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Real-world complex systems research seeks to understand how systems in the 
world can follow the same rules of complexity. Scientists have found similarities 
in processes—such as self-organization, micro-to macro-level emergence, 
and feedback loops—in seemingly disparate phenomena such as the spread of 
infectious diseases and how traffic patterns are formed. Our project, BioGraph 
2.0, was developed to respond to the issue of students’ disjointed understanding 
of biology due to the fragmented nature of how high school biology is taught 
in high school classrooms. We  hypothesized that by framing multiple biology 
concepts through the lens of complexity using dynamic simulations, or models 
featuring complex systems processes, students would be able to see complex 
systems as a unifying concept throughout biology. We  built a series of units 
modeling phenomena on biological concepts such as gene regulation, ecology, 
and evolution using an agent-based modeling tool called StarLogo Nova. While 
previous research over the last decade of this project has highlighted students’ 
growth in complex systems understanding, in this study, we  explored the 
relationship between complex systems and agent-based models. We investigated 
pre and post intervention data from over 300 high school students to determine 
how their metamodeling knowledge influenced their understanding of complex 
systems. Through a regression analysis, we demonstrate that growth in students’ 
modeling understanding significantly predicted growth in complex systems 
understanding. We  further triangulate our findings with interview data from 
students who highlight the importance of the modeling tool to support their 
complex systems learning.
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1. Introduction

The natural and social world that surrounds us is made up of systems that follow the rules 
of complexity (Servedio et al., 2014; Camazine et al., 2020). Complex systems can be defined as 
macrolevel patterns or structures that emerge from the activity of microlevel interacting agents 
(Yoon et al ., 2018a). Researchers from different disciplines have noted that, regardless of the 
kinds of agents (e.g., predator and prey) and the ontological phenomenon under investigation 
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(e.g., ecosystems), complex systems are composed of web-like 
structures in which individuals follow rules (e.g., wolves eat rabbits; 
Chi et al., 2012; West, 2014; Bar-Yam, 2016). Complex systems also 
have intricate interdependencies and structures that exist at different 
scales (e.g., trophic levels in ecosystems; Bar-Yam, 2016). Because of 
this web-like nested structure, information travels in nonlinear ways, 
which makes understanding cause and effect in complex systems 
behaviors challenging (Grotzer and Tutwiler, 2014). Moreover, often 
the dynamics that fuel complex systems behaviors (e.g., feedback 
loops and self-organization) are hidden and take place over large time 
spans (e.g., evolution) or spatial scales (e.g., climate change), which 
limits what we can understand about the whole system at any point in 
time or place (Grotzer and Tutwiler, 2014).

It is not surprising then that students in K–12 education harbor 
misconceptions about systems. A number of empirical studies have 
shown that they tend to adopt a linear approach when thinking about 
the relationships among system components rather than recognizing 
their nested non-linear nature (Sweeney and Sterman, 2007; Gotwals 
and Songer, 2010; Riess and Mischo, 2010). For example, Gotwals and 
Songer (2010) found that students struggled with reasoning about 
how a disruption in one part of a food chain could impact changes in 
another part of the food chain that was not directly connected to it. 
These indirect relationships, as Chi et al. (2012) argue, are hard to 
comprehend because the perceptual apparatus through which 
we  observe phenomenon is limited to the information about the 
system we  have access to at a particular point in time. Another 
common challenge that researchers have discussed is the tendency for 
students to attribute an outcome to a central agent or cause (Penner, 
2000; Taber and García Franco, 2010; Levy and Wilensky, 2011). 
Students are unable to recognize that often control in systems is 
decentralized and that structures or behaviors at macro levels emerge 
from micro-level system activities. For example, ecosystems are able 
to stay in equilibrium (macro-level pattern) because of the combined 
activities of micro-level components (e.g., predator–prey interactions). 
But even more fundamentally, in a series of studies, Ben-Zvi Assaraf 
and colleagues have found that students often struggle to accurately 
identify the components that comprise a system and how those 
components are interrelated or exist as an integrated whole (e.g., 
Assaraf and Orion, 2010; Assaraf and Orpaz, 2010; Assaraf and 
Knipples,  2022).

To address these learning challenges, researchers have posited that 
computational modeling tools such as agent-based simulations could 
provide access to structures and behaviors of systems to support sense 
making and have been researching their uses and affordances (Wilensky 
and Jacobson, 2015; Wilensky and Rand, 2015; Yoon et al., 2018a; 
Mambrey et  al., 2022; Yoon, 2022). A majority of this research has 
examined learning of biological systems. In our recent systematic review 
of complex systems research in K–12 science education, we found that 
topics within the field of biology were investigated in 83% of studies (Yoon 
et al ., 2018a). Within these studies, agent-based simulations have been 
used to represent the complexity of biology systems in a more tangible 
and accessible format for students to explore complex systems thinking 
(Hmelo-Silver et al., 2017; Markauskaite et al., 2020; Housh et al., 2022; 
Jacobson and Wilenski, 2022; Yoon et al., 2022).

Models and modeling approaches have, in fact, received a great 
deal of attention in science education research due to their importance 
in conducting real-world scientific inquiry (NGSS Lead States, 2013). 

However, while learning and participation outcomes through the 
study of computational complex systems models have been generally 
understood to be  positive, we  found that only two studies in our 
systematic review (Yoon et al., 2018a) explored the relationship 
between instructional approaches that use complex systems models 
and student learning of complex systems. However, there is extensive 
research into how students conceive of models (e.g., Nicolaou and 
Constantinou, 2014; Nielsen and Nielsen, 2021). While content 
knowledge is important for working with models, so is metacognitive 
knowledge of models or metamodeling knowledge (Schwarz et al., 
2009; Upmeier Zu Belzen et al., 2019; Chiu and Lin, 2022). This study 
explores how the instructional approach of agent-based models to 
represent complex systems afforded change in students’ metamodeling 
and complex systems knowledge and the relationship between the two.

The research reported here builds on more than a decade of work in 
which we have explored the use of computational complex systems 
models to support teaching and learning in high school biology. We built 
a series of units modeling phenomena of biological concepts such as gene 
regulation, ecology, and evolution using an agent-based modeling tool 
(described in more detail below). In this program of research, we have 
explored various educational goals such as designing curriculum and 
instruction to support complex systems and biology learning (Yoon et al., 
2016), professional development for classroom instruction (Yoon et al., 
2017), building teachers’ social capital for complex systems teaching 
(Yoon et al., 2018b), a learning progression for complex systems 
understanding (Yoon et al., 2019a), and supports for teacher community 
building to scale complex systems PD in online platforms (Yoon et al., 
2020a,b). In this study, we address the need articulated in the review by 
Yoon et al. (2018a) for more studies that investigate the relationship 
between instructional approaches and student learning outcomes. 
Specifically, we investigated how students’ understanding of biological 
models using the modeling tool influenced their understanding of 
complex systems. To this end, we ask the following questions:

 1. To what extent did biology students’ complex systems and 
modeling knowledge change over time?

 2. To what extent is there a relationship between students’ 
modeling knowledge and their complex systems understanding 
for biology systems?

