinking.

2. Theoretical framework

2.1. Linear causal reasoning

Linear causal reasoning is a fundamental way in which individuals 
explain the world and make sense of their surroundings from a young 
age (Driver et al., 1985; Leslie and Keeble, 1987). This method of 
explanation is commonly used in science to describe mechanisms, 
such as the direct linear relationships between mass, acceleration, and 
force in Newton’s third law. Science education often teaches students 
to reduce complex mechanisms to simple cause and effect 
relationships, leading to a reductionist approach across disciplines. 
This has been observed in various areas of study, such as Earth science 
(Raia, 2005), biology (Gilissen et al., 2019), and chemistry (Tümay, 
2016). Additionally, linear causal reasoning often leads to assigning a 
central agent in a domino-like mechanism (Resnick, 1996; Galea et al., 
2010; Kahneman, 2011). While appropriate for understanding topics 
such as Newton’s third law, this method of explanation is particularly 
problematic for phenomena with dynamic features such as erosion, 
evolution, disease spread, and global average temperature rise (Sander 
et al., 2006).

In this paper, we use the term “linear causal reasoning” as coined 
by Driver et al. (1985) to refer to thinking about sequential chains of 
causes and effects. This tendency has further generated more nuanced 
terminologies. Chi et al. (2012) made a distinction between a direct-
causal schema and an emergent-causal schema. Accordingly, the 
direct causal schema relies on linear, narrative-like cause and effect 
scripts that when applied in the context of complex and non-sequential 
processes often result in developing non-canonical understandings. 
Perkins and Grotzer (2005) suggested evaluating students’ 
explanations according to dimensions of causality, differentiating 
between various levels of causal explanations in each of these 
dimensions. Grotzer et al. (2013) differentiated students’ explanations 
as event-based or process-based. For example, they noticed that 
students interpret ecosystems as distinct events with linear cause and 
effect explanations (event based), instead of a dynamic time-based 
mechanism (process based), which is more appropriate in that context.

2.2. Systems thinking

Although students need to develop linear causal reasoning, having 
access to only this type of reasoning restricts the types of problems 
and phenomena students can explore. Enabling students to familiarize 
with non-linear reasoning prepares them to be scientifically literate 
citizens equipped with the intellectual tools to understand and address 
complex issues and phenomena such as global warming, the spread of 
diseases, and the impact of invasive species on ecosystems (Liu and 
Hmelo-Silver, 2009; Yore, 2012).

To support students in developing a more comprehensive 
understanding of the world, scholars examined the reasoning 
processes used by experts when facing complex problems (Hmelo-
Silver et al., 2007b). This line of inquiry has led to the recognition of a 
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broad range of reasoning skills commonly referred to as ST (Senge and 
Sterman, 1992; Richmond, 1993; Sterman, 2002; Assaraf and Orion, 
2005; Meadows, 2008). Despite the variations in ST approaches, there 
is a general agreement about the key aspects that support students in 
solving complex problems and understanding complex phenomena 
(Sweeney and Sterman, 2000; Hmelo-Silver et al., 2007b; Assaraf et al., 
2013). A recent literature review (Shin et al., 2022) summarized ST 
aspects that are commonly found across various studies on the topic, 
including framing problems or phenomena in terms of behavior over 
time (Richmond, 1993; Forrester, 1994), engaging in causal reasoning 
(Stave and Hopper, 2007; Meadows, 2008), and identifying 
interconnections and feedback (Richmond, 1993; Sweeney and 
Sterman, 2000; Haraldsson, 2004; Zuckerman and Resnick, 2005).

Perkins and Grotzer (2005) devised a framework that identifies 
dimensions of causality and characterizes each dimension’s complexity 
level. This framework can be  used to evaluate the application of 
systems thinking in student explanations of phenomena. The 
dimensions are agency, interactive patterns, mechanism, 
and probability.

 • Agency refers to the attribution of the cause given for a 
phenomenon. The complexity of this causal dimension can range 
from centralized agents with intentional cause to decentralized 
agents with non-intentional cause such as self-organizing or 
emergent systems.

 • Interactive patterns describe the complexity of the causal 
relationship between components in the system. Interactive 
patterns range from sequential patterns (e.g., A causes B) to 
simultaneous patterns (e.g., patterns that include feedback 
and cycles).

 • Mechanism refers to the scale or level used to explain a 
phenomenon. Mechanisms range from an explanation that 
includes macroscopic entities to an explanation that includes 
microscopic entities and underlying laws.

 • Probability denotes explanations that range from deterministic to 
random behavior of the components in the system.

Utilizing the more complex levels within each causal dimension 
is essential to make sense of complex phenomena that are often 
characterized by steady states, feedback, cyclic patterns, dynamic 
relationships, and occasional perturbations (Meadows, 2008). In 
addition, ST has recently been recognized in K-12 science curriculum 
guides (National Research Council, 2012). The challenge researchers 
have experienced is devising strategies to support students in applying 
ST. One of the most promising avenues is in the use of computational 
models (Sterman, 2002; Gilissen et al., 2019).

2.3. Computational systems modeling

Computational systems modeling offers a valuable tool for students 
to develop their problem-solving skills and explain complex scientific 
phenomena (Stratford et al., 1998; Sins et al., 2009; Chandrasekharan 
and Nersessian, 2015; Shin et  al., 2022). Particularly, it provides 
students the opportunity to explore the interconnected relationships 
between multiple variables in a system and gain a deeper understanding 
of the underlying processes that drive a particular phenomenon 

(Ainsworth, 2008; Linn and Eylon, 2011). Computational models often 
have simulation features that allow the manipulation of variables in 
these models. These simulation features provide students with the 
ability to generate outputs, which they can then compare with data 
obtained from external sources, such as empirical studies or their own 
investigations (Lorenz, 2009; Damelin et al., 2017; Hassanibesheli et al., 
2020). If the model’s output does not match the external data, students 
can revise their model or question the validity of the data source. This 
iterative process of refining the inputs and relationships between 
variables can help students to improve their models over time 
(Weintrop et al., 2016; Shin et al., 2022).

Several approaches to computational system modeling exist, each 
with its own affordances that support learning about complex systems. 
Because this research focuses on static equilibrium and system 
dynamics modeling, we will focus on these two approaches.

The first, static equilibrium modeling, provides a computational 
representation of a system that consists of a set of variables linked by 
relationships that define how one variable influences another. Any 
change to an input variable is immediately reflected in new values 
calculated for each variable in the system (Shin et al., 2022). While 
enabling users to construct models with cause and effect relationships 
between system elements, the approach encourages students to go 
beyond simple linear causal chains and create models with long 
branching structures and mediating causes (Metcalf et  al., 2000; 
Perkins and Grotzer, 2005); however, static equilibrium modeling does 
not consider time as a factor.

The second approach, system dynamics modeling, enables the 
representation of change over time and includes interactions between 
system components that include stocks and flows (Sweeney and 
Sterman, 2000; Ossimitz, 2002). Stocks refer to system components 
that accumulate or deplete over time while flows refer to system 
components that decrease or increase the amount in the stocks. 
System dynamic models allow the user to construct nonlinear 
interactions and structures such as feedback loops and to produce an 
output that represents change over time (Richmond, 1993, 1994; 
Forrester, 1994; Sweeney and Sterman, 2000). This approach addresses 
two major aspects of ST that the static equilibrium modeling approach 
cannot. The first aspect, feedback present in complex systems 
(Richmond, 1993, 1994; Forrester, 1994; Sweeney and Sterman, 2000) 
refers to any action that causes an effect back to the starting point of 
the action (Haraldsson, 2004). For example, an increase in greenhouse 
gasses (including methane) causes an increase in global temperatures. 
Warmer temperatures cause the permafrost in Earth’s Northern 
regions to thaw. The thawing of the permafrost causes the release of 
methane, which further adds to the rise in global temperatures. This 
in turn exacerbates the thawing of the permafrost, which releases 
more methane to the atmosphere, and so on. The second aspect 
addresses how a system can change over time. Many phenomena 
require the consideration of change over time in which a time lag 
between the cause and effect exists. In some cases, the delay is 
negligible, as in certain chemical reactions while in others, the time 
delay is thousands or millions of years, as in evolution or the formation 
of a canyon (Kali et al., 2003; Assaraf and Orion, 2005; Meadows, 2008).

