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Diagnostic classification models (DCMs) are psychometric models that yield

probabilistic classifications of respondents according to a set of discrete

latent variables. The current study examines the recently introduced one-

parameter log-linear cognitive diagnosis model (1-PLCDM), which has increased

interpretability compared with general DCMs due to useful measurement

properties like sum score su�ciency and invariance properties. We demonstrate

its equivalence with the Latent Class/Rasch Model and discuss interpretational

consequences. The model is further examined in a DCM framework. We

demonstrate the sum score su�ciency property and we derive an expression

for the cut score for mastery classification. It is shown by means of a simulation

study that the 1-PLCDM is fairly robust to model constraint violations in terms

of classification accuracy and reliability. This robustness in combination with

useful measurement properties and ease of interpretation can make the model

attractive for stakeholders to apply in various assessment settings.

KEYWORDS

diagnostic classificationmodels, cut scores, sum score su�ciency, score interpretation,
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1 Introduction

Diagnostic classification models (DCMs; Rupp et al., 2010) are psychometric models

that yield probabilistic classifications of respondents according to a set of discrete

latent variables, which are referred to as attributes. In educational measurement, these

attributes generally represent skills, abilities, and cognitive processes required to solve

certain items. Classifying respondents in terms of mastery of these attributes results

in attribute profiles that indicate which attributes are mastered and which are not.

If assessments provide valid and reliable measurements of attributes, this diagnostic

information enables the provision of fine-grained, actionable feedback to teachers and

students (see e.g., Gierl et al., 2010; Maas et al., 2022a). To this end, DCMs need to

be implemented in practical settings, which generally involves multiple stakeholders,

including psychometricians, educational organizations, teachers, and students. From a

psychometric perspective, the objective is to obtain an acceptable measurement of students’

proficiency given the data. In a DCM framework, this may require the estimation of

possibly complex DCMs to obtain accurate classifications of students based on their

item responses. Yet the interpretation of resulting model parameter estimates is not

always straightforward, even for experienced psychometricians (Bradshaw and Levy,

2019). From an educational perspective, it is desirable that model results can be easily

interpreted and that one can explain how classifications are established. Simpler DCMs

generally have more straightforward interpretations, which advocate their use in practical
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applications, provided that the classifications are sufficiently

accurate and reliable. In the current study, we examine a

simple DCM with properties that make the model attractive

for educational practice: the one-parameter log-linear cognitive

diagnosis model (1-PLCDM; Madison et al., 2023). We aim

to contribute to the foundational development of this recently

introduced model to allow implementation in practice.

Although historically many different DCMs have been

developed separately, there exist general diagnostic modeling

frameworks like the log-linear cognitive diagnosis model (LCDM;

Rupp et al., 2010), the general diagnostic model (GDM; von

Davier, 2008) and the generalized deterministic inputs, noisy

“and” gate model (G-DINA; de la Torre, 2011). These frameworks

subsume more specific DCMs that can be obtained by placing

statistical constraints on model parameters. These varying DCMs

make different assumptions about the mechanisms underlying item

response behavior (e.g., whether or not non-mastery of an attribute

can be compensated by mastery of another), which are reflected

in the item response functions. The selection of a specific model

can stem from a variety of considerations, including substantive

reasons, explainability, estimation complexity, and model fit (Ma

et al., 2016). Although complex DCMs can fit the data better,

the reduction in fit when using simpler DCMs may be worth

the sacrifice if it results in desirable assessment interpretations,

i.e., there is a trade-off between model interpretability and

accuracy. For example, despite being a simple and extremely

constrained model, the deterministic inputs, noisy “and” gate

model (DINA; de la Torre, 2009) is the most applied DCM in

empirical studies (Sessoms and Henson, 2018). This shows that

model simplicity is highly valued by researchers and practitioners.

This is similar to modeling choices for assessment systems that

are based on item response theory (IRT), for which it is not

uncommon to use the Rasch or 1-parameter logistic (1-PL)

model due to their useful measurement properties like sum

score sufficiency and invariant measurement, even though more

complex IRT models are likely to fit the data better (Zwitser

and Maris, 2015; Barney and Fisher, 2016; Stemler and Naples,

2021).

Simple DCMs are still being developed to adhere to this

preference for simplicity. Recently, a new and simple DCM has

been proposed that favors interpretability over complexity, and

therefore potentially the accuracy of the model. This model has

been called the one-parameter log-linear cognitive diagnosis model

(1-PLCDM; Madison et al., 2023) and can be obtained by imposing

item parameter constraints on the LCDM. The 1-PLCDM estimates

an intercept for each item and a single main effect across all items

measuring the same attribute, as will be described in more detail

further below. In this way, the model is somewhat similar to the

Rasch model and the 1-PL IRT model, which include a difficulty

parameter for each item and a single discrimination parameter

across all items (DeMars, 2010). Madison et al. (2023) introduced

the 1-PLCDMand demonstrated desirablemeasurement properties

of the model in a single-attribute setting based on an empirical

dataset, namely sum score sufficiency and invariant measurement.