 3. What affordances of the modeling tool and process can explain 
this relationship?

2. Theoretical background

Knowledge and understanding of complex systems and scientific 
models are inextricably linked due to the nature of complex systems 
and the need to create models to understand and analyze them, 
however there is an additional need to understand how high school 
students perceive and utilize this link in building their complex 
systems knowledge. The Next Generation Science Standards (NGSS) 
emphasize the connection in combining the two into a single 
crosscutting concept, systems and system models, which is explained 
as “defining the system under study—specifying its boundaries and 
making explicit a model of that system—provides tools for 
understanding and testing ideas that are applicable throughout science 
and engineering” (NGSS Lead States, 2013, Appendix C, p. 1). As 
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such, there is a need to explore how both complex systems and 
scientific models are conceived by students and how those conceptions 
might influence knowledge development across both areas and their 
combined real-world applications.

2.1. Dimensions of complex systems 
understanding

Within K–12 research, several conceptual frameworks have been 
applied to what has been generally called systems learning (Yoon et 
al., 2018a). Specifically in biology, three frameworks have been 
popular for providing the theoretical foundation to understand how 
students learn: (a) systems thinking; (b) components-mechanisms-
phenomena (CMP); and (c) complexity from emergence. Briefly, 
systems thinking focuses on the interrelationships and 
interdependence of system structures, which first requires 
identifying the components that comprise the system (e.g., the 
boundaries) and then considering the dynamic relationships 
between the components (Assaraf and Orion, 2010; Assaraf et al., 
2013). Thus, the focus is on understanding particular qualities of the 
system under investigation that are unique from system to system. 
Similarly, a CMP framing emphasizes components, connections, and 
behaviors that phenomenologically define a particular system 
(Hmelo-Silver et al., 2017). Researchers have investigated aspects of 
systems understanding in CMP categories, noting that instruction 
often only focuses on macro-level structural components (e.g., trees, 
oxygen) at the expense of learning about mechanisms or behaviors 
(e.g., photosynthesis, carbon cycle) that underpin the function of a 
system (e.g., Jordan et al., 2014).

The third characterization of systems learning—complexity from 
emergence—aims to apply common processes that fuel systems. 
Researchers from this tradition recognize that systems from within 
and between disciplines often exhibit similar characteristics (e.g., 
feedback loops, self-organization, nonlinearity) that happen in 
microlevel interactions to produce macrolevel patterns (Chi et al., 
2012; Wilensky and Jacobson, 2015; Yoon et al., 2017). This framing 
of emergent behaviors from local (simpler) behaviors to global (more 
complex) structures has supported research in notable organizations, 
like the Santa Fe Institute, to investigate some of the worlds’ most 
pressing problems such as disease epidemics and climate change. Our 
own work has taken this approach to learning about systems and has 
sought to understand how students reason through specific complex 
systems dimensions (Yoon et al., 2016, 2017) that include (a) the 
predictability of effects caused by small changes to the system, (b) the 
dynamism of the mechanisms and processes underlying the system, 
(c) the level of centralization of the organization of the system, and (d) 
the scale of the effects and capacities of the system (see Yoon et al., 
2016 for more details). These four components are comprehended on 
a scale that ranges from, on one end, a clockwork framework of 
systems, in which systems are examined as individual parts, to, on the 
other end, a complex framework of systems understanding that 
acknowledges that the whole is greater than the sum of the parts. In 
other words, the properties of the whole complex system are properties 
that none of the parts have alone (Jacobson et al., 2011). In order for 
students to develop their understanding of complex systems, they 
must shift their ontological categories and move from a clockwork to 
a complex understanding of systems (Chi, 2005).

2.2. Scientific modeling and the 
importance of metamodeling knowledge

As the NGSS crosscutting concept systems and system models 
suggests, models and modeling are a vital part of science education 
but have also been identified as primary tools for achieving STEM 
integration (Kelley and Knowles, 2016; Hallström and Schönborn, 
2019). As technological advances make computational models easier 
and more accessible, the ability to interpret these models is a driving 
factor for the integration of technology into other fields of science and 
engineering that, in turn, creates a need to include modeling as a 
component of STEM courses (Schwarz et  al., 2009; Kelley and 
Knowles, 2016). To this end, numerous research studies have been 
conducted to understand and measure how students conceive of 
scientific models (e.g., Schwarz et  al., 2009; Louca and Zacharia, 
2012). The knowledge to understand and work with models, to create 
models within scientific practice, and to apply that knowledge to 
authentic context is often referred to as modeling competence 
(Upmeier Zu Belzen et al., 2019; Nielsen and Nielsen, 2021; Chiu and 
Lin, 2022). In a systematic review of empirical research on assessing 
modeling competence, Nicolaou and Constantinou (2014) found that 
modeling competence falls into two primary categories—namely, 
modeling practice, which is the ability to create and use models, and 
meta knowledge of models (also referred to as metamodeling 
knowledge), which is the understanding of the purpose, process, and 
use of models. This second category, meta knowledge of models, refers 
to the epistemological awareness about the nature and purposes of 
models and modeling, which is a form of metacognitive knowledge 
(e.g., Grosslight et al., 1991; Schwarz et al., 2009; Fortus et al., 2016; 
Upmeier Zu Belzen et  al., 2019; Lazenby et  al., 2020) rather than 
cognitive knowledge of the modeling process. In this project, students 
did not create their own models but instead engaged in activities that 
highlighted the utility of the modeling process to interpret simulated 
biological phenomenon. Thus, we use metamodeling knowledge as a 
measure of students’ understanding of scientific modeling.

In a highly cited article based on their work on the Modeling 
Designs for Learning Science (MoDeLS) project, Schwarz et al. (2009) 
sought to develop a set of learning progressions for metamodeling 
knowledge. They identified three components of metamodeling 
knowledge: nature of models, purpose of models, and the criteria for 
evaluating and revising models. The nature of models component 
includes an understanding that models are an abstract rather than 
literal representation of real-world phenomenon and that different 
models have different advantages and limitations. Purpose of models 
includes an understanding that models are a tool to advance 
knowledge about the world and specific phenomena (e.g., for 
explanation or for prediction). Finally, there should be  an 
understanding that models change based on information that is 
generated from accumulated empirical data. Thus, the component of 
change as an essential criterion for evaluating and revising models is 
an important aspect of metamodeling knowledge (Grosslight et al., 
1991; Gogolin and Krüger, 2018; Upmeier Zu Belzen et al., 2019).

In comparing student metamodeling knowledge to that of experts, 
three levels of thinking about models have been identified (Grosslight 
et al., 1991; Upmeier Zu Belzen et al., 2019). In Level 1 thinking, 
models are viewed as exact replicas of reality and are assessed based 
on whether they “correctly” illustrate reality. In Level 2 thinking, 
models are understood to have a purpose that dictates the nature of 
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the model. The model can be used to communicate something about 
the already known reality it represents, but the main focus is on the 
model itself rather than the underlying ideas. A Level 3 understanding 
identifies models as part of the scientific process from which data can 
be collected and analyzed. Gogolin and Krüger (2018) found that most 
high school students have a Level 2 understanding of the nature of 
models and a Level 1 understanding of the purpose of models, though 
with some variation across grade level and context. They noted that 
only a handful of students reached Level 3 understanding about the 
nature and purpose of models and theorized that this was due to a lack 
of emphasis on models as tools for hypothesis and prediction within 
classroom instruction. As models are becoming more ubiquitous in 
science classrooms and are an integral tool for learning about complex 
systems, there is a need for a more explicit focus on promoting 
understanding of scientific models across contexts at the high school 
level (Nicolaou and Constantinou, 2014; Gogolin and Krüger, 2018; 
Upmeier Zu Belzen et al., 2019; Lazenby et al., 2020).