Researchers have studied students’ use of static equilibrium 
models constructed to support sensemaking of scientific phenomena 
(Metcalf et al., 2000; Bielik et al., 2018; Shin et al., 2022), and system 
dynamics modeling (Eidin et al., 2023), but have not tested the use of 
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both in the same curriculum context. Both static equilibrium and 
dynamic modeling approaches involve applying aspects of 
ST. Although using system dynamics has the potential to engage 
students in additional ST aspects, such as identifying feedback and 
framing problems in terms of change over time, it does not guarantee 
that using a system dynamics approach gives rise to different reasoning 
and growing causal complexity. Despite its potential, constructing 
system dynamics models remains challenging and it is not clear to 
what extent their use can benefit students compared to other 
approaches (Mandinach, 1989; Sweeney and Sterman, 2000; Eidin 
et al., 2023).

In this work, we  investigate the complexity in students’ 
explanations from an ST perspective as they construct and interpret 
static equilibrium and system dynamics models. In addition, 
we examine if static equilibrium models, which engage students in 
cause and effect reasoning but are considered simpler and more 
straightforward, could serve as a scaffold for constructing dynamic 
models that include feedback and thinking in terms of change over 
time, two of the most challenging aspects of ST.

3. Research question

How do students’ explanations of static equilibrium and system 
dynamics models reflect aspects of systems thinking as indicated by 
the presence of various levels of complexity in multiple dimensions 
of causality?

4. Context

4.1. Curriculum

The present study was part of a six-week project-based learning 
chemistry unit that incorporated five investigations. The unit was 
designed to align with the Next Generation Science Standards (NGSS) 
performance expectations HS-PS1-3, “Plan and conduct an 
investigation to gather evidence to compare the structure of substances 
at the bulk scale to infer the strength of electrical forces between 
particles” and HS-PS3-2, “Develop and use models to illustrate that 
energy at the macroscopic scale can be accounted for as a combination 
of energy associated with the motion of particles (objects) and energy 
associated with the relative positions of particles (objects)” (NGSS 
Lead States, 2013). The study took place in a school setting, where 
students participated in two to three lessons per week, each 
lasting 80 min.

The unit was centered around a driving question: ‘Why do 
I feel colder when I am wet than when I am dry?’ In an introductory 
activity, students engaged in a tactile experience by placing 
droplets of water, ethanol, and acetone on their hands, followed by 
a group discussion to generate questions and hypotheses using a 
driving question board (Weizman et al., 2008). To facilitate the 
process of defining the key components underlying the 
phenomenon, students worked in small groups of three to four 
members to develop paper-pencil models, depicting the 
interrelationships among the variables. This step served as a 
foundation for a subsequent discussion comparing and contrasting 
the relative strengths and limitations of paper-pencil versus 

computational models. Students were introduced to the affordances 
of computational models, such as their ability to simulate and 
validate models using real-world data.

After the aforementioned discussion, students were instructed to 
represent their paper-pencil models as a static-equilibrium model 
using SageModeler, a free web-based modeling tool to facilitate both 
static equilibrium and system dynamics modeling (Damelin et al., 
2017). Since students had some experience in building static 
equilibrium models using SageModeler during a previous unit, they 
were provided with a brief exercise to refresh their memory before 
constructing models to address the driving question.

Throughout the unit, students took part in various learning 
experiences, such as conducting hands-on experiments, working with 
computer simulations, and analyzing real-world data, which they 
used to iteratively revise their models. Initially, the focus of the unit 
was on modeling what factors would affect the evaporation rate and 
“coldness” of an evaporating liquid. These concepts were appropriately 
modeled using a static equilibrium approach. For example, an 
increase in intermolecular attractions between the molecules of a 
liquid would mean a decrease in evaporation rate and a decrease in 
the “coldness” felt when the liquid evaporated from your skin. 
Students completed an activity where they used sensors to measure 
the change in temperature over time, creating a cooling curve for 
each liquid. This activity led to a plenary discussion on the limitations 
of static equilibrium models in representing changes over time, as 
illustrated by the evaporative cooling processes, and created a need 
for a system dynamics modeling approach.

To support students in constructing dynamic models, they 
completed an introductory tutorial, which guided them in 
constructing a simple system dynamics model of their own while 
learning about the unique features of system dynamics modeling. 
After that experience, students built a dynamic model to address the 
driving question while considering the change over time of 
components in the system.

To validate their system dynamics model, students compared the 
simulation output from the dynamic models with their experimental 
results. This process allowed students to test the validity of their 
models and refine them.

The phenomenon of evaporative cooling presents significant 
challenges from an ST perspective. Understanding why one feels 
colder when wet than when dry requires a high level of performance 
in all dimensions of causality. The transfer of kinetic energy to 
potential energy, a dynamic process that affects multiple components 
in a system simultaneously, is a fundamental aspect that must 
be  considered (Chen et  al., 2014). In addition, a comprehensive 
mechanism should address the microscopic and macroscopic entities 
involved in the process, explaining how interactions between 
intermolecular forces result in emerging patterns (Ben-Zvi et al., 1986; 
Dori and Hameiri, 2003; Krist et al., 2019). Moreover, the cooling 
effect that emerges as a result of the random movement of molecules 
requires a departure from the use of linear causal reasoning and the 
attribution of a central causal agent. Research demonstrates that 
explaining emergent properties at the macroscopic level as a result of 
interactions at the microscopic level is extremely challenging (Chi, 
2005; Tümay, 2016).

The exponentially shaped cooling curve resulting from 
evaporation cannot be explained by a simple linear cause and effect 
mechanism. Rather, it involves feedback, which is a prominent ST 
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aspect. The shape of the graph is also a result of the random movement 
of particles which accounts to an uneven distribution of kinetic energy 
among the molecules. Molecules with the highest kinetic energy leave 
the system first, causing the average kinetic energy (and thus 
temperature) to drop, lowering the evaporation rate. This feedback 
causes the liquid to evaporate and cool quickly at first, but over time 
both evaporation rate and cooling slow down as more molecules with 
the highest energy leave the system. However, explaining such 
behavior through feedback mechanisms has been documented as 
particularly challenging for students (Haraldsson, 2004; Tripto et al., 
2013). Further details about the unit and the implementation of the 
evaporative cooling phenomenon using SageModeler can be found in 
Shin et al. (2022).

Figure 1 shows an example of an appropriate static equilibrium 
model of the evaporative cooling phenomenon. Figure 2 shows an 
example of an appropriate system dynamics model of the same 
phenomenon. The static equilibrium model represents an outcome 
behavior that accounts for why different liquids have different degrees 
of “coldness” as they evaporate from the skin at different rates. For 
example, one can notice in Figure 1 the intermolecular forces variable 
eventually affects the mass of the liquid evaporated and the final 
temperature of the liquid. Figure 2 shows a system dynamics model 
simulation output in which temperature and evaporation rate steeply 
drop at the beginning and then taper off in an exponential decay 
trend. This behavior requires the construction of a 
feedback relationship.

4.2. SageModeler

SageModeler1 is a web-based open-source tool designed to 
support student learning by facilitating engagement in ST through 

1 https://sagemodeler.concord.org/

constructing, evaluating, revising, and using models (Damelin et al., 
2017). SageModeler allows students to construct static equilibrium 
and system dynamics models. The tool has two major modeling 
affordances: representation of variables and relationships and 
supporting model validation.

4.2.1. Representation of variables and 
relationships

SageModeler allows learners to represent components of the 
system as nodes in a system diagram. The nodes represent variables 
that are linked together, forming a visible network of cause and effect 
relationships. For example, consider the evaporative cooling 
phenomenon. In a static equilibrium model, one can set relationships 
in which an increase in intermolecular forces causes an increase in 
the energy required to overcome the intermolecular forces (IMFs) 
(Figure  1). In a system dynamics model, with one variable 
representing ‘amount of liquid’ and another representing ‘amount of 
gas particles,’ the user can set a different type of relationship, called 
a transfer link, to represent a flow from the liquid state to the gas 
state (Figure 2). By focusing on an explicit representation of the 
components and their relationships, SageModeler provides an 
accessible way for students to create an instantiation of their 
conception of the system.