The purpose of the current study is to describe the mathematical

foundations of the model and to examine its robustness to

constraint violations under varying conditions by means of a

simulation study.

Although the 1-PLCDM can be defined for a multidimensional

setting, the current study is focused on the unidimensional case

to provide initial insight in the properties and performance of

the model. Most DCMs in the literature are multidimensional, yet

this unidimensional 1-PLCDM is worthy of examination. There

exist several examples of the use of unidimensional DCMs, both in

research and practice (e.g., Templin and Bradshaw, 2013; Madison,

2019; Dynamic Learning Maps Consortium, 2021). While varying

psychometric models can be used in a unidimensional setting, if

the goal is to classify students rather than locating them on a latent

scale, a unidimensional DCM is appropriate from a validity and

reliability perspective (Templin and Bradshaw, 2013) and the 1-

PLCDM has properties that give the model added value beyond

the benefits of existing DCMs. Moreover, future work can build

upon our initial insights and extend the results to multidimensional

settings. We start by discussing the model properties and their

benefits in more detail. Subsequently, we describe how we extend

the empirical demonstration of sum score sufficiency with analytic

derivations and how we perform a simulation study to examine to

what extent the 1-PLCDM sacrifices model performance in order

to obtain the properties.

1.1 Sum scores for mastery classification

In general, for DCM-based classification, it not only matters

how many items are answered correctly but also which items.

Consequently, two respondents with the same number-correct

scores but different patterns of items correct may have different

attribute profiles. Although it can be viewed as a benefit that

DCMs can handle such data, it also entails some challenges. If

stakeholders compare their scores, it can be difficult for them to

understand how the same number-correct scores result in different

outcomes. Moreover, the analysis of item responses with DCMs

generally requires statistical software to compute attribute mastery

probabilities. If, by contrast, predetermined sum score cut points

can define attribute mastery vs. non-mastery, this is no longer

a requirement and intuitively appealing sum scores can be used.

This is especially useful for small scale applications in classroom

assessment, for which psychometric analysis of item response data

is uncommon and can be difficult due to limited resources.

To achieve this, Henson et al. (2007) proposed a simulation-

based method for estimating sum score cutpoints as an

approximation to full model-based estimation of attribute

mastery in a DCM framework. Results showed that these methods

can provide reasonably accurate classifications, yet they do not

provide an indication of the certainty of the classifications and,

moreover, very little is known about the robustness of these

approaches. The 1-PLCDM may partly overcome these challenges.

Madison et al. (2023) showed for an empirical dataset that sum

scores were sufficient statistics to estimate attribute mastery

probabilities with the 1-PLCDM. More specifically, there was

a one-to-one relationship such that each sum score mapped to

exactly one posterior mastery probability. The current study

will show that this property holds in general for the 1-PLCDM.

As a result, the same number-correct scores result in the same

classification and sum scores can be used for mastery classification.
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1.2 Invariant measurement

In addition to sum score sufficiency, Madison et al. (2023)

showed that the 1-PLCDM can yield invariant measurement.

Invariant measurement allows to make inferences that generalize

beyond the particular item set that is answered and beyond

the particular group of respondents used to calibrate the items

(Engelhard, 2013). Several properties contribute to invariant

measurement. First, there is the invariant person ordering property,

stating that correct response probabilities increase with increasing

proficiency. Analogously, the invariant item ordering property

states that if an item has a higher correct response probability than

another item for a person, it must have a higher correct response

probability for all persons. Both properties were demonstrated

by Madison et al. (2023) for the 1-PLCDM. Further, person-

invariant item calibration and item-invariant person measurement

were empirically demonstrated. This means that item parameter

estimates are independent of the sample used for calibration

(“sample-free” measurement) and that mastery classifications are

independent of the item set that is administered (“item-free”

measurement), respectively. This is relevant for DCMs, because

it facilitates the practical use of assessments for new samples

after calibration. An initial calibration sample can be used to

estimate item parameters and then those parameters can be used

to score new students (as in the Rasch model; Rasch, 1960; Lord,

1980). Note that illustration of these properties is not novel for

DCMs; earlier simulation studies have shown sample- and item-

free measurement for both specific and general DCMs. These are

theoretical properties that only hold with perfect model-data fit.

In practice, samples will always contain some variability from the

population and perfect invariance will not be observed.

1.3 Current study

Since simple, reduced DCMs can be valuable in practical

applications in order to afford useful measurement properties, it

is important that the mathematical underpinnings as well as the

impact of violations on model performance are well-understood.

