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Grades 7—-12 teachers’ perception
of computational thinking for
mathematics and technology

Niklas Humble* and Peter Mozelius

Department of Computer and System Science, Mid Sweden University, Ostersund, Sweden

Introduction: An ongoing trend on a global scale is the integration of computer
science and programming in K-12 education. The integration has been motivated
by the needs of the present and future labor market but also by the assumption
that skills related to computer science and programming are valuable for citizens
to navigate an increasingly digitalized society. Computational thinking (CT) is a
concept that aims to define and summarize skills associated with programming
and computer science and has received wide recognition within research and
education. But how do the teachers perceive this concept, and how do they relate
it to their own teaching and learning activities? This study aims to investigate and
discuss teachers’ perceptions of CT in grades 7—12 mathematics and technology.

Methods: Data have been collected from essay assignments in three instances of
a professional development course on fundamental programming for grades 7—
12 teachers in mathematics and technology. In the essays, the teachers reflect on
CT in relation to mathematics and technology and teaching and learning activities
in these subjects. With a theoretical framework for CT, the collected data have
been analyzed with a directed content analysis approach to identify categories of
interests for CT in relation to grades 7—12 mathematics and technology.

Results: The results of the study show that the teachers perceive both
opportunities and challenges in applying the CT concept in their teaching and
learning activities. For example, it can strengthen the subjects through new
practices and reinforce old practices, but it could be too complex and perceived as
difficult by some students. Furthermore, many of the teachers perceive CT not only
to be relevant for mathematics and technology but also for learning in general.

Discussion: The conclusion of the study is that CT has the potential to enhance
teaching and learning activities in mathematics, technology, and other STEM
subjects. If this should be successful, CT must not be involved too abstractly or
too superficially. This study contributes to the discussion on CT in K-12 education,
adding the teachers’ perspective. The findings of this study can be used by
teachers and other stakeholders in the design of classroom activities that apply
the CT concept.
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Introduction

The integration of computer science and programming in kindergarten to grade 12
(K-12) settings is an ongoing and worldwide process (Balanskat and Engelhardt, 2015; Tran,
2018; Irons and Hartnett, 2020). Initiatives have been started for various reasons, but often
with the labor market demand for system developers in mind (Smit et al., 2020; Wolz et al.,
2022). At the same time, the rapidly increasing digitalization has created a need for more
general computer science skills with computational thinking (CT) as an interesting core part
of 21st-century skills. As presented in the study by Tikva and Tambouris (2021, p. 1) that CT
“through programming attracts increased attention as it is considered an ideal medium for
the development of 21st-century skills.” Some examples of important 21st-century skills are
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critical thinking, creativity, and collaboration (Van Laar et al., 2017;
Tzagkaraki et al., 2021).

In the Swedish context, a revised curriculum was presented
in 2017, where programming and general digital proficiency
should be introduced. The special focus should be on CT and
fundamental programming for secondary school mathematics and
technology (Heintz et al., 2017). In the subjects of mathematics
and technology, secondary school teachers are supposed to use
programming as a tool for problem-solving in their daily teaching.
An inevitable first step in the process of introducing programming
was to arrange tailored professional development for teachers in
mathematics and technology. Previous research studies have found
that most K-12 teachers were poorly prepared for the introduction
of programming with no, or little, previous programming skills,
general computer science knowledge, or technical knowledge
(Royal Society, 2017; Humble et al., 2019; Mozelius and Hoff, 2019;
Porn et al., 2021; Tzagkaraki et al., 2021).

CT could be traced back to the 1980s, with an origin in ideas
by Papert (1980) and the creation of the LOGO programming
language for introducing programming to a younger audience. Two
and a half decades later, CT was defined briefly by Wing (2006)
as a necessary skill for everyone that “involves solving problems,
designing systems, and understanding human behavior, by drawing
on the concepts fundamental to computer science.” During the
last decade, CT has rapidly increased as a research field with a
large number of extended definitions and the creation of various
CT frameworks (Brennan and Resnick, 2012; Shute et al., 2017;
Dolgopolovas et al., 2019). As pointed out in the study by Tikva
and Tambouris (2021), this leaves us with the problem that teachers
do not have a decent overview of the CT field and how to involve
CT in curricula.

This study has the aim of investigating and discussing teachers’
perceptions of CT in grades 7-12 mathematics and technology. The
main question to answer was: How do the teachers perceive CT and
how do they relate it to their own teaching and learning activities in
grade 7-12 mathematics and technology?

Computational thinking

The concept of CT is in several studies described with an
origin in the short four-page article by Wing (2006). CT was there
described as a concept built around the possibilities and limitations
of computing processes that could be executed both by humans
and by machines. Furthermore, the use of computational methods
would enable new possibilities to solve problems and to design
systems (Wing, 2006). However, as highlighted by Cansu and
Cansu (2019), this concept had been referred to earlier by Seymour
Papert as Procedural Thinking, and something that Papert used in
the development of Turtle graphics and the Logo programming
language (Brims, 1999). In computer science, the concept can
be traced further back to the 1950s and 1960s, when the term
algorithmic thinking was used to formulate problems as conversions
of an input to an adequate output, with algorithms to perform the
desired conversions (Denning, 2009).

As stated by Cansu and Cansu (2019), CT and computer science
are not one and the same and should not be used as synonyms.
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The original definition by Wing (2006) that computational thinking
is to think like a computer scientist has several times been
criticized. The argument has been that CT has many interesting
applications for solving real-world problems outside the field of
Computer science (Denning, 2009; Hemmendinger, 2010). Later
in 2014, Wing redefined CT as “The thought processes used to
formulate a problem and express its solution or solutions in terms
a computer can apply effectively.” Later the same year, CT was
defined by Yadav et al. (2014) as “The mental process for abstraction
of problems and the creation of automatable solutions” (Wing,
2014; Yadav et al., 2014; Cansu and Cansu, 2019). In addition
to the various definitions of CT, there have also been different
suggestions for which components that CT should involve.
Some examples are: (1) Abstraction, Automation, and Analysis
(Lee et al, 2011), (2) Abstraction, Algorithms, Automation,
Problem Decomposition, and Generalization (Wing, 2006, 2008,
2011), and (3) Abstraction, Algorithmic Thinking, Decomposition,
Evaluation, and Generalization (Selby and Woollard, 2013).