2.3. Complex systems modeling

Scientific computational models such as agent-based simulations 
can help the process of developing systems thinking and an 
understanding of complexity by enabling students to dynamically 
observe the interactions and interdependencies of individual parts and 
emergent system-wide patterns as they develop over time (Chi, 2005; 
Jacobson et al., 2011; Markauskaite et al., 2020; Yoon et al., 2022). 
Several studies have been conducted on complex systems modeling 
using agent-based simulation tools such as NetLogo and StarLogo 
Nova (e.g., Hmelo-Silver et al., 2017; Yoon et al., 2017; Markauskaite 
et al., 2020). The use of the agent-based modeling simulation StarLogo 
Nova allows for three different representations of the complex system 
being modeled: first, a visual representation of the interactions of the 
complex system model; second, mathematical representations of 
specific outputs over time; and, finally, the blocks-based code 
representation used to build the model (see Figure 1). It has been 
shown that multiple representations of the same system can support 
students’ understanding of the system (Jacobson et al., 2011; Ryu et al., 
2015; Hmelo-Silver et al., 2017).

In our previous research, we have shown that the use of biological 
agent-based simulation in StarLogo Nova led to improvement in both 
biology and complex systems understanding (Yoon et al., 2017, 2020b). 
These findings are supported by the work of others, which showed that 
agent-based simulations of complex systems support the development of 
students’ understanding of complexity (e.g., Jacobson et al., 2011; Hmelo-
Silver et al., 2017). Hmelo-silver et al. (2017) found that the use of an 
agent-based computational model of an ecosystem led students to a 
deeper understanding of the causal mechanisms within a complex system 
compared to students in a control group who did not engage with models. 
However, a CMP framework for complex systems understanding only 
focuses on macro-level structural components and does not consider 
understanding of complexity from emergence. Additionally, the study 
measured modeling practice against complex systems knowledge, rather 
than focusing on metamodeling knowledge. Similarly, Markauskaite et al. 
(2020) examined modeling practices in connection with a specific 
complex system of climate change but focused more on the content 
knowledge connections than generalizable components of complex 
systems knowledge. This suggests there is space for more research into the 

explicit nature of the relationship between students’ metamodeling 
knowledge and their knowledge of complex systems (Markauskaite et al., 
2020) and how the affordances of the models support growth in 
understanding of complexity.

3. Methods

This is a mixed methods study that combines qualitative coding 
and analysis of open-ended responses with quantitative analysis of the 
coding in order to explore the relationship between students’ 
knowledge of modeling and knowledge of complex systems.

3.1. Intervention details and study 
parameters

This study is part of a long-standing program of research that has 
sought to increase engagement with and understanding of biology 
systems through the design and dissemination of a curriculum to teach 
common topics in high school biology through agent-based complex 
systems models. The curriculum is built around the computational 
modeling tool StarLogo Nova. The curriculum includes five units, each of 
which utilize their own complex system model, and each of which focuses 
that model on a particular topic typically taught in high school biology: 
genetics, evolution, ecology, the human body, and animal systems. They 
entail working with the scientific models to engage in core scientific 
practices as outlined in the NGSS, such as analyzing and interpreting data, 
engaging in argument from evidence, and obtaining, evaluating, and 
communicating knowledge claims. The student and teacher materials for 
the units engage learners with the nature and purpose of models by asking 
students to make predictions about what will occur in the system and 
then having them change the model parameters to test and observe what 
happens. Figure 2 presents a page from the student activity packet for the 
human body model; students are asked to observe the model, predict 
what the model will do using different input conditions, and then run the 
model with different conditions and record what the model does. Students 
normally worked in groups of two to complete the units, each of which 
take 2 to 3 days to complete. The program of research has been published 
on extensively; see previously published work for more details on the 
context of the program (e.g., Yoon et al., 2019b; Yoon, 2022).

This study encompasses data collected during the 2019–2020 and 
2020-2021school years. The project shifted from an in-person format 
for teacher recruitment and training to an online format in 2018; 2019 
was the first year that the program was fully accessible online for 
teachers to participate in training. It is important to note that the 
Coronavirus pandemic began during spring of 2020 and, as a result, 
the context of classroom implementation shifted across the time 
period of this study, as many teachers switched from in-person to 
hybrid or fully remote learning.

3.2. Participants

One of the goals of the larger study was to understand the efficacy and 
effects of the curriculum across different contexts. As such, this study 
involved eight teachers from five different schools in two countries 
(U.S. and India). These teachers were chosen from the larger group of 42 
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teachers who completed the online training course in 2019 based on 
several parameters, including their high level of engagement with the PD 
course, their commitment to implementing at least three of the five 
modules throughout the school year, their student populations and the 
degree of survey completion, and their interest in and enthusiasm for 
participating in the study. Ultimately the primary reason for selection was 
the teachers’ agreement to participate in the research. The study 
encompasses 2 years of implementation. Three of the eight teachers 
implemented the curriculum in both years of the study. The teachers all 
identified as female, and their teaching experience ranged from 3 to 
28 years in the classroom. A summary of the teachers’ descriptive statistics 
can be found in Table 1. Each of the participating teachers implemented 
at least three of the units; therefore, the participating students worked with 
at least three different agent-based simulations of complex systems.

A total of 369 students participated in this study. Descriptive 
statistics for the student participants can be found in Table 2. Most of 
the teachers implemented the curriculum with ninth-grade students; 
however, a few of the classes were mixed grade and therefore included 
upper classmen.

3.3. Data sources

To investigate our research questions, survey tests of students’ 
pre-and post-implementation complex systems knowledge and 
metamodeling knowledge were conducted in both years, and student 
focus group interviews were conducted in Year 2 to further probe the 
relationship between modeling and complex systems knowledge.

FIGURE 1

StarLogo Nova Interface: Model on Evolution. The top image shows the simulations of the fish interacting in the virtual environment. The mathematical 
representation can be seen in the top right in the form of a time-series graph, and the bottom half of the figure depicts the code used to build and run 
the simulation.
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Students completed two surveys pre-implementation and two 
surveys post-implementation. Though the surveys contained the same 
questions, they were administered 9 months apart, to mitigate the 
effects of item exposure. The first survey consisted of one open-ended 
question to measure their knowledge of complex systems (i.e., “Imagine 
a flock of geese arriving in a park in Philadelphia, where geese have not 
lived before. Describe how the addition of these geese to the park may 
affect the ecosystem over time. Consider both the living and nonliving 
parts of the ecosystem.”). The second survey included three open-ended 

questions about scientific models. These were: (a) How would 
you describe what a scientific model is to someone who did not know 
what a model is?; (b) Describe what models are used for and how they 
could be used in science; and (c) What, if anything, would cause a 
scientist to change a model of a scientific concept? These three prompts 
about models were designed to solicit understanding of the three 
components of metamodeling knowledge (Schwarz et al., 2009).

In Year 2, which was taught mostly remotely or through hybrid 
remote and in-person learning, virtual semi structured focus group 

FIGURE 2

Student Activity Packet: Enzymes in the Human Body.

TABLE 1 Teacher descriptive statistics.