To scaffold students in developing system models, SageModeler 
includes pull-down menus and graphs that students set to describe 
semi-quantitatively how one variable influence another. This 
eliminates the need for students to write complex mathematical 
equations or learn how to code, thus reducing cognitive load (Metcalf 
et  al., 2000). We  are not arguing that the use of mathematical 
equations or programming is not important for 21st century citizens; 
however, a viable strategy for making computational modeling more 
accessible is to reduce such barriers. In SageModeler, the relationship 
setting appears in the form of a sentence, such as, ‘An increase in 
[variable X] causes [variable Y] to increase by about the same.’ To 
define the relationship, students choose words with associated graphs. 

FIGURE 1

An example of a static equilibrium model constructed by students JU and TR. The nodes represent variables. The red and blue arrows represent a 
causal relationship between two variables. Red arrows represent a relationship in which an increase in one variable causes an increase in the other. 
Blue arrows represent a relationship in which an increase in one variable causes a decrease in the other.
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For example, a linear graph is associated with the about the same 
relationship while an exponential graph is associated with the more 
and more relationship (Figure 3).

4.2.2. Supporting model validation
SageModeler allows users to simulate their model and test it by 

comparing their model behavior to real-world data. SageModeler 
facilitates that comparison by integrating the Common Online Data 
Analysis Platform (CODAP), which offers graphing and data 
analysis tools (Finzer and Damelin, 2015) and supports data 
imported from various sources. Students can import real-world and 
experimental data or output from other expert models and compare 
it to data generated from a SageModeler simulation. The software 
allows users to create graphs from various datasets and make 
decisions about the validity of their model.

4.3. Participants

Twenty-six 10th grade students from two chemistry classes in a 
magnet school from a rural–urban fringe district in the Midwestern 
U.S. participated in this study. Each class consisted of 24 students. The 
students were selected from the two classes, one taught by Mr. H, a 
chemistry teacher with 15 years of experience, and the other one 
taught by Mr. M, a chemistry and environmental science teacher with 
6 years of experience. The sample, representative of the two classes, 
included 12 female and 14 male students, with a mixture of high- and 
low-achievers. The sample of participants was a convenience sample, 
based on students’ and their parents’ agreement to participate in 
human subject research. No data was collected on the students’ 
socioeconomic background. Among the participants, two identified 
as Black, one as Asian, and the rest as White. Both teachers had prior 

FIGURE 2

An example of a system dynamics model, which allows learners to set variables that accumulate over time and set the rate of flow between them. The 
simulation output produces mini-graphs inside the nodes, which represent change over time.

FIGURE 3

Users can set both the direction (increase or decrease) and the magnitude (about the same, a lot, a little, more and more, less and less) of relationships 
between variables in SageModeler.
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experience using SageModeler and teaching both modeling 
approaches in their classes, although in a different context than the 
evaporative cooling unit. Mr. H and Mr. M had several meetings with 
the authors to walk through the activities and experiments in the unit 
and to discuss strategies for supporting students in constructing 
models using SageModeler. These meetings, which totaled seven 
hours, served as a preparatory step before the start of the unit.

5. Methodology

To answer the research question, we utilized two primary sources 
of data: student interviews and screencasts. The interviews served as 
the main data source, enabling us to compare the differences in 
students’ explanations as they used both modeling approaches to 
explain evaporative cooling. The screencasts enabled a valuable insight 
into students’ reasoning as they constructed models using each 
modeling approach. We utilized both the screencasts and interview 
transcripts to capture student reasoning and application of ST through 
the analysis of dialog and discussion.

5.1. Interviews

Student interviewees included 11 students, 5 female and 6 male, 
with each interview lasting 45–60 min. Students were asked to explain 
the phenomenon as they walked the interviewer through their static 
equilibrium model and then their system dynamics model. These 
interviews were semi-structured and included questions such as “Can 
you walk me through your model?” and “what does your model tell us 
about the evaporative cooling phenomenon?.” The full interview 
protocol can be  found in the Supplementary material. During the 
interview students were shown their models on a laptop; their 
responses to questions and references to their model were recorded. 
The interviews were fully transcribed. Conducting interviews in which 
students walk the interviewer through their model has been shown to 
be an efficient strategy to elicit students’ understanding and reasoning 
(Schwarz et al., 2009; Eidin et al., 2023; Stephens et al., 2023). We coded 
and analyzed students’ utterances that followed questions asking them 
to use their model to explain the evaporative cooling phenomenon.

Interviews were analyzed using the dimensions of causality 
framework described by Perkins and Grotzer (2005), as it provided a 
means to assess the complexity of students’ explanations of the 
evaporative cooling phenomenon and make a fine-grained 
differentiation between linear causal explanations and more complex 
types of explanations that address ST aspects. We applied three of the 
dimensions of the framework (agency, interactive pattern, and 
mechanism). We established that only two levels of the probability 
dimension were applicable in the context of the phenomenon, and 
during the coding and analysis of the interview data, we found that 
the probability dimension exhibited significant overlap with the levels 
of the agency dimension. Therefore, we determined that the inclusion 
of the probability dimension did not yield any additional insights into 
the evaluation of students’ reasoning, so we decided not to include it 
in our analysis. Table 1 provides an overview of the different levels of 
causal dimensions and specific examples of each level in the context 
of the phenomenon. Table 2 shows which levels of complexity of each 
causal dimension align with which ST aspects.

A scientific explanation for evaporative cooling using the causal 
dimension framework suggests that the agency in the system emerges 
due to the random collisions of particles. This leads to an uneven 
distribution of energy, creating a reentrant interactive pattern. In this 
pattern, particles with the highest kinetic energy overcome 
intermolecular forces and leave the system, which lowers the average 
kinetic energy of the remaining particles in the liquid phase. 
Additionally, as the particles overcome intermolecular forces to 
evaporate, the increased distance between attracting particles results 
in an increase in potential energy at the expense of some of the kinetic 
energy of the particles. This process results in a decreasing temperature 
and evaporation rate. The explanation also describes a mechanism that 
accounts for the random collision between particles and the 
conservation of mass and energy.

Two authors coded the data after two cycles of discussions. The 
first cycle had a 75% agreement. The second cycle had a 90% 
agreement. The coders discussed their differences to achieve 100% 
agreement. Further analysis conducted using Atlas.ti software, focused 
on differences in the dimensions of causality in students’ explanations 
of the phenomenon in the static equilibrium and system dynamics 
models. Each dimension was analyzed separately, allowing for the 
detection of specific differences in students’ reasoning between the 
two modeling approaches. Of note, the time allotted during the 
interviews for students to explain the phenomenon using each type of 
model was relatively equal for both models.

The following excerpt from student KY offers an example of how 
we utilized the dimensions of the causality framework when coding 
the interview transcripts.

“The average kinetic energy is transferring into potential energy. 
And the spacing of particles and IMF is affecting that transfer. 
Potential energy is the spacing of particles when you are talking 
about evaporation. So as the spacing particles increase, so is the 
potential energy. And then IMF is the opposite of that, because the 
IMF is the attraction between the particles and it wants to keep the 
particles together and it does not want them to space out. So, if the 
IMF is keeping the particles from spacing out, then if that was high, 
the particles would not be spacing out as much and there would 
be less potential energy. And then it’s showing that the transfer from 
kinetic energy to potential energy affects the rate of evaporation.”