Shute et al. (2017) synthesize the findings from previous
research on CT in a literature review to produce a definition and
framework of how CT can be used by K-12 teachers to build a
strong foundation for students’ learning. Shute et al. (2017) define
CT as “the conceptual foundation required to solve problems
effectively and efficiently (i.e., algorithmically, with or without
the assistance of computers) with solutions that are reusable in
different contexts.” They further divided CT into six facets: (1)
decomposition, (2) abstraction, (3) algorithms, (4) debugging, (5)
iteration, and (6) generalization (Shute et al., 2017). Each of these
facets is accompanied by its own definitions, which are provided in
Table 1.

The idea of using decomposition to break down large and
complex tasks into manageable smaller units was a component in
Wing’s (2006) first presentation of the CT concept. Decomposition
was also a part of the CT concept presented by Barr and
Stephenson, where decomposition was defined as “breaking
problems down into smaller parts that may be more easily solved”
(Barr and Stephenson, 2011, p. 52). It could be argued that this
idea is far older, with the principle of divide and conquer that
often is presented in university courses on artificial intelligence
and computer science. The term is often traced back to Julius
Caesar and his brutal leadership. However, an even older idea of
applying divide and conquer is the Euclidean algorithm on how
to compute the greatest common divisor of two numbers. The
challenge that remains is that “a student who scores well on tests
to explain and illustrate abstraction and decomposition can still be
an incompetent or insensitive algorithm designer” (Denning, 2017,
Question 2).

To involve abstraction, defined as finding the essential structure
of complex systems, has also a long and rich tradition in STEM.
As pointed out in the seminal article by Wing (2006), abstraction
is an aligned complement to decomposition in the solving of
large and complex problems. In Wing’s very optimistic view of
abstraction, it is described as “It is having the confidence we can
safely use, modify, and influence a large complex system without
understanding its every detail.” The objection could be the same
as for decomposition, and that abstraction by itself could lead to
incorrectly designed algorithms (Denning, 2017, Question 2). The
famous quote from Friedrich Wilhelm Nietzsche that the devil is
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TABLE 1 Summary of CT framework (Shute et al., 2017).

Facet Definition

Decomposition Dissect a complex problem/system into manageable
parts. The divided parts are not random pieces, but
functional elements that collectively comprise the

whole system/problem.

Abstraction Extract the essence of a (complex) system. Abstraction

has three sub-categories:

(a) Data collection and analysis: Collect the most
relevant and important information from multiple
sources and understand the relationships among
multilayered datasets;

(b) Pattern recognition: Identify patterns/rules
underlying the data/information structure;

(c) Modeling: Build models or simulations to represent
how a system operates, and/or how a system will
function in future.

Algorithms Design logical and ordered instructions for rendering
a solution to a problem. The instructions can be
carried out by a human or computer. There are four

sub-categories:

(a) Algorithm design: Create a series of ordered steps to
solve a problem;

(b) Parallelism: Carry out a certain number of steps at
the same time;

(c) Efficiency: Design the fewest number of steps to
solve a problem, removing redundant and unnecessary
steps;

(d) Automation: Automate the execution of the
procedure when required to solve similar problems.

Debugging Detect and identify errors, and then fix the errors,

when a solution does not work as it should.

Iteration Repeat design processes to refine solutions, until the

ideal result is achieved.

Generalization Transfer CT skills to a wide range of
situations/domains to solve problems effectively and

efficiently.

in the details is still a very present challenge in computer science.
A teacher that uses too much abstraction in teaching and learning
activities risks misleading students.

In the early versions of CT, algorithms were very broadly
defined and often more of heuristic recipes. In the seminal article
by Wing (2006, p. 34), CT concepts are presented as everyday
examples with algorithms exemplified as “At what point do you
stop renting skis and buy yourself a pair?; that’s online algorithms.”
To be compared with the stricter definition used in mathematics
and computer science, where an algorithm ought to be a finite
sequence of well-defined instructions that solves a problem or a
class of problems. Moreover, the classic definition for mathematics
and computer science should have proof that shows that the
algorithm solves the problem in a finite number of instructions.
Without proof of a solution in a finite sequence of steps, the solving
approach should be classified as heuristics. However, as highlighted
by Wing (2006), the heuristic approach is also valuable. However, if
the aim should be to bring computational thinking to K-12 settings,
as in Barr and Stephenson (2011), algorithms have to be introduced
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with a more loosely defined. These loose definitions have been
criticized in the article by Denning (2017), asking the question:
“Is it really true that any sequence of steps is an algorithm? That
procedures of daily life are algorithms?” If the algorithm part of
CT should be useful in K-12 students’ future life, algorithms should
probably be introduced, as recommended by Denning (2017), as a
series of steps. However, the steps must not be arbitrary, and they
should control a computational model.

The component of debugging was not a component of the
very first CT model (Wing, 2006). On the other hand, Wing
(2006) brought up damage containment and error correction. For
the K-12 audience, this was exemplified by the rather complex
concepts of gridlock, deadlock, and contract interfaces. Concepts
in computer science at the university level, in general, are omitted
in the two first programming courses in a Bachelor’s program.
However, the handling of the deadlock problem could also be
illustrated as an everyday issue: “It is learning to avoid race
conditions when synchronizing meetings with one another” (Wing,
2006, p. 34). Notably, years later, debugging is still not a concept
in the comparison by Barr and Stephenson (2011), where different
existing CT concepts were analyzed and discussed. However, in
their attempt to develop an operational definition of computational
thinking for K-12 settings, test and debug is brought up as core
concept. In another study from the same year, debugging is
suggested as a part of a CT concept suitable for K-12 teachers
(Yadav et al., 2011). However, in computer science, debugging has
a more exact definition than how it is related to by Yadav et al’s
(2011) “debugging was discussed by asking students to troubleshoot
the scenario of a lamp not working when they get home from
school, but was working in the morning. A series of ordered steps
to solve a problem.” The question that remains with the definition
of debugging in Table 1 is as follows: What does CT debugging
include that is not a part of traditional troubleshooting in K-12
STEM subjects?