Teacher School Country Years of teaching 
experience*

Year implemented # Students 
2019–2020

# Students 
2020–2021

1 A India 28 2019–2020 7

2 A India 15 2019–2020 26

3 B India 20 2019–2020 10

4 C U.S. 7 2019–2020 14

5 C U.S. 13 2019–2020, 2020–2021 51 33

6 D U.S. 8 2019–2020, 2020–2021 46 58

7 D U.S. 5 2019–2020, 2020–2021 36 57

8 E U.S. 3 2020–2021 31

Total 190 179

*At end of 2019–2020 school year.
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interviews were conducted over Zoom with one or two groups of three 
to five students from each class for a total of six focus group interviews 
across the four teachers participating in Year 2 implementation. These 
interviews sought to explore how students experienced the models in 
relation to their understanding of complex systems and conduct 
deeper exploration into the affordances those models and the process 
of modeling provided in order to more fully answer the third research 
question. Some example questions from these interviews include: 
Based on your understanding of biological systems, what 
characteristics do they exhibit, and how do you know this from the 
models? and What do you think are characteristics of good scientific 
models or explanations in terms of helping you learn or understand 
the science behind them? These interviews ranged in length from 52 
to 66 min and were recorded and transcribed for analysis.

3.4. Data analysis

Analysis for this study was conducted using a mixed methods 
approach that combined qualitative and quantitative strategies for 
measuring student learning of scientific models and complex systems.

3.4.1. Coding of students’ complex systems and 
metamodeling knowledge

Three separate rounds of qualitative analysis were conducted on the 
data for this study: coding of the open-ended responses on content 
knowledge for complex systems; coding of the open-ended responses on 

metamodeling knowledge; and mining of interview transcripts for 
information that supported the findings from the coding and 
quantitative analyses.

The coding manual used for coding the complex systems open 
responses has been reported on previously (see Yoon et al., 2016, 2020b). 
The coding manual was originally constructed from theories presented in 
Pavard and Dugdale (2000) and refined based on Jacobson et al. (2011) 
and through over a decade of use in studying complex systems 
understanding. The manual consists of four components each scored on 
the level of understanding as 1 (clockwork), 2 (emerging complexity), or 
3 (complex) for a possible total score from 3 to 12. Table 3 presents 
descriptions of the components and example responses from students at 
the clockwork and complex levels of understanding. For example, the 
student response provided below is an example of a Level 3 (completely 
complex) understanding in the component of predictability because the 
student lists many different options for potential directions the ecosystem 
could take and uses the word “could” to show unpredictability:

Since the geese arrive at a place they haven’t ever been before, there 
are many ways they can affect the ecosystem and it is impossible to 
say exactly how. For example, they could drive other birds away so 
that they can lay eggs. They could drive other birds away because 
they compete for the same kind of food. They could cause the 
increase of other animals who feed on geese. They could cause the 
increase of other birds because the geese have become an alternative 
food source for existing predators. It’s really hard to tell.

However, despite representing completely complex thinking for 
predictability, this response also depicts a Level 2 (emerging 
complexity) understanding for the other three components. For 
example, while acknowledging the existence of other species with 
agency in the ecosystem, the response is still centered on the geese as 
the central driving factor in the changes that occur in the system, 
which is scored as a Level 2 understanding in the category of order.

Responses to the complex systems survey were coded by three 
members of the research team in two rounds, one for each year of the 
study. As there were two responses that needed coding for each 
student (pre-and post-test), there were 380 responses from Year 1 and 
358 responses from Year 2. One of the researchers was involved in 
coding responses from previous iterations of the project and 
conducted training on the codebook for the other two researchers. 
After multiple rounds of test coding, an inter-rater reliability test was 
conducted on 80 responses (21%), and a Cronbach alpha correlation 
coefficient of α = 0.863 was achieved, which represents good reliability 
(Stemler and Tsai, 2008). After the disagreements were discussed and 
resolved, the remaining responses were divided evenly among the 
three researchers for coding. For Year 2 coding, the three researchers 
reconvened about 9 months later and conducted a second inter-rater 
reliability test on 72 of 358 responses (20%) from Year 2 and received 
a correlation coefficient of α = 0.858. The disagreements were again 
discussed and resolved, with the remaining responses divided evenly 
among the three researchers for coding.

The coding manual for the modeling responses was adapted from 
prior work conducted on measuring metamodeling knowledge 
(Grosslight et  al., 1991; Schwarz et  al., 2009; Fortus et  al., 2016; 
Gogolin and Krüger, 2018; Lazenby et  al., 2020). Responses were 
scored on a scale of 1 (models as copies of reality) to 3 (models as tools 
for understanding and predicting reality) for each of three different 

TABLE 2 Student descriptive statistics.

Student 
characteristics

2019–2020 
cohort

2020–2021 
cohort

Number of students 190 179

Gender

  Male 84 75

  Female 98 101

  Nonbinary 0 1

  Other 1 0

Grade

  8th NA 1

  9th 126 156

  10th 33 7

  11th 6 3

  12th 20 11

Nationality

  United States 147 179

  India 43 NA

Ethnicity

  White 74 97

  Black 4 7

  Asian & Pacific Islander 91 51

  Hispanic 4 7

  Multi-ethnic or other 9 14

Bold values are the combination of Years 1 and 2.
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TABLE 3 Properties of complex systems knowledge.

Complex systems 
components

Descriptions Level descriptions and example responses

Predictability The emphasis is on the predictability 

of the effects caused by the agent in 

question. In a complex framework, it 

is impossible to precisely anticipate 

the behavior of the system. This is 

because the actions of agents cannot 

be predicted (as random forces or 

chance factors can affect an agent’s 

actions) even if we know the rules or 

characteristics of the agent.

Level 1: Clockwork – Agent actions/effects are predictable.

No alternative possibility is offered in the response. Certain words may hint at predictability of the 

effects of agents: “will,” “is going to lead to/cause.”

Example: When the geese are there, I think that it would greatly affect the people who go there. A lot of 

people would leave because of the bird poop.

Level 2: Emerging Complexity – Agent actions/effects are largely predictable consider alternative 

possibilities.

The tone of the response indicates that agents’ effects are somewhat predictable. However, some 

randomness in the system is suggested. More than 1 alternative is offered, or the answer has a 

minimum of two instances that indicate uncertainty in the outcome (e.g., the use of “probably” or 

“maybe”).

Example: If the geese arrive, they would probably help the ecosystem. The bird droppings might make the 

soil fertile [1st alternative]. It would start to look a lot greener. However, the increase of plants and roots 

might cause paths or walkways to be damaged [2nd alternative].

Level 3: Complex – Agent actions/effects are unpredictable.

There are many alternative possibilities suggested in the response. Certain words discuss the 

unpredictability of the effects of agents: “may,” “perhaps,” “maybe,” “evolve.”

Example: Since the geese arrive at a place they have not ever been before, there are many ways they 

can affect the ecosystem and it is impossible to say exactly how. For example, they could drive other 

birds away so that they can lay eggs. They could drive other birds away because they compete for the 

same kind of food. They could cause the increase of other animals who feed on geese. They could 

cause the increase of other birds because the geese have become an alternative food source for existing 

predators. It’s really hard to tell.

Processes The focus is the dynamism of the 

mechanisms that underlie the 

phenomena (i.e., how the system 

works or is thought to work). In a 

complex systems framework, there is 

no definite beginning and end to the 

activity. System processes are ongoing 

and dynamic.