To code the excerpt above, we identified various dimensions of 
causality. It is noteworthy that not all dimensions are necessarily 
present in each student’s remarks. To determine the level of agency in 
the student’s explanation, we first identified the variables within the 
explanation: intermolecular forces, potential energy, kinetic energy, 
and the rate of evaporation. The student mainly focused on 
intermolecular forces as a significant variable affecting different 
variables in the system, albeit not as a central cause that accounts for 
the evaporative cooling phenomenon. Therefore, we assigned a level 
2 to the agency dimension. Moreover, intermolecular forces were also 
identified as a mediating variable that regulates the transfer from 
kinetic to potential energy and, accordingly, the rate of evaporation. 
Consequently, we  assigned a level 3 to the interactive pattern 
dimension. Additionally, since the student addressed the particle 
level and illustrated the impact of intermolecular forces on the flow 
of energy within the system, we  assigned a level 6 to the 
mechanism dimension.

https://doi.org/10.3389/feduc.2023.1173792
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Eidin et al. 10.3389/feduc.2023.1173792

Frontiers in Education 08 frontiersin.org

TABLE 1 Dimensions of causality (Perkins and Grotzer, 2005).

Agency Interactive pattern Mechanism

Level 1 Central agents with immediate influence: 

One or a very small number of key factors 

fairly directly yield the result. May 

be interwoven with intentional causality.

Example in the context of the evaporative-

cooling unit

“Adding thermal energy to the liquid 

causes evaporation. “

Simple linear causality: A impinges on, pushes, 

influences B. A is seen as not affected. (e.g., A pushes, 

pulls, initiates, resists, supports, stops B. A is typically 

seen as active as in pushing but can be passive as in 

resisting).

Example in the context of the evaporative-cooling unit

“Thermal energy increases Kinetic energy and potential 

energy”

Surface generalization: Simply describes the 

regularity under consideration in a generalized way 

(“When it is hot and it rains, there is lightning”) or 

confuses correlation with causation. (“Heat and rain 

cause lightning”)

Example in the context of the evaporative-cooling unit

“When water evaporates of your hand your hand feels 

colder”

Level 2 Nonobvious central agents: with a passive 

role or spatially delayed (e.g., 

intermolecular forces)

Example in the context of the evaporative-

cooling unit

“Adding thermal energy causes the increase 

in kinetic energy that causes the increase of 

space between particles, which causes an 

increase in potential energy. Intermolecular 

forces of the substance affect this process 

and have an impact on the rate of 

evaporation.”

Multiple linear causality: Multiple unidirectional 

causes and/or effects: Multiple immediate causes and/

or multiple immediate effects; Domino casualties in 

which effects in turn become causes as in simple 

causal chains like A causes B causes C or branching 

patterns; Necessary and sufficient causes, etc. Often 

includes previously neglected agents of lower saliency 

in the causal story.

Example in the context of the evaporative-cooling unit

“The amount of thermal energy increases the amount 

of potential energy which increases the rate of 

evaporation”

Token Explanation: Some entity or phenomenon, 

intentional or not, made things come out that way. 

Entity/phenomenon’s behavior parallels outcome, no 

real differentiation. | (“Static electricity makes it 

happen. “)

Example in the context of the evaporative-cooling unit

“Thermal energy makes evaporation happen”

Level 3 Additive causes: Cumulative effects over 

time (e.g., erosion).

Example in the context of the evaporative-

cooling unit

“There is a decrease in the temperature of 

the evaporating substance over time, as 

molecules with higher kinetic energy 

continue leaving the system.”

Mediating cause: At least three agents in play, M 

mediates the effect of A on B but not simply in the 

sense of A causes M causes B (e.g., M is a barrier to A 

affecting B, or a catalyst, or an enabling condition).

Example in the context of the evaporative-cooling unit

“The transfer from kinetic energy to potential energy is 

controlled by the intermolecular forces of each 

substance as it dictates how much kinetic energy is 

required to eventually cause evaporation.”

Functional explanation: Explains in terms of purpose 

(Giraffes have long necks so that they can eat the 

leaves on the top of the tree.)

Example in the context of the evaporative-cooling unit

“In order to evaporate a substance, you need more 

kinetic energy”

Level 4 Emergent entities and processes-The 

actions of many individual agents at a 

lower level converge to give rise to new, 

complex patterns that are not easily 

anticipated based on the lower order 

actions

Example in the context of the evaporative-

cooling unit

“The random collisions between particles 

set the average kinetic energy of the system, 

that will affect overcoming the 

intermolecular forces between the particles 

of the substance that eventually result in 

evaporation.”

Interactive causality: Two-Way Causality: Interactive 

causation with a mutual effect (as in particle 

attraction); Mutual cause with two outcomes (as in 

symbiosis); Relational causality where the outcome is 

due to the relationship between two variables, (as in 

pressure or density differentials).

Example in the context of the evaporative-cooling unit

“The molecules with the highest kinetic energy leave the 

liquid substance first, leaving the rest of the system with 

a low kinetic energy.”

Commonplace elements: Constructs explanations 

with familiar elements of the system in question 

rather than those underlying it.

Example in the context of the evaporative-cooling unit

“The temperature of the substance is decreasing as it 

evaporates”

Level 5 Reentrant causality: Simple causal loops as in 

escalation and homeostasis.

Example in the context of the evaporative-cooling unit

“As the molecules with the highest kinetic energy 

leave the liquid, average kinetic energy decreases, and 

as a result evaporation rate decreases, this process 

repeats itself causing evaporation rate to decrease 

over time.”

Analogical model: System explains target 

phenomenon by analogy and analogical mapping 

(e.g., electricity as fluid flow).

(Continued)
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5.2. Screencasts

We conducted a screencast analysis of 10 groups engaged in 
constructing models using SageModeler. The groups were 
composed of the same individuals who participated in the 
interviews, along with their modeling partners. The screencasts 
recorded both the screen and voices of the participants, and varied 
in length among the different groups, with an average screen time 
of 120 min per group. The analysis focused on the discussions that 
transpired between the students, between the students and their 
teacher, and among students in neighboring groups. Notably, such 
episodes of discussion were infrequent and heterogeneous across 
the groups.

The analysis specifically targeted three aspects of ST: cause and 
effect, change over time, and feedback mechanism (Richmond, 1993; 
Orgill et al., 2019; Shin et al., 2022). To assess the level of cause and 
effect, we  utilized the interaction pattern causal dimension from 
Perkins and Grotzer’s (2005) framework. The levels of the interaction 
pattern provided insight into usage of cause and effect and feedback. 
To assess thinking in terms of change over time, we  utilized the 
agency dimension with a focus on discussions about processes and 
aggregative effects. Particular attention was paid to terminology that 
indicated such thinking and included phrases such as ‘first A happens 
then B,’ ‘it starts fast, but it slows down,’ and ‘over time as this change 
and goes down, the other changes and goes up.’ We  compared 
students’ reasoning as reflected at the time they constructed their 
model and at the time they interpreted their model in the interview. 
We specifically looked for congruence between the type of reasoning 
students applied as they constructed the static equilibrium and 
system dynamics models and the reasoning they applied when they 
used their model to explain the phenomenon during the interview. 
For example, we examined correlations between discussions about 
change over time during the model construction process and the 
levels of dimensions of causality elicited in students’ explanations 
during the interviews (Table 3).

6. Results

Student utterances were coded for levels of causal dimensions 
when providing explanations using their static equilibrium models 
and compared with those made when using their system dynamics 

models of evaporative cooling. The differences indicated by the 
level of causal dimensions revealed three distinct categories 
of students:

(a) those who demonstrated a consistently low level in dimensions 
of agency and interactive pattern in both modeling approaches, (b) 
those who maintained a high level of agency and interactive pattern in 
both static equilibrium and system dynamics models, and (c) those 
who showed an increasing level of complexity in dimensions of agency 
and interactive pattern, starting with a low level in the static 
equilibrium modeling approach and shifting to a higher level in the 
system dynamics approach.

To present a detailed differentiation between students’ reasoning 
while using the two modeling approaches to explain the evaporative 
cooling phenomenon, we conducted separate analyses for each causal 
dimension. This fine-grained approach allows us to gain unique 
insights into students’ application of the ST aspect in each modeling 
approach. The figures below provide a visualization of the level of the 
three causal dimensions as elicited from students’ explanations during 
the interview as well as the number of utterances assigned to each 
level. The different color of the dots in the figure indicates the category 
each student fell under; consistently low, consistently high, and 
increasing in complexity. In the following sections, we discuss the 
results for each dimension.