Like debugging, iteration is a CT component that has been
added relatively late. The term was not mentioned by Wing (2006)
and was not presented as a CT component by Barr and Stephenson
(2011). However, in the same article, Barr and Stephenson (2011)
pointed out iteration as a way of envisioning computational
thinking in K-12 classrooms and an important component in the
strive to make students fool builders and not merely tool users. On
the one hand, it could be argued that iteration is a relatively basic
programming technique with a structure not more complex than
selection. On the other hand, it could be claimed that iteration
has been a powerful technique for solving complex mathematical
problems and has been used for centuries in numeric analysis.
One well-known example is the Newton-Raphson Method to
solve non-square and non-linear problems, with the idea of
iteratively finding improvingly better approximations (Akram and
Ann, 2015). Another field in mathematics where iteration is an
important component is in the solving of number series problems
(Folger et al.,, 2012; Schmid and Ragni, 2015). The mathematic
tradition of iteratively creating improved approximations, like in
a Fibonacci series, is also reflected in the definition above in Table 1
“Repeat design processes to refine solutions, until the ideal result is
achieved” (Shute et al., 2017). In computer programming, iteration
can be used for solving a wide variety of other tasks, such as file
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handling, searching and traversing data structures, and for image
handling. With this wider computer science perspective, iteration
could have more suitable applications, both for a younger audience
(Brennan and Resnick, 2012) and for other types of problem-
solving in STEM (Fields et al., 2019).

Finally, and what seems to be the last added of the six CT
components, is a generalization. The term was neither mentioned
by Wing (2006) nor by Barr and Stephenson (2011). In the more
computer science-oriented discussion in the article by Denning
(2017), the term is discussed as “Generalizing and transferring
to other domains.” It could be argued that generalization could
be interpreted as transferring from many domains to many other
domains, and more like how problem-solving strategies were
outlined in the classic book by Polya (1945). Including the idea
that complex problems are easier solved by persons that earlier
have solved similar but less complex problems. At the same time as
Polya’s ideas in the book have become a praised theory, it has been
pointed out that younger students do not improve their problem-
solving by reading this book. They improve their problem-solving
skills by solving a lot of different problems (Schoenfeld, 1987).
Transferred to the CT concept, this could be interpreted as that
generalization is best learned by practicing other CT concepts.
Regarding the definition of generalization in Table 1, “Transfer
CT skills to a wide range of situations/domains to solve problems
effectively and efficiently” (Shute et al, 2017), the stepwise and
systematic approach in CT could be applied in several other
domains, and preferably in other STEM subjects. Finally, as
claimed in the white article by Einhorn (2012), CT could be seen
as a general and essential 21st-century skill and a skill that is
best learned by learning to program. “Computational thinking
is a learnt approach and there’s no better way to learn it than
through programming. Programming employs all the components
of computational thinking” (Einhorn, 2012, p. 2).

Materials and methods

The study was carried out with a qualitative approach to acquire
data that have the potential to answer the research question and to
fulfill the aim of investigating and discussing teachers’ perceptions
of CT in grades 7-12 mathematics and technology. Data have
been gathered from essays that were submitted to an assignment
in three batches of a teacher training course on fundamental
programming. The course was tailored for grades 7-12 teachers
in mathematics and technology with assignments that have the
purpose of supporting teachers in their daily teaching and learning
activities. In the submitted essays, teachers have reflected on CT
in relation to their subject matters and how CT could be used in
their future teaching and learning activities. The course has been
designed with the idea of combining theoretical course content on
didactic concepts, with concrete assignments on programming and
CT (Mozelius, 2018).

Data collection
Collected data in the study consist of documents, which can

be a valuable source for insights and information on a studied
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TABLE 2 Summary of collected data.

Autumn S Autumn Total

202 2021

Essays ‘ 12 ‘ 10 ‘ 16 ‘ 38

2020

topic (Bowen, 2009). Using existing material such as documents is,
compared to many other sources, convenient since the material can
be accessed directly (Karppinen and Moe, 2019). Similar to other
qualitative methods, the use of documents for analysis emphasizes
the description and discovery of underlying patterns and meanings
(Altheide, 2000). The documents are written by teachers in the
form of essays during three instances of a professional development
course on programming for grades 7-12 teachers in mathematics
and technology. A total of 38 essays were written by the teacher
participants (20 women and 18 men) during the course instances
and collected for the study. 12 essays were collected from the course
instance in the autumn semester of 2020, 10 were collected from
the course instance in the spring semester of 2021, and 16 from the
course instance in the autumn semester of 2021 (Table 2).

Data analysis

Collected data were analyzed with directed content analysis
to extend the knowledge of teachers’ perceptions of CT for
grades 7-12 mathematics and technology (Hsieh and Shannon,
2005). Content analysis provides a systematic coding approach for
interpreting and describing textual data (Assarroudi et al., 2018).
To enhance the trustworthiness of the study, the analysis has been
conducted in accordance with Assarroudi et al. (2018) 16 steps for
directed qualitative content analysis, where the first seven cover
the preparation phase of the study and the last nine cover the
organization and reporting phase of the study. The last nine steps
are described in this section.

In the first step of the analysis, the main categories were
selected from the CT facets described in the section Computational
Thinking. This was deductively performed using a theoretical
framework related to the studied topic (Mayring, 2000). In the
second and third steps, definitions and coding rules for the
categories were decided based on the CT framework and related
research for objectivity and accuracy (Mayring, 2000; Assarroudi
etal, 2018). In the fourth step, a small sample of the collected data
was analyzed with the selected categories and discussed between
the authors. The rationale behind this was to test and evaluate
the chosen categories and modify them if necessary (Elo et al.,
2014), which was not deemed necessary. Discussions between the
authors on the applicability of categories and theoretical framework
continued throughout the analysis. In the fifth step, anchor
examples for categories were chosen and specified (Assarroudi
et al., 2018). This was done by adding related research to the
facets of the CT framework, which were used as the basis for the
categories. The related research could be seen as expectancy for
the categories.