In the first part of the current study, we show that the 1-PLCDM

is, in fact, a special case of the Latent Class/Rasch Model (LC/RM;

Formann, 1995) and we discuss what this means. By demonstrating

this equivalence, we bridge twomodeling frameworks that are often

separated, namely DCM and IRT/Rasch. Similar to the LC/RM,

sum scores are sufficient statistics to estimate mastery probabilities

with the 1-PLCDM, which we demonstrate based on the likelihood

of the model. In addition, an expression for the cut score for

mastery classification is derived.

In the second part of the study, we perform a simulation

study to evaluate model performance. We examine the robustness

of the 1-PLCDM to violations of the imposed constraints in

terms of classification accuracy, reliability, and model fit. Model

results are compared with the results from the LCDM to evaluate

to what extent model performance is reduced by imposing the

constraints. Providing insight into the degree of reduction in model

performance of the 1-PLCDM enables one to make informed

modeling choices. In addition, we evaluated how accurate the

1-PLCDM can estimate the cut score and how this impacts

classification accuracy when the cut score is used to classify new

respondents. Based on the results of the simulation study, it can be

decided whether the aforementioned measurement properties are

worth the sacrifice in performance.

The current study provides unique contributions to the

development of the 1-PLCDM (beyond the results from Madison

et al., 2023), namely (1) insight in the mathematical foundations

by demonstrating equivalent models, (2) an analytic expression for

the cut score for mastery classification, (3) evaluation of robustness

to constraint violations, and (4) evaluation of cut score recovery

and how this impacts classification accuracy when classifying new

respondents.

2 Part 1: model properties

2.1 Introducing the 1-PLCDM

Diagnostic classification models are restricted latent class

models that are used to classify respondents in a restricted number

of latent classes, i.e., attribute profiles. In a single-attribute setting,

there are two latent classes denoted by αc (c = 1, 2), namely α1 = 0,

which means the attribute is not mastered, and α2 = 1, which

means it is mastered. Let xri be the dichotomously scored response

to item i (i = 1, .., I) by respondent r (r = 1, ..,R), which equals

0 or 1 for an incorrect or correct response, respectively, and let πci

denote the probability that a respondent in latent class αc responds

correctly to item i. Further, let xr = [xr1, ..., xrI] be the response

pattern of respondent r. The conditional probability of response

pattern xr given attribute profile αc equals:

P(xr | αc) =
I
∏

i=1

π
xri
ci (1− πci)

1−xri (1)

The product term is a consequence of the assumption of local

independence, i.e., item responses are independent conditional on

the latent class of the respondent. The unconditional probability of

response pattern xr is obtained by weighting Equation (1) with the

proportional latent class sizes νc and summing up both classes. This

results in the expression in Equation (2):

P(xr) =
2
∑

c=1

νc

I
∏

i=1

π
xri
ci (1− πci)

1−xri (2)

Since there are two latent classes, the proportional latent class

sizes ν1 and ν2 add up to 1. The item response probabilities πci

can be subjected to several types of constraints, reflecting different

mechanisms underlying item response behavior. The 1-PLCDM

estimates an intercept for each item and a single main effect across

all items (in contrast to general DCMs that estimate a main effect

for each item). The 1-PLCDM models the conditional probability

πci as follows:

πci = P(xci = 1 | αc) =
exp(λi,0 + λ1αc)

1+ exp(λi,0 + λ1αc)
(3)

For each item i, the exponent includes an intercept term (λi,0)

that represents the logit of a correct response for non-masters.
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Further, there is one main effect (λ1; note the absence of a subscript

i) that indicates the difference in the logit of a correct response

between non-masters and masters.1 The main effect is subject

to monotonicity constraints to ensure that the probability of a

correct response increases monotonically for masters compared to

non-masters (i.e., λ1 > 0).

2.2 Equivalent models

The 1-PLCDM has solely been viewed in a DCM framework

by Madison et al. (2023). However, one can recognize the item

response function in Equation (3) as a specific case of the item

characteristic curve of the Latent Class/Rasch Model (LC/RM) that

was introduced by Formann (1995). This is a linear logistic latent

class model that assumes that both items and classes are ordered.

The position of each item i on the underlying latent continuum is

described by a single location parameter βi and of each class c by θc,

combined in the item characteristic curves as follows:

πci =
exp(βi + θc)

1+ exp(βi + θc)
(4)

Equation (4) corresponds to Equation (13.10) from Formann

(1995). The parameter θc is similar to the ability parameter in the

well-known Rasch model. Yet rather than estimating an ability

parameter for each respondent, the LC/RM estimates one ability

parameter for each latent class. We can directly see that the 1-

PLCDM is equivalent to a constrained LC/RM, namely an LC/RM

with two latent classes (c = 1, 2) where θ1 = 0 and θ2 > 0.