6.1. Agency

According to the patterns illustrated in Figure  4, 90% of the 
students’ utterances who utilized their static equilibrium models to 
explain the evaporative cooling phenomenon, demonstrated a lower 
level of complexity in the agency dimension. It was the maximum level 
achieved for 9 out of 11 students during the interviews, as opposed to 
when they used system dynamic models. In the system dynamic 
model, 64% of students’ utterances confined themselves to a 
lower level.

Levels 1 or 2 were used as cutoffs for determining lower levels as 
they both describe simplistic agency.

Figure 4 shows students falling into three groups as previously 
mentioned: one student who’s max utterances were high for both 
modeling approaches (ER), five students who demonstrated a 
consistent lower level in both modeling approaches (CA, GR, LU, TR, 
TY), and four students who exhibited an increasing level of complexity 

TABLE 1 (Continued)

Agency Interactive pattern Mechanism

Level 6 Underlying mechanism: Properties, entities and rules 

introduced that are not part of the surface situation 

but account for it (explanation refers to laws like 

conservation of mass and energy, collision of 

particles).

Example in the context of the evaporative-cooling unit

“The increase of collisions between the particles means 

that the average kinetic energy increases. The growing 

collisions result in overcoming the interactions between 

particles.”
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when explaining the phenomenon using system dynamics models 
(BE, CH, KA, KY). The increase in levels refers to explanations that 
address aggregative effects and emergent behavior which align with 
these particular aspects of ST.

The data suggests that the use of system dynamics models 
increases the likelihood of students moving from a view that 
emphasizes a single prominent factor as the central agent affecting all 
other variables to a view that recognizes the cumulative effects of 
multiple factors over time.

Figure 5 shows the total number of utterances within each level of 
the agency causal dimension. We interpret this graph as indicating that 
the system dynamics model approach, (1) reduces the tendency to 
explain the phenomenon with a central component that has an 
instantaneous effect on the system and (2) encourages explanations 
with higher levels of complexity that consider accumulation over time 
and an emergent behavior.

Next, we present student quotes to illustrate the different levels of 
the agency causal dimension as revealed in the context of this research.

6.1.1. Level 1: salient central agent
GR: “I would say the key variable would probably be the temperature 

because we determined that thermal energy was like the starting point 
of evaporation. So, then that would be like the main thing.”

In the statement above, GR posits that the addition of thermal 
energy to the system is the primary variable responsible for initiating 
the evaporation process and, in turn, induces a cooling effect. In this 

sense, thermal energy serves as a salient central agent, warranting an 
evaluation at level 1.

6.1.2. Level 2: non-obvious central agents with 
long causal chains and branching structures

BE: “So as intermolecular force increases, the time for evaporation 
also increases. And then you  have the amount of the substance. 
Obviously, the more substance you  have, the longer it will take to 
evaporate. And then you have the kinetic energy. So an increase in 
kinetic energy of the substance causes the time for evaporation to 
decrease. Also, we said the same for potential energy. Because potential 
energy is a measure of energy, when the particles are getting farther 
apart, that means that they are more likely to evaporate.”

BE’s explanation of her static model is characterized by individual 
cause and effect relationships and shorter causal chains, rather than a 
prominent variable that directly influences a specific output. Due to 
the absence of a salient central agent and a more complex causality 
relationship considering the influence of different components in the 
system on each other, this explanation is evaluated at level 2.

6.1.3. Level 3: additive causes, causes with 
cumulative effect over time

KY: “The average kinetic energy should decrease over time and then 
the potential energy should increase, which would increase the rate 
of evaporation.”

KY describes the accumulating change over time for kinetic and 
potential energy as one type of energy transfers to another. Therefore, 
this explanation is evaluated at level 3.

6.1.4. Level 4: emergent entities and processes, 
interaction of system components at a lower 
level interacting that produces new behavior

CH: “The particles that are being evaporated are taking away the 
kinetic energy of the surface area by bumping into each other and 
transferring the kinetic energy. Since they are bumping into water 
particles, they are just transferring kinetic energy. It’s not like there if 
I put water on the table, it’s not like the table’s gonna evaporate with the 
water. It’s just that the table is going to get cold. Like your hand 
got colder.”

CH explains that the random collisions between particles 
eventually lead to an uneven distribution of kinetic energy that leads 
to the evaporative cooling phenomenon. Considering how random 
behavior of components in the system lead to an emergent behavior 
at the macroscopic level warrants this explanation at level 4.

TABLE 2 An alignment between higher levels of complexity of causal dimensions and ST aspects.

Higher levels of causal dimension Alignment with ST aspects

Agency Additive causes Aligns with thinking in terms of change over time, which includes the recognition of time-related patterns within and 

across the system (Tripto et al., 2013). It also entails the determination of the time frame relevant to the phenomenon 

under concern (Richmond, 1993; Sterman, 2002)

Emerging entities and 

processes

Aligns with considering an explanation that addresses the interactions between individual components within the 

system which results in a behavior different from the components’ properties (Chi et al., 2012; Tümay, 2016).

Interaction pattern Reentrant causality Aligns with considering a feedback mechanism in which the interaction between system components results in an 

effect that loops back, causing a change in the magnitude of that effect (Wilensky and Resnick, 1999; Haraldsson, 2004).

Mechanism Underlying mechanism Aligns with thinking across levels (Wilensky and Resnick, 1999), which includes the consideration of components and 

laws that underlie the emergent behavior and those that are manifested in it.

TABLE 3 List of students who participated in the screencasts and 
interviewees.

Screencasts Interviewees

KY and AD KY

BE and AL BE

CH and SU CH

KA and MA KA

ER and AU ER

TR and JU TR

CA and NA CA, NA*

TY and BR TY

LU, FR, and DR LU

GR and AN GR

*Students were interviewed separately.
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6.2. Interactive pattern

According to the patterns illustrated in Figure  6, 73% of the 
students’ utterances who utilized their static equilibrium models to 
explain the evaporative cooling phenomenon, demonstrated a lower 
level of complexity in the interactive pattern dimension. It was the 
maximum level achieved for 6 out of 11 students during the interviews, 
as opposed to when they used system dynamic models. In the system 
dynamic model, 48% of students’ utterances were evaluated as 
lower level.

Levels 1 or 2 were used as cutoffs for determining lower levels as 
they both describe simple linear causal patterns.

Figure 6 shows students falling into three groups as previously 
mentioned: 4 students who’s max utterances were high for both 
modeling approaches (ER,CH,CA, KY), 4 students who demonstrated 
a consistent lower level in both modeling approaches (GR, LU, TR, 
TY), and 2 students who exhibited an increasing level of complexity 
when explaining the phenomenon using system dynamics models 
(BE, KA). The increase in levels refers to explanations that demonstrate 
more complex causal patterns like those that address mediating 
variables and feedback, which align with aspects of ST. Of note, the 
same students who demonstrated low level in the interactive pattern 
dimension also demonstrated a low level in the agency dimension.

Five students exhibited a relatively high level of interactive patterns 
while using static equilibrium to explain the phenomenon (CA, CH, 
ER, KY, NA). A causal explanation that included a mediating variable 
characterized those explanations. Notably, the use of a system 
dynamics approach appeared to have a significant impact on the 
inclusion of feedback (Level 5) of four students’ explanations.

Figure 7 shows the total number of utterances within each level of 
the interactive patterns causal dimension. It strengthens the notion 
that the system dynamics modeling approach is more conducive to 
addressing feedback mechanisms in students’ explanations. In 
addition, the data presented reveals a reduction in the frequency of 
simple cause and effect utterances (Level 1) in the system dynamic 
context. It is interesting to note that many students included feedback 
as part of their explanations even if their system dynamics model did 
not include a feedback loop as part of the model’s structure.

Next, we present student quotes to illustrate the different levels of 
the interactive pattern causal dimension as revealed in the context of 
this research.

6.2.1. Level 1: simple linear causality, A affects B
TY: “So as the strength of the intermolecular forces increases, the 

amount of liquid particles also increases. And the amount of gas particles 
decreases because the stronger the intermolecular forces are in the liquid, 
the harder it is for the particles to get away.”