In the sixth step, the main data analysis was performed with
a spreadsheet document to identify the content of interest for the
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categories and to select preliminary codes (Assarroudi et al., 2018).
In the seventh step, sub-categories were derived from the categories
through an inductive approach of grouping codes together based
on their differences, similarities, and meanings (Assarroudi et al.,
2018). This also resulted in a new category with new sub-categories
of codes that related to CT in a more general sense than the initial
categories provided by the theory. In the eighth step, comparisons
were made between the categories, sub-categories, and codes to
establish a logical link between them (Assarroudi et al., 2018).
This was performed through multiple cycles where sub-categories
and codes were grouped and re-grouped for logical consistency.
This resulted in a coding tree (Figure 1) consisting of seven
main categories (related to the aim and research question of the
study), with two sub-categories of opportunities and challenges
for each category and six main opportunities/challenges (three
opportunities and three challenges) for each sub-category.

The main opportunities/challenges for each sub-category were
identified by comparing codes for similarities, differences, and their
relevance for the study aim, the research question, and their support
in collected data. In the last step, the reporting of the findings was
structured in the section Results and Analysis, with the categories
for analysis used as sub-headings. In the sub-headings, the first
parts were devoted to the sub-category of opportunities and the
three identified main opportunities. The second part of the sub-
headings was devoted to the sub-category of challenges, and the
three identified main challenges.

Trustworthiness

To ensure trustworthiness in the study, the authors have
worked according to the criteria of trustworthiness (credibility,
transferability, dependability, and confirmability) provided by
Schwandt et al. (2007), with the aim to make these visible
throughout the study. Trustworthiness can be described as an
alternative to reliability and validity, developed to be more
applicable for judging and evaluating qualitative research (Bryman,
2016, p. 383-384). To ensure credibility, the study has been
conducted with data from three iterations of a teacher professional
development course on programming, spanning over a total of
1.5 years. Courses where both authors have been engaged in data
collection and analysis and, at the same time, have worked as
course facilitators. Both authors have earlier experience in research
on the CT concept (Nouri and Mozelius, 2018; Humble, 2019,
2020). The collected data, the purpose behind the data, and the
context for collection have been described in the Method section
for transferability. To ensure dependability and confirmability, a
detailed description of the analysis is provided in the Method
section, and examples from the data are provided in the Results
and Analysis section to show the connection between the collected
material and the analysis.

Ethical considerations

The study followed the recommendation by Shaw (2003) about
informed consent. Course participants were, in the introduction
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meetings for the various course instances, informed about the
teachers’ intention of using course content and submitted essays
as parts of research studies. Furthermore, course participants were
informed about the principle that they, at any time and without
discussion, have the right to withdraw consent and quit without
motivating why. The information was provided both orally in
the introduction meetings and in written postings on the course
discussion forum. As pointed out by Shaw (2003) and Pietild et al.
(2020), the strive for confidentiality and privacy is important in
qualitative research. Essayists have been kept as anonymous as
possible during the research process, with all names, affiliations,
and other personal details removed. Presented quotes from the
essays have been translated from Swedish to English with minor
changes to further protect essayists’ confidentiality and privacy.
Moreover, some Swedish idioms have been rewritten with the aim
of improving readability but without changing the core meaning.
Finally, in these courses, where authors also have had the roles of
instructors and facilitators, the principle of practitioner research
was considered (Shaw, 2003).

Results and analysis

This section presents the results of the analysis in sub-headings
related to each facet of the theoretical framework: decomposition,
abstraction, algorithms, debugging, iteration, and generalization.
The section is concluded with a sub-heading on the general
perceptions of CT that teachers expressed in the study. Quotes from
the collected data are presented in the sub-headings to exemplify
the results and analysis of the study.

Decomposition

Results of the study show that teachers perceived CT
decomposition as related to general problem-solving and that it
can be used for exercising students in understanding instructions. It
was also mentioned that it is a practice frequently used by teachers
to break down subject content for students, and teachers express
that there is a clear connection between CT decomposition and
how teachers divide problems into their subjects into manageable
parts. This is perceived as an important skill for students
to develop. Teachers further expressed that being exposed to
CT decomposition can enhance students’ ability to understand
instructions. Instructions that otherwise would be complex or
difficult can be broken down into smaller and more understandable
parts. Exercising CT decomposition through programming is
perceived to also have positive effects on students’ performance in
other subjects. Teachers further expressed that their own practice
of breaking down a subject into manageable teaching and learning
parts for the students resembles the decomposition concept.

Teachers in the study perceived several challenges for CT
decomposition in mathematics and technology. Some examples
are that students’ challenges in CT decomposition correlate with
similar difficulties in mathematics, that decomposition is an
unfamiliar practice for many students, and that decomposition is
easier to understand than to apply for many students. According to
teachers in the study, students that find mathematics challenging
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Aim & RQ
1
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Opportunities Challenges Opportunities Challenges Opportunities Challenges Opportunities Challenges Opportunities Challenges Opportunities Challenges Opportunities Challenges
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Opp 2 Cha 2 Opp 2 Cha 2 Opp 2 Cha2 Opp 2 Cha 2 Opp 2 Cha 2 Opp 2 Cha2 Opp 2 Cha2
Opp 3 Cha3 Opp 3 Cha3 Opp 3 Cha3 Opp 3 Cha3 Opp 3 Cha3 Opp 3 Cha3 Opp 3 Cha3
FIGURE 1
Coding tree from directed content analysis.

in general often also find decomposition challenging. Teachers
expressed that decomposition is perceived as complicated by
students but that this also depends on how the practice is
introduced by the teacher. Furthermore, many students are not
familiar with the practice of breaking down a problem and get
frustrated when the answer does not appear immediately and give
up, as expressed by one teacher in the study (Quote 1). According
to teachers in the study, the practice of breaking down a problem
is much easier to understand than it is to apply. Decomposition
requires practice, an understanding of the whole problem, and
how everything is connected and affects each other. According to
teachers in the study, decomposition is fundamental for problem-
solving but also one of the most difficult skills to master.

“I perceive that many students get frustrated when they
get stuck and the answer does not appear, and sometimes they
give up. They don’t know how to break down the problem
to progress. The majority are not familiar with addressing
a problem through a computational approach and need to
exercise more to be able to solve more difficult assignments.
By exercising with, for example, programming, their patience
and understanding for how quick and easy you can arrive at a
solution should increase.”

Quote 1.
with decomposition.