Level 1: Clockwork – Characterized by static and punctuated events

Response indicates that the system is composed of static events. While perturbations (actions by/on 

parts) in the system may cause change to occur, the change terminates once an outcome is achieved 

(i.e., there is a definite end).

Example: When geese arrive in the park, it would greatly affect the people who go there. A lot of people 

would leave because of the amount of bird poop. People would also leave because of all the birds flying 

around. The statues in the park would be corroded and fall off, which also cause people to leave.

Level 2: Emerging Complexity – Somewhat static but recognizes that changes occur over a long period of 

time.

Response indicates that the system reflects some continual movement, fluctuations, and changes. 

There is indication of various components in the system increasing and decreasing. Responses that 

include a word or phrase that indicate a significant passage of time, such as “over time” or “eventually” 

would also warrant a level 2 code. Fundamentally however, there is an end.

Example: Geese may chase off other animals which could stop geese from eating the food they normally 

eat. These animals would have to adapt [dynamic – signals emerging complexity] or die. The other 

animals in the park will have to fight with the geese for food, and shelter. Once a species wins [suggests 

an end], the other types of animals may move away or die [possible end].

Level 3: Complex – Continual state of activity and fluctuation to maintain balance

Response indicates that the system is an ongoing, dynamic process. Perturbations cause changes to 

the system, and the system continues to be in a state of flux (i.e., continual, and reoccurring changes 

happening to the system). The parts adapt or evolve and continue to do so accordingly. There is a 

sense that despite these changes, the system is maintained.

Example: The geese would eat some animals to survive. This may increase the competition for the 

same food with other animals. The other animals may leave the park to seek greener pastures. They 

and the geese may also simply starve, and their populations decrease. However, over time, with 

more geese in the park, the amount of nutrients in the soil is likely to increase as there is more 

decaying matter (feces and dead geese). This allows the park to support more producers and 

consumers. At the same time, overcrowding may occur. The lack of space may again decrease the 

populations.

(Continued)
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dimensions of metamodeling knowledge (Schwarz et al., 2009). These 
dimensions are listed and explained in Table 4. The responses to three 
separate open-ended questions were combined into a single response 
for coding, and codes of 0 were allowed for responses that consisted 
of “I do not know” or blank answers for one of the dimensions. 
Therefore, total possible scores ranged from 0 to 9.

To explain the coding in a little more detail, below is a sample 
response from a student:

I would describe [a scientific model] as something that shows or 
represents in detail what the science is trying to show. Models are 
used to visualize things and to get a better look and understanding. 

TABLE 3 (Continued)

Complex systems 
components

Descriptions Level descriptions and example responses

Order The focus is the organization of the 

system or phenomenon as centralized 

or decentralized. In a complex 

systems framework, control is 

decentralized and distributed to 

multiple parts or agents. Order in the 

system is self-organized or ‘bottom-

up’ and emerges spontaneously.

Level 1: Clockwork – Central agent has the power or force to impose order on the system

Response indicates that the system is perceived to be controlled by one central agent (i.e., all action is 

dictated by a leader). Order in the system is established ‘top-down’ or determined with a specific 

purpose in mind.

Example: Since the geese have not lived in the park, they probably do not know where to get food from. 

No goose from the population would be able to tell the rest [a central actor] so there is little effect of geese 

on the park ecosystem.

Level 2: Emerging Complexity – Order of the system is distributed amongst several agents.

Response indicates that the system is largely perceived to be controlled by at least 2 agents but that 

these agents dictate how the system behaves. Thus, order in the system is still established ‘top-down’ 

with a specific purpose in mind.

Example: When the geese [a central actor] are there, it would affect the people who go there. A lot of 

people would leave because of the amount of bird poop, and the birds are constantly flying around. All 

the fountains and benches would be corroded by the bird poop, and since there are so much poop around, 

there would be more flies. The predators [a central actor] that usually hunt the geese would move to that 

area too.

Level 3: Complex – Numerous agents

Response indicates that the system is decentralized (i.e., there is no central agent controlling the 

system). (Response indicates at least 3 agents.) Order in the system is self-organized or ‘bottom-up’ 

and emerges spontaneously.

Example: When geese come to the park, they will eat most of the grass. There will be a decrease in the 

food that geese eat. The caterpillars and the other grass-eaters will starve, die or move to another place. 

This means the decomposers will have less to eat, and probably decompose any dead geese faster. The soil 

may have less nutrients and the trees may grow less green.

Emergence and scale Emergence refers to the phenomenon 

where the complex entity manifests 

properties that exceed the summed 

traits and capacities of individual 

components. In other words, these 

complex patterns simply emerge from 

the simpler, interdependent 

interactions among the components. 

In a complex system, because parts or 

agents are interdependent in multiple 

ways, an action (small or large) that is 

imposed on the system may have large 

and far-reaching consequences on the 

numerous parts and agents of the 

system. This may in turn result in 

large-scale change and evolution.

Level 1: Clockwork

Response indicates that (a) the parts of a system are considered to be isolated, where there is no 

interdependency among them; and (b) there is a sense that the action causes localized changes only.

Example: The geese are staying because they probably have a good resource of food here. The number of 

bugs will therefore decrease.

Level 2: Emerging Complexity

Response indicates one complex component of emergence: either (i) a small action creates a large 

effect (scale) OR (ii) initial action has a cascading effect on several components of the ecological 

system that indicates interdependence, for example a change in the food chain (emergence)

Example: The geese arrival would drive the other birds away so they can lay eggs. There would be less 

worms that geese eats. People may see the geese and try to feed them. A lot of these things can fall into 

the lake and cause the fish to eat them and they may die. (Interdependency is evident between geese and 

worms, geese and fish, geese and other birds, etc.)

Level 3: Complex

Response indicates that (a) the parts cannot be understood by decomposing them from the larger 

system because of their interdependency in multiple (2 or more) ways; and (b) there is a sense that the 

action can produce both localized changes and cascading effects (small actions → large effects).

Example: The geese will probably help the ecosystem. First, their droppings might make the soil more 

fertile, and plants will grow better. There may be more O2 as a result. The result of O2 and plant increase 

could cause a wet and warm ecosystem. However, geese may also eat most of the grass. Other grass-eaters 

will die or move. This would mean that the decomposers will have less to eat. The soil may have fewer 

nutrients, and the trees will grow less well. The geese may also damage statues with their droppings.
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[A scientist might change a model if] they saw that their model 
didn’t accurately represent the data they’re trying to show.

In this response, the use of the words “show” and “accuracy” 
demonstrates an understanding of a model as a static representation 
of an intended outcome whose role is to depict that outcome in 
alignment with expected reality. This response was scored as a Level 1 
for all three properties. In contrast, the following example response 
demonstrates a more advanced level of metamodeling knowledge:

A scientific model is a concept to make something easier to 
understand. It could be any type of model to visualize something that 

is being experimented. Models are used to represent something in the 
real world. It is a way that scientists can make predictions and propose 
new ideas. [A scientist might change a model] based on their new 
findings and concepts that they are developing in their experiment.

In this second response, the student recognizes the active role of 
models in the scientific process (scored as a 3 for purpose) and cycle of 
changing models as part of that process (scored as a 3 for change). While 
they still connect models to real-world representations, they understand 
that a model is not an exact replica (scored as a 2 for nature of the model).