FIGURE 4

Frequency of students’ utterances that refer to the agency causal dimension. The level variable in the y-axis refers to the four levels of complexity 
shown in Table 1. Each data point represents a single coded student utterance.

FIGURE 5

Students’ level of agency causal dimension. Each column represents 
the total number of utterances in each modeling environment. The 
level variable stands for the level of complexity, from the lowest 
value of 1 to the highest value of 4.
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FIGURE 7

Students’ level of interactive pattern causal dimension. The level 
variable stands for the level of complexity, from the lowest value of 1 
to the highest value of 5.

TY provides a simple linear relationship in which variable A 
increases variable B and A decreases variable C, in which B and C are 
the amount of substance in liquid and gas phase, respectively. Given 
the explanation’s simple linear cause and effect pattern, it was 
evaluated at level.

6.2.2. Level 2: multiple linear causality, A affects B 
affects C, may also include a branching pattern

TR: “What our model is saying is that the more thermal energy 
in particles that you have, the more kinetic energy the particles have. 
And then when they move around more, they’ll bounce around more, 
causing molecular forces to get weaker and increase the chances of 

breaking and then these breaking increases the amount of 
potential energy.”

This student describes a pattern where A leads to B and then to 
C. TR characterizes intermolecular forces as extrinsic rather than 
intrinsic properties of a substance and explains that they become 
weaker due to particle collisions instead of being overcome by them. 
However, this simplified representation of a dynamic process does 
not accurately align with the scientific consensus and may result 
from the difficulty of representing a complex concept within a static 
equilibrium model. The rather detailed causal chain warranted a 
level 2 evaluation.

6.2.3. Level 3: mediating cause, M mediates the 
effect of A on B

KY: “Right. So like I  said earlier, the average kinetic energy is 
transferring into potential energy, and the spacing of particles and 
intermolecular forces is affecting that transfer…. So if the intermolecular 
forces is keeping the particles from spacing out, then if that was high, the 
particles would not be spacing out as much and there would be less 
potential energy. And then it’s showing that the transfer from kinetic 
energy to potential energy is the rate of evaporation, which is affected by 
intermolecular forces.”

KY refers to intermolecular forces as the mediating factor that 
controls the transfer from one type of energy to another. The ability to 
create a transfer link and set a relationship that mediates this transfer 
in the shape of a valve (Figure 3) supported students in including a 
mediating cause to their explanations. This explanation was coded at 
level 3.

6.2.4. Level 4: interactive causality, two-way 
causality

BE: “So, as the particles gain kinetic energy, the higher energy 
particles are evaporating, and as they are evaporating, they are taking 
the kinetic energy with them, and that’s decreasing the temperature of 

FIGURE 6

Frequency of students’ utterances that refer to interactive pattern causal dimension. The level variable in the y-axis refers to the five levels of 
complexity shown in Table 1.
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the water on your hands. So, when you have water on your hands, it 
makes you  feel colder because that puddle of water is actually 
losing heat.”

BE describes how the evaporation affects the temperature of the 
liquid remaining and how this in turn affects the evaporation. This 
description of interdependency warranted a level 4 evaluation.

6.2.5. Level 5: reentrant causality, simple causal 
loops

ER: “So as the temperature goes down, the rate of evaporation is 
going to go down as well because it’s going to have less high kinetic 
energy because the average kinetic energy is going down. Well, we are 
going to have some particles with high, some with low kinetic energy, but 
if the average going down as the molecules with high kinetic energy leave 
the system, that means you are losing higher kinetic energy molecules 
and you are not replacing them with anything. So it just keeps going 
down slower [temperature].”

In this example, ER addresses the relationship between the 
distribution of kinetic energy within the particles of a substance and 
the rate at which its temperature decreases over time. Addressing the 
gradual change in the rate of evaporation (“keeps going down slower”) 
distinguishes ER’s explanation from BE’s. ER describes a feedback 
mechanism where the leaving of particles with high kinetic energy 
from the system results in a decrease in the average kinetic energy 
within the system. This, in turn, leads to a reduction in evaporation 
and a slower decrease in temperature, thus causing a further slowdown 
in the rate of temperature drop over time.

6.3. Mechanism

The findings presented in Figure  8 reveal that most students 
reached the highest level in which they mention an underlying 

mechanism to explain the phenomenon in both modeling approaches. 
Yet a deeper examination of the explanations shows a difference 
between the static equilibrium and system dynamics context. In the 
static equilibrium approach, students explain the evaporative cooling 
phenomenon by referring to the particle level and describing 
interactions between molecules. In the system dynamics model 
approach, in addition to addressing the particle level, students also 
address underlying laws like the conservation of mass and energy. For 
example, in the context of static equilibrium modeling, NA says, “Um, 
I think that because as the number of collisions increases, it increases the 
ability for the fastest particles to leave the system. So, as more collisions 
occur, more of those particles are going to be having that high speed, 
giving them the potential to leave the system in the form of vapor.”

In the context of system dynamics modeling, CH says, “Well, 
I believe kinetic energy does transfer into potential energy when it phase 
changes because energy cannot be created or destroyed, so when gas 
changes into a liquid and then into a solid, the energy has to be stored 
somewhere, and it cannot be stored as kinetic, so then it has to be stored 
as potential.”

Besides those differences the patterns demonstrated in Figure 9 
indicate no significant difference in the level of complexity with 
regards to the mechanism causal dimension between static equilibrium 
and system dynamics modeling approaches. Therefore, we do not 
provide examples of quotations for lower levels regarding the 
mechanism causal dimension as they were rare and insignificant.

To summarize the findings so far, we outline three salient patterns 
in the students’ explanations pertaining to the agency and interactive 
pattern dimensions as they use the model they constructed in each of 
the modeling approaches to explain the evaporative cooling 
phenomenon. Additionally, we  observed patterns in students’ 
utterances within each dimension, with more complex levels of 
explanations being prevalent as students used their system dynamics 
model to explain the phenomenon.

FIGURE 8

Frequency of students’ utterances that refer to mechanism causal dimension. The level variable in the y-axis refers to the six levels of complexity 
shown in Table 1.
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FIGURE 9

Students’ level of mechanism causal dimension. The y-axis represents the frequency of the total utterances from the interviews.

6.4. Transitioning from static equilibrium to 
system dynamics modeling

The interviews solicited descriptions of the students’ experiences 
during the transition from static equilibrium to dynamic modeling. 
Six of the 11 students reported a positive experience, stating that the 
shift from one approach to the other enabled them to better convey 
their understanding of the underlying processes. Following is a 
representative comment from a student.

KY: “I think the whole time we were doing the static model, it was 
hard because we all wanted to explain it dynamically and we had to 
refine it to a static model where it wasn’t changing over time. But then 
with the dynamic model, we got to show how it changed over time and 
explain the situation (the phenomenon). It makes more sense to look at 
a dynamic model because it’s easier to look at a situation from this 
starting point and then this is the ending point. You  can say like, 
you start with kinetic energy and then it transfers into potential energy. 
So, I feel like it’s easier to understand a situation looking at a dynamic 
model and it was easier in some ways to put our ideas into it, so it helped 
[the transition from static equilibrium to system dynamic modeling].”

The quote shows how student KY perceived the transition as 
supporting her in expressing her understanding of the phenomenon 
better in the dynamic model. She also describes a sense of frustration 
with the static equilibrium’s limitations. Additionally, three students 
mentioned that the affordances of system dynamics modeling 
supported their understanding of the phenomenon. Below is a 
representative quote from student ER.

ER: “But actually seeing the effect of intermolecular forces on the 
evaporation rate was a really big connector for me because I did not 
understand how it changes through time because at first, I thought the 
rate of evaporation was constant the entire way through the process.”