Teacher about students frustration

Abstraction

Regarding CT abstraction, teachers in the study perceived that
finding patterns is a common practice for problem-solving in their
subjects, that abstraction is a crucial skill for distinguishing between
what is important and what is less important, and that abstraction
is a crucial skill to develop for generalization. Teachers expressed
that CT abstraction is connected to highlighting important parts of
instructions and finding general patterns to solve problems in their
subjects. According to teachers in the study, mathematics is about
finding patterns and causality, and abstraction is reinforced by both
mathematics and programming. Abstraction is also perceived by
teachers to be the most common CT skill addressed in the teaching
and learning of mathematics. A teacher in the study expressed that
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abstraction is an important first step in general problem-solving,
that is, identifying the most important parts of a problem to
form a picture of the whole solution (Quote 2). Teachers in the
study further expressed that abstraction is vital for the ability to
generalize. Students first need to understand the patterns to then
be able to generalize those patterns to another context.

“Take problem-solving for example, it is important that
the student first and foremost can understand the assignment
and identify the content of a text. This is so that they know
what kind of solution is being asked for and they can choose an
appropriate method for the assignment. That is abstraction.”

Quote 2. Teacher about abstraction for problem-solving.

Teachers in the study perceived challenges for abstraction in
mathematics and technology, such as abstraction is perceived to
take a lot of time and practice to learn, abstraction is a challenging
practice for teachers, and that abstraction can be a challenge for
students that already find mathematics difficult. Teachers expressed
that abstraction is a skill that develops over time and takes a
lot of practice, which can be a challenge for many students.
Teachers further expressed that abstraction can be a challenge
for many teachers since it is not as common in teaching and
learning activities as many of the other CT skills. Teachers also
highlighted that abstraction is something that many students can
understand and find easy when the teacher explains and shows,
but they still fail to use the concept. Both CT abstraction and
generalization are perceived by teachers in the study to be especially
challenging for students since they also are aspects of mathematics
that many students find difficult. However, teachers expressed that
some students that struggle with abstraction and generalization in
mathematics find it easier to handle in programming.

Algorithms

Results show that teachers in the study perceived that CT
algorithms could foster students to be precise in their work,
encourage them to be structured, and that algorithms relate
to teachers’ practice of creating subject instructions. Teachers
expressed that the practice of being precise when working with
algorithms is important in mathematics and that this practice can
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be developed with both mathematics and programming. Teachers
also expressed hope that the precision developed by engaging with
programming can make students more precise when working with
mathematics. According to the teachers, algorithms are also among
the first things that students learn in mathematics in their work
with assignments on arithmetic. It is highlighted by teachers that if
an algorithm is generalizable, it is a fantastic tool for the students
and their learning. Teachers further expressed that algorithms
mostly relate to the practice of creating subject instructions, by
the teacher or in a book, that students should follow to solve a
problem. Working with algorithms in programming by creating,
manipulating, and discussing is perceived to support students to
think more freely and deeper instead of viewing algorithms as a
predefined recipe.

Some of the challenges that teachers in the study perceived
with CT algorithms is that it can be difficult to motivate students
since many want shortcuts and that CT algorithms can foster
an unreflective problem-solving strategy. Teachers also expressed
that some students find it pointless to write instructions for their
solutions and that it, therefore, can be difficult to motivate them
to do so. It takes a lot of practice and repetition to incorporate
the practice among students, and teachers devote a lot of time to
it. Teachers further highlighted that students tend to be careless
in some steps of their solutions or calculations because they do
not see the need to be precise. According to the teachers in
the study, students want shortcuts and therefore have difficulties
understanding that some problems need to be solved in a certain
order. Teachers also expressed that algorithms can be problematic
since they provide students with a strategy to solve problems
without reflection. That is, following a pattern to solving a problem
rather than understanding the problem. A teacher in the study
expressed that this approach to problem-solving is quite common
in mathematics and that students submit solutions to problems that
are not reasonable and not supported by instructions because they
have simply followed a pattern (Quote 3).

“Many students conduct mathematics quite unreflective.
It's all too common that students submit assignments with
solutions that are not reasonable. Additionally, the student
provides scarce, if any, notes on how the solutions were
derived at.”

Quote 3. Teacher about unreflective problem-solving
in mathematics.

Debugging

CT debugging is perceived by teachers in the study to foster
patience, encourage collaboration and discussion, and relate to the
practice of coaching students. Teachers expressed that debugging
can be a way to exercise students’ patience when conducting a
calculation or to search for errors. A teacher in the study also
highlights that programming is a practice that can foster patience
and error handling and hopefully influence students to apply this
in mathematics also (Quote 4). Teachers further expressed that
debugging is probably the easiest part of CT to apply with students
since it can be combined with collaboration and discussion during
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lessons. Students can discuss different solutions to a problem
and support each other in identifying and correcting errors. CT
debugging is also perceived as a good approach for teachers to
support students in identifying and solving their own errors instead
of providing the correct answer. Debugging is perceived as a
natural part of both programming and teaching since teachers
coach students through their solutions.

“In programming, troubleshooting is a natural part.
Additionally, it requires the student to write correctly, precise
and that no steps are skipped. I have hopes for that
troubleshooting will influence mathematics and become a
habit. With programming, troubleshooting becomes natural.”

Quote 4. Teacher about programming as an influence
on mathematics.

Regarding challenges of CT debugging, teachers in the study
perceived that students can get blinded by their solutions, that
it can be difficult to overcome initial failure, and that the
practice of debugging is not as obvious in their subjects as
it is in programming. Teachers expressed that students have
difficulties identifying errors in their solutions and that they
often get blinded by what they have done earlier. According to
teachers in the study, this could be because teaching materials
often focus more on concept, procedure, and problem-solving,
rather than debugging. However, it would be better for students’
mathematical development if more assignments focused on finding
and correcting errors. Related to this, it is expressed that students
often lack the motivation to systematically debug their solutions
and rather just be told what needs to be corrected since it can be
difficult to overcome the initial failure of making errors. Teachers
further highlighted that motivation for debugging can be especially
challenging for students that already find the subject boring or
difficult. It is much easier just to give up. Teachers also expressed
that debugging is not as obvious in the subject content as it is in
programming since you do not get a solution that works or not.
Instead, debugging becomes a question of plausibility. It is also
expressed that exercising subject debugging through programming
can be a challenge since students first need a certain level of
programming knowledge.