We worked with a member of the research team who was not 
involved in creating the codebook to test the coding manual for 

TABLE 4 Properties of metamodeling knowledge (MMK).

MMK property Description Level descriptions and example responses

Nature The “nature of models” property 

represents how a model is 

conceptualized. This includes 

how literal models are believed 

to be and how general or 

specific they can be.

Level 1: Models are literal replications of a single phenomenon that can be perceived by human senses. At this 

level, a model is believed to be “correct” or “wrong” based on its adherence to reality.

Example: “A model is a miniature replica of the original concept aiming to provide a better understanding about 

the concept. It is a detailed visual representation.”

Level 2: Models are idealized representations of a phenomenon that may not be accessible to the human senses. 

Though models might not be literal replications of reality, they are based entirely on existing data from reality. 

At this level, models are understood to be created by a modeler with a purpose that dictates certain choices 

about how the model represents reality.

Example: “A scientific model is a model used to describe a scientific process of concepts. It can either be either 

physical or virtual but in some way, it will model either the concept of the process that it was supposed to represent.”

Level 3: Models are a reconstruction of a phenomena (or a series of related phenomena), based on theoretical 

understanding, data, and hypothesis. Importantly, at this level there is an understanding that models can extend 

beyond rigid adherence to existing data and can include hypothetical theories. At this level, models are known 

to represent multiple interrelated systems or phenomena.

Example: “A scientific model is a creative representation or formulation of an idea that is created in order to 

analyze how that idea would fit into the real-world using evidence and scientific knowledge.”

Purpose The “purpose of models” 

property represents the reason 

for a model’s existence and what 

can be achieved with it. This 

includes the way it is used to 

communicate and to conduct 

predictions or discover new 

information and understanding.

Level 1: Models are used to demonstrate how something looks or operates on a superficial level. Their purpose is 

to describe only.

Example: “Models are used to visually show about the real thing.”

Level 2: Models are used to explicitly highlight underlying mechanisms or key concepts within a phenomenon. 

This differs from Level 1, where representations aim for superficial replication and direct representation of the 

overall phenomenon. At Level 2, models have been shifted from direct visual replications of reality to 

communicate something specific about how the phenomenon functions.

Example: “It is a representation of a concept or system of ideas used to provide further explanation or clarification. 

Models are used for organizing ideas and explanations to understand systems or complex ideas in science. They 

could be used by a presenter or scientist explaining ideas to another, or to simply record discoveries.”

Level 3: Models are used to interpret or predict the process or outcome of a phenomenon or system. The 

purpose of models is to serve as a thinking aid to guide the construction and interpretation of data. Models can 

lead to new understandings and hypotheses.

Example: “Scientists use models to identify patterns in the world. Based on their knowledge with these models and 

scientific knowledge they can make predictions on future patterns.”

Change The “changeability of models” 

property demonstrates how and 

when a model could or should 

be changed and the reason or 

purpose for doing so.

Level 1: Models may be changed if there is something wrong with them, if errors are found, or if the model is 

not communicating effectively. There is one “correct” model.

Example: “If their model was incorrect or not used properly.”

Level 2: Models may be changed if new data or information is discovered about the underlying phenomenon. At 

Level 2, responses may be referring to the process of aligning the model with more modern or contemporary 

understandings of the underlying science.

Example: “If new information comes out disproving the previous scientific model.”

Level 3: Models are revised as part of a cyclic process of prediction, data collection, and analysis. The 

interpretation of data from the model is the agent of change.

Example: “Based on their new findings and new concepts that they are developing in their experiment.”
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understanding and clarity. Two additional researchers were trained on 
the codebook who achieved an inter-rater reliability Cronbach alpha 
coefficient of α = 0.90 on 70 responses (9% of the total of 738 over the 
2 years). We realize that this is less than the standard of 20% of the data 
used to obtain interrater reliability, there were additional time 
constraints and availability of the coders decreased substantially due 
to the time of year that coding was requested. However, as the alpha 
coefficient is well over the 0.70 limit indicating good reliability 
(Stemler and Tsai, 2008), and as the sample is large, we deemed this 
was a sufficient measure of reliability and decided to proceed with 
coding of the remaining responses. After the differences were 
discussed, one researcher (first author) coded the remaining responses.

The student focus group interviews were mined by the first 
author for responses that could explain how the curriculum and 
models afforded better understanding of complex systems. Responses 
were then grouped into themes that supported the three categories of 
metamodeling knowledge.

3.4.2. Relationship between students’ complex 
systems and metamodeling knowledge

The resulting codes were compared pre-to post-test scores for both 
modeling knowledge and complex systems understanding. A paired 
samples t-test was conducted to determine whether there was positive 
significant growth in both measures. The results were then analyzed to 
understand whether there was a relationship between the two measures 
through hierarchical regression modeling. The analysis was conducted 
to determine whether there was a significant effect on complex system 
understanding beyond their prior knowledge of modeling and 
understanding of complex systems measured at the pre-test survey.

4. Findings

Results from the analysis of the coded open-ended survey responses 
revealed significant growth in both metamodeling and complex systems 
knowledge. The results of the regressions analysis showed that modeling 
knowledge had a significant positive effect on complex systems 
understanding when holding all other variables constant. Finally, the 
student focus group interviews supported these findings with quotes 
from students depicting how aspects of the models were viewed to 
enhance their learning of the complex biological systems.

4.1. Knowledge growth in both scientific 
modeling and complex systems

The results of the surveys showed growth from pre-test to 
post-test for both measures, where a paired samples t-test showed 

positive significant growth t (368) = 6.03, p < 0.001 with a Cohen’s 
d effect size of 0.39 for students’ modeling knowledge which is a 
small to medium effect (Lakens, 2013), and positive significant 
growth t (368) = 4.62, p < 0.001 with a Cohen’s d effect size of 0.27 
which is a small effect for students’ complex systems 
understanding (see Table 5 for more details).

While these results supported previous findings that students 
experienced growth in their complex systems knowledge, in this study 
we were primarily interested in the relationship between change in 
modeling knowledge and complex systems knowledge. This 
relationship was explored through a regression analyses.

4.2. Change in metamodeling knowledge 
has significant positive impact on change 
in complex system understanding

To test if students’ metamodeling knowledge improved their 
understanding of complex systems beyond their prior knowledge 
of modeling and understanding of complex system measured at 
the pre-test, a hierarchical regression was conducted with two 
blocks of variables. The first block included students’ pre-test of 
knowledge of modeling and pre-test of knowledge of complex 
system as the predictors, and with students’ post-test measure of 
understanding of complex system as the dependent variable. In 
block two, students’ post-test measure of metamodeling 
knowledge was also included as the predictor variable, with 
students’ post-test measure of understanding of complex system 
as the dependent variable (see Table 6 for a summary).

Overall, the results show that the first model was significant 
F (2,366) = 28.85, p < 0.001, R2 = 0.14. But only students’ pre-test 
measure of understanding of complex system was significantly 
associated with the post-test measure of understanding of 
complex system (b = 0.37, t = 6.81, p < 0.001). The second model 
(F (1,365) = 32.49, p < 0.001, R2 = 0.21), which included students’ 
post-test measure of modeling knowledge (b = 0.33, t = 5.70, 
p < 0.001), showed significant improvement from the first model, 
∆R2 = 0.07, p < 0.001. Overall, when students’ pre-test of 
knowledge of modeling and pre-test measure of understanding 
of complex system were included in the model, the variables 
explained 14% of the variance. The final model, including 
students’ post-test measure of understanding of modeling, 
accounted for 21% of the variance. Thus, with the addition of the 
second independent variable of students’ post-test modeling 
scores, results showed that it significantly predicted students’ 
complex systems understanding in the post-test beyond students’ 
prior knowledge of modeling and understanding of complex 
systems measured at the pre-test.