The data analysis uncovered two recurring themes in the 
responses of students who reported positive attitudes about the 
transition. First, these students displayed a greater degree of 

sophistication in the agency and interactive patterns causal dimensions 
as evidenced by their interview responses. Second, the screencasts of 
these students showed that they included time-related variables, such 
as ‘time,’ ‘time for evaporation,’ and ‘process of phase change,’ while 
constructing their static equilibrium models. In many instances, the 
inclusion or exclusion of these variables was accompanied by 
discussions regarding limitations in accurately representing the 
evaporative cooling phenomenon, such as the phase change from 
liquid to gas or the transfer of kinetic energy to potential energy. A 
summary of these findings can be found in Table 4.

For example, KY and her partner integrated in their static 
equilibrium model variables they named ‘time’ and ‘phase change.’ 
When Mr. M approached them and asked about those variables, KY 
answered, ‘We tried to represent the phase change.’ When BE was 
asked by her peers about their static equilibrium model and the 
variable they named ‘time for evaporation,’ BE answered, ‘We tried to 
represent the process of evaporation and the time it takes the substance 
to evaporate.’

At some point, Mr. M noticed that some students tried to 
represent a process in their static equilibrium models, so he addressed 
the whole class, noting, “With the tool given to us, we cannot model a 
process. We can only model position. If you got things that are procedural, 
you may want to remove them. You cannot set up a relationship like A 
becomes B.”

On the other hand, the students who did not perceive that the 
transition to a different modeling approach supported their 
understanding of the phenomenon showed a tendency to think of the 
phenomenon in a linear cause and effect fashion, as evidenced in their 
interviews and screencasts. CH and NA are a representative example 
of a group for whom the transfer to dynamic modeling was not 
sufficient to shift to a more complex explanation and model. The 
discussion during the construction of their static equilibrium model 
mostly concerned specific single relationships, even as the teacher was 
trying to get them to ‘zoom out’ and consider the overall interaction 
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between the system’s components. As they were working on their 
dynamic model, the pair continued to define linear causal chain 
relationships and interpreted the dynamic components (i.e., stocks 
and flow) in the system as cause and effect relationships.

While analyzing students’ dialog and discussion in the screencasts 
that recorded the construction and revision of their models, 
we  noticed how the limitations of static equilibrium modeling in 
representing simultaneous events created a confusion about setting 
relationships between variables. The following quote in which CA, 
NA, and ER have a discussion is a representative example for such a 
confusion (While working as a pair, CA and NA talk with ER, who is 
from a different group).

ER: So you  start off with your temperature affecting potential 
energy, but temperature does not directly affect potential energy.

NA: Yeah, it does.
ER: That’s, well, I  mean, temperature affects how far apart the 

particles are, which affects potential energy.
NA: No, because potential energy affects the spread of particles.
ER: Well, I  mean, yes. So, temperature, how does it affect 

potential energy?
NA: I mean, looking at this yesterday when we put all that heat in 

it measured the potential energy increasing because of the temperature, 
it could be related to…

ER: I’m pretty sure that it does not affect the potential energy like it. 
I’m pretty sure temperature affects the spread of particles.

CA: Yeah eventually.
ER: I am  pretty sure the spread of particles is affected by, no, 

potential energy is affected by the spread of particles.

An analysis of this dialog from a causal dimension perspective 
reveals a rather low level with both the agency and interactive pattern 
dimensions. With regard to the agency dimension students perceive 
temperature as a salient agent serving as a precursor impacting the 
other variables in the system, hence aligning with a lower level of the 
agency causal dimension. Examining the interactive pattern causal 
dimension, it is apparent that students employ a linear causal 
mechanism to explain the increase in potential energy. The assumption 
of a single variable driving the behavior of the system with a simplistic 
linear reasoning impedes students’ ability to consider simultaneous 
changes. Specifically, they overlook a simultaneous perspective in 
which kinetic energy converts to potential energy as it overcomes 
intermolecular forces. This dialog excerpt is an exemplar of how linear 
causal tendencies can constrain explanations of complex, feedback-
oriented phenomena. It suggests that static equilibrium modeling may 
not be effective in breaking these patterns of thinking.

7. Discussion

Modeling is an essential practice within scientific disciplines, 
which is crucial to engage students from a young age (Gobert and 
Buckley, 2000; Matthews, 2007; Schwarz et  al., 2009; Louca and 
Zacharia, 2012). However, modeling tools, particularly those with 
different computational modeling approaches, have distinct 
affordances that can support various learning objectives. Therefore, it 
is imperative to examine to what extent these affordances facilitate 
students’ application of higher levels of causal complexity and ST to 
make sense of a phenomenon.

The present study addresses this need by comparing students’ 
explanations of a phenomenon as they constructed and used two 
computational modeling approaches to comprehend evaporative 
cooling. Specifically, this study investigates the extent to which the 
static equilibrium and system dynamics modeling approaches support 
explanations that surpass simple linear causal reasoning and apply ST 
aspects, such as thinking in terms of change over time and identifying 
feedback. We specifically used the dimensions of causality framework 
to assess the application of ST in students explanations, as higher 
levels of dimension of causality align with ST aspects, and the 
identification of these allowed to assess the application of ST.

Based on our findings, the utilization of both static equilibrium 
and system dynamics models evoked variations in the rationales 
provided by students regarding the causal dimensions of agency and 
interactive pattern as they used the two modeling approaches. Notably, 
our investigation demonstrated that more complex levels of those 
dimensions were found in students’ responses when employing system 
dynamics models compared to static equilibrium models. We do not 
believe that those results are due to students’ gaining more experience 
in SageModeler as they progressed throughout the unit, as those 
students had prior experience with constructing static equilibrium 
models before the implementation of the unit. If anything, they were 
lacking more experience with system dynamics models.

Though the discrepancy in the level of explanations and the 
application of ST between the two modeling approaches does not 
seem surprising as static equilibrium modeling is not designed to 
support change over time, one must keep in mind that at the time 
students were interviewed they had already completed the unit, which 
included activities that aimed to support them in explaining the 
evaporative cooling phenomenon in terms of change over time. Also, 

TABLE 4 The table summarizes three criteria: (1) students’ positive 
attitudes about shifting to system dynamic modeling as elicited in the 
interviews, (2) students’ inclusion of a ‘time’ component during the 
construction of their static equilibrium models, (3) students’ engagement 
in a discussion which addressed process or change over time during the 
construction of their static equilibrium models.

Students’ 
name

Positive 
attitude 
about 

shifting to 
system 

dynamics

Time 
component 
in the static 
equilibrium 

model

Discussion 
about 

process and 
change over 

time

KY + + +

BE + + +

CH + + +

KA + + +

ER + + +

JU + − +

CA − − −

NA − − −

TY − − −

LU − − −

GR − − −

Regarding the first criteria, the plus sign indicates at least one utterance in which students 
expressed a positive attitude toward the transition from static equilibrium to system 
dynamics modeling approach. Regarding the second criteria, the plus sign indicates at least 
one event in which students included a time related variable during the construction of their 
static equilibrium model. Regarding the third criteria, the plus sign indicates at least one 
episode in which students engaged in a discussion about change over time as they were 
constructing their static equilibrium model.
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no additional information was provided to them except the models 
they constructed during the unit. Hence, we did not expect such a 
divergence in students’ explanations as our assumption was that the 
experience from the unit would have caused an overlay of the static 
equilibrium model explanations with higher level utterances. In that 
sense the findings are intriguing, because they show that each 
modeling approach prompts certain types of explanation and 
reasoning, with the use of system dynamics modeling more likely 
prompting explanations that address ST aspects. These findings align 
with prior empirical studies that have established the utility of system 
dynamics models in fostering reasoning that accounts for temporal 
transformations (Eidin et al., 2023).

The findings suggest that when utilizing either modeling approach, 
students interchangeably apply high and low levels of causality to explain 
phenomena. These results align with the cognitive theory proposed by 
Chi et al. (2012), which posits two competing causal schemas: direct and 
non-direct. The former is characterized by a linear narrative script while 
the latter is characterized by non-linear causal patterns. Notably, Chi 
(2005) and Chi et al. (2012) demonstrated that students can provide 
explanations based on both linear directionality and self-organization 
simultaneously. This theoretical framework corresponds with the work 
of other cognitive scientists who argue that two types of cognitive 
processing—one that is more intuitive and the other that is more 
logical—exist (Anderson, 1996; Kahneman, 2011). Our results 
corroborate these findings in cognition by demonstrating the presence 
of reductionist reasoning, which is based on a salient agent and simple 
linear causal chain, as well as a more complex reasoning that is based on 
thinking in terms of change over time and feedback. Based on these 
findings, we argue that a system dynamics approach has the potential to 
encourage a more complex causal schema of the phenomenon, which 
the static equilibrium model was unable to support.