Iteration

Results of the study show that teachers perceived CT iteration
as similar to that of classroom feedback, repetition for learning,
and the practice of reconsidering and trying different solutions
to a problem. Teachers expressed that iteration resembles how
a solution is passed between a student and a teacher for
feedback; this is repeated until both are pleased with the outcome.
However, this is more common with students that aim for
higher grades. Teachers in the study also compare iteration
with the practice of how students present their solutions in
front of their classmates, which is followed by a discussion
on the pros and cons and other potential solutions to the
problem. Iteration is further compared to how equations are
repeated for learning and to support students in finding
shortcuts and optimizing their work. Teachers also highlighted
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that iteration is similar to how the four arithmetic methods
are learned by students through repetition with pen and
article. To reconsider solutions and try new approaches is also
expressed by the teachers as important. If students do not get a
satisfactory result that is not plausible, they should iterate and
try again.

Teachers in the study perceived challenges regarding CT
iteration, such as that students would rather be done with their
assignments than iterate, that iteration is an advanced practice that
is more obvious for programming, and that it is easier to ask for
help than to iterate. Teachers expressed that not all students want
to iterate their solutions but prefer to be done after the first try or
have the teacher tell them what they need to do. Iteration is also
expressed as something that teachers do not work on a lot within
their subjects, but it is perceived as a relevant skill to develop and
could be supported by programming. Iteration is also perceived as
more applicable in programming than in mathematics. Teachers
expressed that it is a more advanced practice and more difficult
to teach than other parts of CT. One of the teachers wrote that
iteration is important if you are a programmer and need to make
your programs more efficient or competitive but that it is not that
important for solving problems in school and, therefore, could
be excluded when teaching and using CT (Quote 5). Iteration is
also considered challenging to use since it is not a practice that
many students are accustomed to. Students know what a typical
lesson in mathematics looks like and feel comfortable with that,
and if they are not motivated by the challenge, it is easier to ask
for help.

“Iteration [...] I perceive as more advanced and difficult to
teach [...]. As a professional programmer, it’s important to get
the optimal results which can affect a program efficiency and
competitiveness. But to solve easy problems in school this can
practically be neglected.”

Quote 5. Teacher about the problem with iteration for
problem-solving in school.

Generalization

Regarding CT generalization, results show that teachers in
the study perceived that it could support the development of
interdisciplinary knowledge, methods for general problem-solving,
and life skills. Teachers expressed that decomposition is a CT skill
that should be generalized to all subjects since being structured
and having a good study technique can help students in all
subjects. Furthermore, teachers compared CT generalization with
the knowledge that stretched over multiple school subjects and
expressed that interdisciplinary projects in school can support
the generalization of knowledge. General methods for problem-
solving in mathematics are also used as examples for generalization
by teachers. According to the teachers, students need a bank of
methods that they can choose from and apply when they encounter
problems where the solution is not obvious. A teacher in the study
expressed that generalizable knowledge is something to strive for
and that mathematics is not learned for the purpose of solving
equations but to think logically and to solve problems (Quote 6).
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“Finally, to generalize all this knowledge to other domains
is certainly something to strive for. I usually say that you don’t
learn mathematics for solving equations but to learn logical
thinking and problem-solving. I believe that the exact same
reasoning can be applied for programming. Not everyone will
be programmers, but to learn a structured way of thinking is an
opportunity for many parts of life.”

Quote 6. Teacher about generalization as something to
strive for.

Teachers perceived challenges with CT generalization in their
subjects, such as: that it is difficult for students to develop, that it is
mainly addressed for the higher grades and that students learn for
now rather than in future. Teachers expressed that generalization
is not the same in programming and mathematics and that it is
more challenging in mathematics, especially if students already
have difficulties in mathematics. However, using programming
for exercise generalization and abstraction is mentioned as an
opportunity for students that find this difficult in mathematics. It
gives them the opportunity to grow. Teachers further highlighted
that although generalization is considered important, it is not often
taught as part of problem-solving strategies in their classrooms
because it is mainly addressed in the higher grades of the subjects.
According to the teachers, generalization can help students solve
problems faster and more efficiently, but it also requires them
to have knowledge of when to apply what. Generalization and
algorithms are also considered among the CT skills that take the
longest for students to develop. This becomes especially challenging
when many students learn for now, rather than for the future,
according to the teachers. Teachers further expressed that it can be
difficult to convince students that their knowledge can be used in
different contexts to solve similar problems. Students feel that the
learning is finished when they have shown the teacher once that
they can apply a specific strategy or method for problem-solving.

General perceptions of CT

Results of the study also show that teachers have general
perceptions of CT for mathematics and technology that stretch
beyond the facets of the CT framework, such as: that much of CT is
already part of several school subjects but not addressed as CT, that
CT can be used as a tool for motivation and changing perceptions in
their subjects, and that CT is an important interdisciplinary skill for
the future. Teachers in the study highlighted that they already do a
lot of CT in their teaching and learning activities and that CT can be
related to several subjects, for example, mathematics, technology,
and natural sciences. Teachers also brought up that CT can act as
the bridge between their subjects and programming, although CT is
not a new practice for mathematics and technology. The associated
skills can be addressed much more precisely and consciously with
the concept of CT. It was also suggested by teachers that maybe
CT should be addressed in mathematics rather than specifically in
computer programming.

Teachers in the study expressed that CT can be a tool for
changing perceptions and fostering motivation, both for students
and teachers. It was suggested by a teacher in the study that CT can
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be used as a tool for supporting students that have a negative view
of mathematics, and a history of failure, to find motivation again
(Quote 7). Teachers also expressed that they feel motivated to use
CT to make their teaching and learning activities more fun and up-
to-date and move beyond the well-known methods and strategies in
their subjects. CT skills were also perceived by teachers as relevant
for all levels of education and all subjects, not only mathematics
and technology. Furthermore, teachers expressed that CT is an
important skill for students to develop, both for future work and
everyday life. Teachers expressed that CT could foster creativity
and planning and support students in being structured. Teachers in
the study pointed out that not developing CT could be like having
a digital handicap in future, much like the elderly today struggle
with apps for parking and digital banks. According to teachers in
the study, this puts the responsibility on schools to develop school
culture and subjects to be up to date and in line with the needs of
future society and labor market.