TABLE 5 Scientific metamodeling and complex systems knowledge.

Scientific metamodeling knowledge Complex systems knowledge

Year N Pre-test avg 
(SD)

Post-test avg 
(SD)

Diff Pre-test avg 
(SD)

Post-test avg 
(SD)

Diff

Year 1 190 4.47 (1.51) 5.31 (1.33) 0.84 5.97 (1.46) 6.28 (1.56) 0.31

Year 2 179 4.79 (1.41) 5.05 (1.35) 0.26 6.04 (1.51) 6.58 (1.63) 0.54

Both Years 369 4.63 (1.47) 5.18 (1.34) 0.56 6.01 (1.48) 6.43 (1.60) 0.42

Bold values are the combination of Years 1 and 2.
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4.3. How metamodeling knowledge 
supports complex systems learning

To answer our third research question about the specific affordances 
that allowed for the connection between metamodeling knowledge and 
complex systems understanding, an analysis of the student focus group 
interviews was conducted. The three components of metamodeling 
knowledge: nature of models, purpose of models, and the criteria for 
evaluating and revising models (Schwarz et al., 2009) were identified 
within the interviews and three themes emerged that connect those 
components of metamodeling knowledge to complex systems 
understanding and highlight specific affordances of the StarLogo Nova 
models that support students’ complex systems understanding 
development. For the nature of models, students focused on the 
“realistic” quality of the models, which allowed for aspects of complex 
systems in biology to be viewed and explored. Students understood the 
purpose of the models to have a role in communicating different aspects 
of the system through the different representations within the model. 
Finally, students engaged with the changeability of models through 
manipulating parameters to highlight characteristics of complex systems 
such as randomness and interconnectedness.

4.3.1. The nature of models as “realistic” 
representations of complex systems

While viewing scientific models as exact copies of reality supports 
a low-level understanding of the nature and purpose of models, it is 
important to understand that models are used to represent reality in 
some way that is useful. The connection to reality was a component of 
the models that students were drawn to, and which was brought up by 
multiple students in response to a question about the nature of good 
scientific models. For example, a student from a focus group for 
Teacher 5 said, “They model a real-life system, so we can see how, in 
real life, they work. We can actually see each component of every 
system, and that really helped me, at least, understand how all these 
things work.” In response to the same prompt, a student from Teacher 
8’s class identified the importance of keeping models close to reality 
while also modifying them to make them simple:

I generally think of things that are easy to navigate, but also keeping 
it realistic. So, they're not so simple that it's not enough information, 
but just the right amount that it still looks relatively real to what 
you're learning about. Keeping it simple but realistic at the same 
time, because if it's not realistic, it's not benefiting you for learning 
what that system really looks like.

These quotes support students’ metamodeling knowledge of the 
nature of models as useful representations of reality. Students also 
connected the realistic nature of the models to characteristics of 
complex systems. One student from Teacher 8’s class said, for example, 
that “Even if you would test [the model] again and again, it was super 
unlikely you’d come to the same answer twice just because they are 
trying to make it as realistic as possible.” A student from Teacher 5’s 
class had a similar observation, saying “Getting different outcomes 
with different numbers or even that the same numbers, just like a 
more realistic model, and I think that’s how scientific models should 
be.” These quotes show that students were making connections 
between the nature of models and the nature of complex systems.

4.3.2. The purpose of models: to communicate 
through different representations of the system

Most of the students interviewed spoke about the purpose of 
models to communicate and explain complex systems through 
multiple representations of the system and the data within it. While 
the students did not talk about the code representation, both the visual 
and mathematical representations were highlighted as important 
factors in building their understanding of the complex systems and 
underlying concepts. A student from a focus group for Teacher 8 
mentioned that having the visual representation was an added benefit 
over auditory methods she was more used to encountering, saying:

I feel like it really helped just to put a visual to the things that 
we  were learning. Not just have the words in an auditory 
explanation of what was going on, but to see what was actually 
going on and have a good visual of it.

Mathematical representations, in the form of graphs that tracked 
output data from the simulations, were also a source of information that 
students used to interpret complex systems. In the focus group with 
students from Teacher 5, one student responded to a comment about 
tracking changes in the system by highlighting the graphs, saying, “We 
could usually tell that by the two graphs on the side, which would kind 
of help to see how dramatic or undramatic the changes were.”

Students also made connections between the visual and 
mathematical representations within the simulations. One student 
from a focus group for Teacher 6 talked about how the visual 
representation helped simplify the complexity while the mathematical 
representation helped him understand the process:

These models, they help simplify a very complex scientific idea and 
it helps me visualize and, for example, the graph for the gene 

TABLE 6 Results of regression of post measure of understanding on predictors.

Predictor Variables B t Sig.

Model 1

Pre-test of understanding of complex system 0.37 6.81 < 0.001

Pre-test of modeling 0.83 1.52 = 0.130

Model 2

Pre-test of understanding of complex system 0.34 6.46 < 0.001

Pre-test of modeling 0.03 0.52 = 0.602

Post-test of modeling 0.33 5.70 <0.001

R2 = 0.14 for Model 1, p < 0.001; ∆R2 = 0.07 for Model 2, p < 0.001; Total R2 = 0.21, p < 0.001.
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regulation, it helps you understand how the graph was developed 
and instead of making biology feeling like it's something that's just 
needs to be memorized, it helps you understand the process more.

The students recognized that having multiple representations of 
the model in the StarLogo Nova simulation allowed them to explore 
complex systems in multiple ways that helped them understand the 
concepts and complex systems in general. For these students, the 
model was a tool for building understanding.

4.3.3. Changing the model parameters to explore 
randomness and connectivity as components of 
complex systems

Though the students did not change the underlying code of the 
simulations, they did change the parameters that were used as initial 
conditions for running the model and chose different scenarios to 
model, which served as examples for thinking about model 
changeability. This ability to change the model in response to the data 
produced by the model in order to further explore the system being 
simulated supported students in developing complex systems 
knowledge. A student from Teacher 6’s class explained this process:

Something else I noticed with this simulation was that you could 
customize the different scenarios, so that it fit with what you were 
trying to learn. I remember we would put in different barriers in 
different types of sugar. I remember that was really helpful because 
we could, and with all of the simulations too, you could create these 
different scenarios to separately explore different concepts.

The changeability of the models allowed students to observe 
the connected nature of the complex systems and the way that the 
models were able to make those connections observable to them. 
In talking about the ecology model, one student in Teacher 5’s 
class said,

What we learned was how when one species is affected, it's not just 
affected individually. It's kind of like a domino effect that affects the 
organisms it feeds on and the organisms that feed on it, which was 
really interesting.

A student from Teacher 6’s class made an explicit connection 
between this interconnectedness of the components of the models and 
the fact of that as a defining characteristic of complex systems saying,

There are a lot of different parts to all of [the models], it's just part 
of what a complex system is, and they all work together, and there 
are different outcomes based on how they work together, so I would 
say that's the characteristic that they exhibit.