The present study reveals that students who incorporated high 
level dimensions of causality into their explanations, and hence 
applied ST aspects while utilizing the system dynamics model, 
engaged in deliberations about change over time while constructing 
static equilibrium models. Conversely, students who did not 
incorporate such high levels did not engage in such deliberations. 
We  suggest that the dynamic nature of the phenomenon and the 
requirement to represent it in a static equilibrium environment may 
lead to a cognitive dissonance for some students, as a static 
representation in which variables have an instantaneous effect on one 
another did not align with the consideration of the system’s change 
over time. As such, shifting to a system dynamics approach may have 
reduced that dissonance. However, the factors that prompted such 
deliberations and the cognitive dissonance that some students 
experienced are unclear. One possibility is that the extensive time 
spent working on the static equilibrium models reinforced pre-existing 
tendencies to think in simple linear causal patterns, perpetuating a 
linear narrative schema.

This study demonstrates that the use of system dynamics models 
facilitated some students’ ability to incorporate high levels of agency, 
such as including cumulative effects over time and addressing 
emergent behavior in their explanations. Such reasoning, based on the 
order that emerges from chaos and the random behavior of system 
components, is not intuitive and often conflicts with prevalent human 
reasoning across disciplines, which emphasizes salient components 
that instantaneously affect system behavior (Assaraf and Orion, 2005; 
Hmelo-Silver et al., 2007b; Chi et al., 2012). Our contribution to the 
field lies in providing evidence that system dynamics models can 

prompt students to consider both emergent behavior and change over 
time, thereby serving as a promising tool for engaging students in 
these aspects of system thinking.

We also found that both modeling approaches had the potential 
to elicit high level explanations with regards to the interactive pattern 
dimension with a high frequency of explanations of multiple linear 
causality. These results align with previous research that has 
demonstrated the ability of static equilibrium models to support and 
encourage multiple linear causality in students’ explanations (Bielik 
et al., 2018; Shin et al., 2022). Our findings expand upon this previous 
work by demonstrating the affordances of system dynamics modeling 
in supporting students in considering a feedback mechanism. Users 
can represent feedback structures using both modeling approaches, 
and despite the fact that none of the students included a feedback 
structure in their static equilibrium or system dynamics models, their 
dynamic models prompted an explanation based on a feedback 
mechanism. The results lead us to conjecture that the model’s output 
that represents change over time elicits more sophisticated causal 
mechanisms. This claim is based on research that argues that thinking 
in terms of change over time and accounting for a feedback 
mechanism are inextricably linked, as the feedback requires the 
consideration of time delays (Richmond, 1993; Haraldsson, 2004). 
We acknowledge that the limited amount of evidence collected does 
not support a substantive generalization; however, the evidence and 
findings do point to the potential of system dynamics models in 
considering feedback as an explanatory mechanism of the evaporative 
cooling phenomenon. In that sense, this work advances the field in 
supporting students in applying feedback mechanisms, a challenge 
that has been well documented (Haraldsson, 2004; Hmelo-Silver et al., 
2007b; Martinez‐Moyano and Richardson, 2013; Tripto et al., 2013).

Our findings also show no notable differences between the two 
modeling approaches regarding the mechanism causal dimension. This 
observation can be attributed to the design of the unit, which effectively 
integrated macroscopic and microscopic levels (Dori and Hameiri, 
2003) and used various simulations that illustrate the behavior of 
particles. Additionally, the simulations allowed the students to explore 
abstract concepts such as kinetic energy, potential energy, and 
intermolecular forces, supporting students in understanding the 
underlying components that explain the system’s behavior.

Our work also contributes to the field of chemistry education, as it 
addresses some of the questions posed by York et al. (2019) about the 
potential implications for integrating ST into chemistry education. For 
example, by analyzing students’ level of the agency causal dimension in 
their explanation, we reveal that though the use of thermal energy as 
an external cause of the evaporative cooling phenomenon is prevalent, 
such misunderstanding can be  mitigated by the use of a system 
dynamics modeling approach. An implication for chemistry education 
suggests that the use of system dynamics models can support students 
in focusing on the system’s variables and distinguish those from 
external components students may use to make their explanation of the 
phenomenon more complex than necessary. Furthermore, we show 
that students’ adopting thinking in terms of change over time, which 
has also been recognized as a significant component in integrating ST 
into chemistry education (Flynn et al., 2019; Orgill et al., 2019; York 
et al., 2019), is pivotal to understanding a phenomenon in which rate 
is integral. Therefore, we  suggest that chemistry educators should 
be aware of the importance of thinking in terms of change over time, 
especially when exploring phenomena and concepts that relate to rate, 
such as chemical kinetics and equilibrium. Using system dynamics 
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models could be a promising approach to meet those goals. Our work 
suggests that a promising avenue in supporting students in 
understanding such phenomena and concepts is to engage students in 
tasks that promote thinking in terms over time, and refrain from 
encouraging a reductionist approach based on simple cause and effect 
relationships that might hinder further progress.

7.1. Research limitations

We acknowledge that the sample size of students in this study is 
small, and, therefore, caution must be exercised when generalizing the 
findings to a broader population of students. The population of students 
was also unique as the research was conducted in a magnet school 
serving students who excel in science from 16 surrounding districts. 
Furthermore, we acknowledge that the order in which students were 
asked to use each modeling approach, starting with a static equilibrium 
and then moving to a system dynamics model, might have an impact 
on the results. It might be that starting with a system dynamics modeling 
approach would impact students’ ST in a manner that would render no 
discernable difference in their explanations when subsequently using 
their static equilibrium models. Additionally, this study was conducted 
within the context of the evaporative cooling phenomenon, which 
involves understanding the emergence of phenomena from 
microscopic-level interactions among entities. It is possible that different 
phenomena involving interactions between macroscopic entities, such 
as those related to ecosystems or geology, may have yielded greater 
opportunities for the application of ST aspects in both modeling 
approaches. While the teachers played a crucial role in facilitating 
students’ understanding, this study did not focus specifically on the 
teachers’ supporting strategies due to the limited scope of the research. 
Moreover, both teachers deviated from the curriculum, particularly by 
the time the students constructed their dynamic model. A greater 
adherence to the curriculum may have resulted in a higher proportion 
of students demonstrating complex ST aspects.

7.2. Conclusion

Our study provides evidence of both modeling approaches 
supporting students in ST, though to different extents. We showed that 
system dynamics modeling promotes more complex aspects of ST 
compared to static equilibrium modeling. Our findings demonstrate 
that system dynamics modeling can support students in shifting from 
a reductionist, centralized view, in which a major variable dominates 
the system’s behavior or a simple linear cause and effect relationship 
accounts for the whole system’s behavior to a more comprehensive 
perspective that considers the dynamic changes of variables over time 
and the emergence of patterns from interaction between system’s 
components. Our contribution lies in elaborating on the potential of 
using system dynamics models to enhance ST learning and in raising 
new questions about the use of tools that support cause and effect 
reasoning as scaffolding for applying ST aspects. We  also show 
evidence that engaging students in linear causal relationships in a 
context of which a phenomenon is experienced as evolving over time 
may hinder further application of ST aspects. Given that forming 
causal relationships is fundamental to science education, our findings 
open an avenue to further investigation regarding the necessity of 

striking a balance in which linear causal thinking does not hinder the 
application of ST aspects.

Moreover, further research is needed to explore the potential of 
system dynamics modeling in different contexts, including those that 
exclusively involve macroscopic entities as well as those that involve 
both macroscopic and microscopic entities. Finally, more research is 
necessary to better understand whether scaffolding students’ 
development of complex reasoning skills can facilitate their future 
adoption of ST practices.
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