“Many students have developed a negative view of
mathematics and have labeled it as boring and complicated.
Also, a number of students have a history with years of failure in
the subject. It requires enormous skills by the teacher to present
the subject for these students in a way that can change their
perceptions. Computational thinking can be a powerful tool
that we teachers can use for supporting students in finding their
motivation and learning mathematics.”

Quote 7. Teacher about CT as a powerful tool for
supporting students in finding motivation.

There were also some perceived challenges for CT that were of
a more general nature. Teachers perceived that CT requires a lot of
time to be integrated, that it is a new way of thinking that can be
difficult for many, and that it can be difficult to persuade teacher
colleagues to implement CT. Teachers mentioned that it requires a
lot of time, discussion, and coaching to incorporate CT in school
subjects, and with limited time for teaching and big classes as it is,
CT may be abandoned by many teachers. With this, teachers in the
study perceive that it will take a long time before CT is a natural
part of education and that the integration will continue to be a
challenge for many teachers. It was also mentioned that this could
be considered an inequality for education dependent on student’s
age since the younger students will have more time to develop CT
than the older students. However, they will still live and work in the
same society.

Teachers also expressed that CT is a new way of thinking that
will be challenging for many students since it requires patience and
a lot of work. According to teachers in the study, grown-ups tend
to believe that students will find anything digitally interesting and
fun, but this might not be the case for CT since it requires a lot of
work. However, teachers also expressed that this trend of CT should
be used by teachers to show students the importance of time and
patience when engaging in problem-solving. A teacher in the study
highlighted that it will be a challenge to get all teacher colleagues
on board with CT since not everyone will see the importance of
incorporating CT in their subjects and could still believe that CT
is an isolated occurrence only affecting some subjects (Quote 8).
According to teachers in the study, this could partly be explained
by an unclear integration of programming by the Swedish National
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Agency for Education, which in turn may lead to a less thought-out
integration by the teachers.

“However, I do see a challenge in converting many
colleagues when this is probably going to include more subjects
than technology and mathematics in the future. It will require
a lesser popular movement to also get teachers in other school
subjects to understand the point of programming. No previous
curriculum in mathematics has, according to me, outlined
such a big change. The requirements for competence in and
awareness about computational thinking is something that do
not only affect teachers in mathematics and technology. It is a
global trend.”

Quote 8. Teacher about the challenge of getting teacher
colleagues on board.

Discussion

Results of the study suggest that teachers perceived CT
decomposition to be closely aligned with practices in mathematics.
This can be compared to the fact that decomposition is an idea
far older than its role in CT, as portrayed by Wing (2006), Barr
and Stephenson (2011), and Shute et al. (2017). As a practice of
divide and conquer in the Euclidean algorithm, decomposition has
a clear connection to mathematics. As exemplified by Denning
(2017), students who explain decomposition and abstraction well
can still be poor designers of algorithms. This can be related to
challenges expressed by teachers in the study, that students who
find CT decomposition and abstraction difficult often have similar
challenges in mathematics. According to Wing (2006), abstraction
is closely aligned with decomposition to solve large and complex
problems. Teachers in this study also perceived abstraction as an
important skill for mathematics and as a foundation for developing
generalization skills. For students that find decomposition and
abstraction to be difficult, the recommendation is to practice and
discuss different solutions in practical problem-solving. This could
be carried out as group work, where the teacher initially presents a
complex problem with details that could be abstracted. In the initial
abstraction phase, the teacher asks the students how the presented
problem could be abstracted to find an overall solution strategy.
This is followed up with a common decomposition discussion
where the given problem is divided into several smaller sub-tasks.
In the next phase, students are divided into groups, where every
group should work on the solution of one specific sub-task. Finally,
each group presents their solution, and all groups together discuss if
the solutions of the sub-tasks could be aggregated into coordinated
solutions that solve the entire problem.

Computational thinking algorithms can be given more loosely
defined, as in the case of Wing (2006) and Barr and Stephenson
(2011). These definitions have the opportunity of making
algorithms more applicable in everyday situations. As expressed
by teachers in the study, CT algorithms can be used to encourage
students to be more precise and structured in their work and relate
to teacher practice of making step-by-step instructions for students.
However, teachers also expressed concerns that CT algorithms can
foster unreflective problem-solving strategies by simply following
a pattern without reflecting if the answer is reasonable. This
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can be related to the criticism by Denning (2017) regarding
defining algorithms too loosely. If algorithms are defined as any
sequences of steps in everyday life, they can be easily applied almost
anywhere, but what support do they then bring to larger and more
complex problems? Regarding debugging, the teachers in the study
perceived several opportunities for debugging in their teaching
and learning practices, such as looking for errors in solutions and
fostering patience among students. However, the results also show
that the teachers do not use a definition of debugging that is as
precise as in computer science, which is also exemplified by Yadav
etal. (2011). As a part of CT, debugging has not been as obvious as
many of the other facets, as can be seen in Wing (2006) and Barr and
Stephenson (2011). This can be related to teacher perceptions in
this study that debugging is not as obviously applicable in primary
and secondary school subjects as in computer programming. The
authors’ recommendation is that algorithms could have a wider
definition in primary school and be introduced as cooking recipes
with a clear alignment to everyday activities that students can relate
to. Later in secondary school, algorithms should be redefined more
strictly to prepare students for future studies in programming and
computer science. The same idea could be applied to debugging
that it in primary school and lower secondary school, which might
be presented as ‘troubleshooting’ instead of debugging. Exactly
when the term and definition shift should take place depends on
when CT and programming are introduced. Today, this shows large
variations between different schools, regions, and countries, but the
guess is that students will meet these concepts at a younger age
in future.