The students also noticed the ability of the models to simulate the 
emergent nature of complex systems, which can seem like randomness 
due to the complexity of the interactions of the components within the 
system. One student from Teacher 5’s class noted the relationship 
between the randomness displayed by the models and what might 
happen in real life, saying,

One thing I noticed about these [models] is that the outcomes were 
kind of different every time. If multiple people in the class did the 

same numbers or same data, it wasn't guaranteed to get the same 
response and the same outcome. Obviously, that’s how it is in real life.

A student in Teacher 6’s class made a connection between the 
randomness displayed by all the models and the unpredictability of 
complex systems, showing a high-level understanding of both the 
nature of models and of complex systems, saying, “All the models had 
different models of different parts of things, and they all moved 
randomly, and you have that element of unpredictability, which would 
be a characteristic of complex systems.” Finally, a student from Teacher 
7’s class summed up all three of the themes from the interviews in a 
single quote, saying,

The graph there in the Gene Regulation, that's useful. So, it's not just 
that I think there's more of these over time and then they decrease, 
you can see the graph, you can see it's actually happening. Also, 
I think the randomness … In all of these, if you run the simulation 
multiple times, it's not just the same exact thing. The factors are 
working off each other with a bit of randomness. You can tell that 
whatever is happening is actually happening. In the real world, it's 
not going to be the same every single time. It's more realistic.

These three themes and the quotes that illustrate them add further 
support to the quantitative analysis of the student knowledge surveys 
and suggest that there is a significant connection between students’ 
metamodeling knowledge and their learning about complex systems. 
Students’ ability to see models as useful representations of an aspect 
of reality and to understand that they could be manipulated to view 
that reality from different angles and different starting scenarios 
allowed them to develop a deeper understanding of complex systems 
and their emergent nature.

5. Discussion

Our findings answer our research questions in the following ways. 
There was significant growth both in students’ metamodeling 
knowledge and in their complex systems understanding across both 
years of the study. The hierarchical regression analysis also showed a 
significant effect of students’ growth in metamodeling knowledge on 
their growth in complex systems understanding. Furthermore, student 
interviews identified three distinct ways that their modeling experiences 
supported learning about complex systems, highlighting supports for 
metamodeling knowledge reported in the literature review (i.e., the 
nature, purpose, and changeability of models; Schwarz et al., 2009). 
From the focus interview responses about the nature of models, the 
agent-based simulations in our study enabled students to observe 
system structures through visualizations of system component 
interactions (Chi, 2005; Jacobson et al., 2011; Markauskaite et al., 2020). 
These dynamics are normally hidden to the naked eye, which makes it 
challenging to understand how system patterns emerge (Yoon et al., 
2018a). Emergent patterns in biology, such as climate change or natural 
selection, are also difficult to witness in real time because they appear 
over large geographic and temporal scales (Grotzer and Tutwiler, 2014). 
Many students in our study noted that being able to see the system all 
at once was important to their learning. Regarding the purpose of 
models, the existence of multiple representations of the scientific 
phenomenon under investigation provided students with strategies to 
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interpret data generated from multiple runs and to develop explanations 
of the system (Gogolin and Krüger, 2018; Upmeier Zu Belzen et al., 
2019). Finally, regarding the changeability of models, the ability to 
manipulate initial conditions and the ability to compare varying results 
allowed students to develop more sophisticated scientific theories (e.g., 
that there is built-in variation and randomness in all systems) than 
what only a single run of the simulation would otherwise afford. These 
findings support previous research showing the affordances of 
computational models as tools for increasing students’ complex systems 
understanding (e.g., Hmelo-Silver et  al., 2017; Yoon et al., 2017; 
Markauskaite et al., 2020; Nguyen and Santagata, 2021).

While these findings support previous research and add to the 
research on modeling and complex systems by explicitly 
demonstrating a quantitative significant effect of metamodeling 
knowledge on complex systems understanding, there are limitations 
to the study. The sample of teachers in the study were self-selecting 
into the professional development for the StarLogo Nova simulations 
and resources, and into the study. As such, the teachers were highly 
motivated and likely represented an ideal population of students. 
Additionally, the Covid-19 pandemic made working with the 
teachers and students in India impossible for the second year of the 
study which limited the diversity of the students in the study and 
may have skewed the regression model. Another limitation is that, 
while this study focused on students’ metamodeling knowledge, 
modeling practices were not measured and certain components of 
modeling competence such as multiple models and testing models 
(Upmeier Zu Belzen et al., 2019) were not included in the study. 
Finally, we acknowledge that this work is embedded firmly within 
the context of Biology and while metamodeling knowledge is 
conceived as content general knowledge, it has been found that there 
exists a difference between contextualized and decontextualized 
metamodeling knowledge so our results may only speak to 
contextualized knowledge (Göhner et al., 2022).

While acknowledging some limitations, the findings reported here 
emerge from over a decade of research on this project that involved years 
of iterative design and implementation cycles to reach a point where the 
curriculum and PD experiences fully supported teachers and students in 
using models to support learning of complex systems (see Yoon et al., 
2016, 2020b; Yoon, 2022). Our research has produced significant 
outcomes for student learning and supported attempts to scale up access 
to project resources more globally (Yoon et al., 2020b). Developing 
greater understanding of complex systems (Yoon et al., 2018a) and 
systems more generally (NGSS Lead States, 2013) has also been a focus 
of educators and educational researchers for many years. Despite this 
longstanding interest, however, complex systems curricula and tools have 
still not made their way widely into biology classrooms (Gilissen et al., 
2020; Markauskaite et al., 2020). Perhaps this slow progress is related to 
the lack of studies that make explicit the connection between growth in 
student understanding of complex systems and specific instructional 
approaches such as agent-based modeling, as noted in a previous 
literature review (Yoon et al., 2018a). Without assurances that learning 
outcomes will improve, it may be difficult to convince teachers to adopt 
new pedagogies and tools like ours that add additional time to the 
standard biology curriculum. That we  found improvements in both 
student measures of metamodeling knowledge and complex systems 
understanding even in Year 2 of the project—where teaching and 
learning happened fully online—is also worth highlighting given the 
documented learning losses that we  have experienced due to the 
pandemic (Nowicki, 2022).

6. Conclusion

In this study, we investigated how students’ understanding of biological 
models using an agent-based modeling tool influenced their understanding 
of complex systems. Through many years of design iterations, we developed 
a curriculum that supports growth in students’ knowledge of scientific 
models and complex systems understanding in high school biology. 
Through a regression analysis of 2 years of student data, we demonstrated 
that growth in students’ modeling knowledge significantly predicted 
growth in their understanding of complex systems. We further showed that 
students perceived multiple aspects of the agent-based modeling tool as 
important to supporting their understanding of complex systems. Studies 
that demonstrate explicit relationships between instructional approaches 
and improvements in complex systems content learning are rare, which 
underscores the overall value and contribution of this research. We hope 
that future research will continue to explore the relationship between 
metamodeling knowledge and complex systems understanding both to 
replicate our work with different systems’ representations to show that the 
effects are significant in other contexts and content areas, and to expand 
upon our work to include more components of modeling competencies 
(Schwarz et al., 2009; Fortus et al., 2016; Upmeier Zu Belzen et al., 2019). 
Specifically, embedding agent-based simulations within the scientific 
inquiry process to support students’ deeper exploration of complex systems 
and their development of systems thinking.
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