As with debugging, CT iteration is perceived by teachers in
the study to not be as obvious for their subjects as for computer
programming. Once again, as in the case of debugging, iteration
is not a self-evident part of CT, which can be viewed in Wing
(2006) and Barr and Stephenson (2011). CT iteration is further
considered by the teachers to be an advanced practice that
can be difficult to incorporate with students since it challenges
how they are accustomed to working. This can be related to
Barr and Stephenson’s (2011) presentation of iteration as an
important component for supporting tool building and not only
tool use, which should be considered an advanced practice for
primary and lower secondary school students. However, with a
wider computer science perceptive on iteration, it can be used
to address, for example, mathematics in the form of Newton
Raphson Method (Akram and Ann, 2015), number series problems
(Folger et al, 2012; Schmid and Ragni, 2015), and Fibonacci
series. This could make the CT iteration concept more suitable for
younger students (Brennan and Resnick, 2012) and their problem-
solving in STEM subjects (Fields et al., 2019). To iteratively find
approximations with the Newton Raphson Method is mathematics
for upper secondary school and does not work for 7-9 grade
students. For lower secondary schools, the recommendation is to
build around algorithms that could be more clearly visualized. An
example of this is the Fibonacci series sequence mentioned earlier,
which could be visually depicted with the Golden Ratio. Another
way of making the Fibonacci series more concrete is like Leonardo
Fibonacci himself did, with the number series describing the
growth of a rabbit population (Sinha, 2017). In another assignment,
in the same courses where this study gathered data, participating
teachers should submit a lesson plan where mathematical concepts
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FIGURE 2
Series of pyramids with an iteratively increasing number of building
blocks.

were combined with programming exercises. A submitted creative
lesson was built around the number series for pyramids. The
lesson starts out with a calculation of two-dimensional pyramids,
as illustrated in Figure 2.

In the second part of the lesson, pyramids should be three-
dimensional, resulting in a pyramid with a height of 147. If the
iteration is carried out correctly, the pyramid should consist of
1,069,670 blocks, which the teacher then compares to the Cheops
pyramid in Giza. The real Cheops pyramid in Egypt is around
147 meters high, 280 royal cubits high, and with a total of ~2.3
million blocks with a weight of ~6 million tons. An assignment
that can be clearly visualized and related to a fascinating real-
world phenomenon (Mozelius and Humble, 2022). Regarding
CT generalization, teachers in the study mentioned that it is
considered an important skill for both education and life outside
school. However, it can be challenging to integrate generalization
in teaching and learning since generalization is mainly addressed
for higher grades. The teachers’ perceptions of generalization can
be related to the ideas recommended by Denning (2017) and
Polya (1945) that problem-solving strategies can be transferred to
other domains and are best improved by solving many different
problems (Schoenfeld, 1987). The teachers in the study perceived
CT abstraction as a good foundation for developing generalization
and could further be viewed as a support for this notion. Therefore,
a recommendation for teachers would be to seek collaborations
with other subjects in the use of CT concepts. This would give
students the opportunities to apply CT-related skills to different
types of problems and to generalize their knowledge to other
domains and contexts. Einhorn (2012) claimed that CT is best
learned through computer programming also resonates with the
perceptions of many teachers in the study. Teachers in the study
expressed that programming can be used to support teaching and
learning in their subjects and the development of students’ CT
skills. A potential challenge with this is that programming can
be perceived as difficult by both students and teachers. However,
with the growth of programming tools targeted for educational
use, and sometimes with CT in mind, searching for appropriate
programming tools is easier today than just a decade ago.

Teachers also expressed more general perceptions of CT that
stretch beyond the CT facets and K-12 education context. An
example is that CT is considered to be an important skill for
both education in general and the future life of students. These
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perceptions can be related to the criticism of Wing’s (2006) original
definition of CT and that CT could be relevant for problem-
solving outside the field of computer science (Denning, 2009;
Hemmendinger, 2010). Teachers in the study also expressed some
general concerns about CT. For example, it will be a long and
challenging process to implement CT in education and to get
all colleagues onboard. Once again, the authors suggested that
this challenge could be addressed through collaborations between
different school subjects. Collaborations between teachers would
both strengthen their own professional development in CT and
provide students with the opportunity to generalize their skills and
knowledge. It is further suggested that part of this challenge could
be caused by unclear instructions for the use and integration of
computer programming and related practices in K-12 education.
This could be related to the more general body of research and
theoretical frameworks for CT, where no consensus has been
reached for exactly what CT is and what it incorporates. Here, the
research community has a responsibility to provide more quality
studies on CT in the K-12 context and to communicate these to
educational stakeholders with clear recommendations.

Conclusion

The findings of this study show that teachers perceived both
opportunities and challenges for CT in grades 7-12 mathematics
and technology, of which many can be related to previous research
on CT. Some of the more interesting findings are that teachers
perceived CT, and many of its facets, as relevant to their subjects
and that it can provide opportunities for teaching and learning
activities. However, some parts of CT are also perceived as
challenging to apply in classroom settings, and their relevance
for mathematics and technology is, to some extent, questioned.
This can be related to the literature on the topic, which shows a
differentiated view of what CT is and what skills it contains. A
scattered understanding of CT and what it encompasses makes it
difficult for teachers to form an overview of the concept and what it
can be used for.

The conclusion of the study is that CT has the potential
to enhance teaching and learning activities in mathematics,
technology, and other STEM subjects. If this should be successful,
CT must not be involved too abstractly or too superficially.
Abstraction is an important component in CT and, in general,
problem-solving, but at the same time, the more diabolic details
handled. The resemblances between CT and
programming are evident, with the same distinction between

must also be

knowledge and skills. Regarding the knowledge part of CT, this
could be presented relatively easily. However, to be an additional
and useful skill in STEM subjects, more technical definitions of
CT are preferred. The authors’ recommendation is to provide a
wider range of professional development courses for K-12 STEM
teachers. There ought to be various courses on programming
and computer science, where the CT components are applied in
concrete problem-solving. Finally, as highlighted in several other
studies, CT sharpens students” systematic and analytical thinking,
which could be of value in contexts outside STEM.

This study makes an important contribution to the discussion
on CT in K-12 education, adding the teachers’ perspective. The
findings presented in the study can be used to inform teachers and
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other stakeholders of the potential opportunities and challenges
with CT for K-12 education.

Limitations and future research

The results of this study are based on limited material and
include teacher perceptions of the studied topic that are not always
based on their own experiences. Two potential future studies that
could address these limitations are (1) a large-scale investigation of
teacher perception of CT and its’ application in K-12 education and
(2) a specialized investigation with teachers that apply CT in their
teaching and learning activities, for example, through computer
programming. These two studies could also be combined for a more
thorough investigation of the opportunities and challenges of CT,
with the idea of a mixed methods approach.
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