A critical issue with equivalent models is that they can provide

different explanations of the same data. Equivalent models cannot

be distinguished in terms of goodness of fit, i.e., the data cannot

distinguish the different interpretations (MacCallum et al., 1993).

For an example of equivalent psychometric models, see Maris and

Bechger (2004), who demonstrate the equivalence between the

Linear Logistic Test Model (LLTM; Fischer, 1995) and the model

with internal restrictions on item difficulty (MIRID; Butter et al.,

1998).

The 1-PLCDM and the LC/RM both separate two latent classes,

but the 1-PLCDM defines ability by latent class membership (non-

master vs. master) whereas the LC/RM positions the classes on a

latent ability continuum. The parameter θ2 of the LC/RM is viewed

as a person parameter that represents the ability of latent class c = 2

(on a latent scale). This parameter is equivalent to the parameter λ1

of the 1-PLCDM, which is, by contrast, viewed as an item parameter

that represents the increase in the logit of a correct response for

any item given mastery of the measured attribute. Despite these

different interpretations, it is not possible to distinguish between

these competing interpretations, because both models explain the

data equally well. Although the interpretations are slightly different,

one could think of λ1 as a person parameter, since it represents

the increased expected performance of masters compared to non-

masters. Model equivalence is an issue if interpretations differ

1 In a multi-attribute setting, a single main e�ect is estimated across all

itemsmeasuring the same attribute (i.e., λ1α ). Themultidimensional 1-PLCDM

is defined for assessments comprised of unidimensional items.

greatly, yet we believe the interpretation of the parameters of the 1-

PLCDM and the constrained LC/RM are compatible. We continue

to examine the model in a DCM framework.

2.3 Sum scores for mastery classification

In this section, we demonstrate that sum scores are sufficient

statistics for mastery classifications and we derive an expression for

the cut score. The likelihood of the 1-PLCDM can be expressed as2:

L =

R
∏

r=1

P(xr) =

exp

(

I
∑

i=1

λi,0 · pi

)

·

R
∏

r=1

(

2
∑

c=1

νc ·
exp(λ1αc · sr)

∏I
i=1 1+ exp(λi,0 + λ1αc)

)

(5)

The likelihood in Equation (5) is a function of the summed

scores across items (person number-correct scores: sr =
∑I

i=1 xri)

and across persons (item number-correct scores: pi =
∑R

r=1 xri),

and of the unknown model parameters. When the 1-PLCDM is fit

to data from a diagnostic assessment and the model parameters

are estimated, attribute classifications can be obtained. This is

done in a Bayesian framework based on posterior probabilities of

attribute mastery, which are derived from the response pattern

via the likelihood and the prior probabilities of latent class

membership. The posterior probabilities thus reflect accumulated

evidence across a priori evidence about latent class membership in

the population of interest and evidence from the observed item

response data. Based on the posterior probabilities, respondents

are classified as master or non-master. This is a model-based

classification, which differs from more traditional approaches in

which cut scores for mastery classification are generally determined

via standard-setting procedures that rely on expert judgment (Kane

and Wilson, 1984).

The posterior probability of belonging to latent class αc is given

by:

P(αc|xr) =
P(αc) · P(xr |αc)

P(xr)
=

νc ·
exp(λ1αc · sr)

∏I
i=1 1+ exp(λi,0 + λ1αc)

∑2
c=1 νc ·

exp(λ1αc · sr)
∏I

i=1 1+ exp(λi,0 + λ1αc)

(6)

In this expression, νc indicates the prior probability for αc (i.e.,

a priori evidence about latent class membership in the population

of interest). If the posterior probability of being in latent class α2 is

higher than a certain threshold τ , the respondent is classified as a

master. Typically, τ is set to 0.5, such that posterior probabilities of

mastery higher than 0.5 lead to classification as master. This assigns

each respondent to their most likely class and yields the most

accurate total classifications. Choosing τ = 0.5 is thus statistically

the most optimal cutoff. Yet if misclassification in one direction

outweighs that in the other direction, one may use a value greater

or lower than 0.5 (Bradshaw and Levy, 2019). For example, in a

2 The derivation of the likelihood and some properties can be found in

Appendix A.
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formative assessment context, incorrectly classifying a non-master

as a master may be more costly, since they may not receive the

instructional support needed to achieve mastery. In that case, a

value of τ higher than 0.5 can be chosen. This trade-off has to be

evaluated before setting the threshold.

The expression in Equation (6) does not depend on the

individual item responses, but only on the person number-correct

score sr . This shows that the sum score is a sufficient statistic for

the posterior probabilities of latent class membership. Therefore,

all respondents with the same number-correct score will have the

same estimated mastery probability and we can determine a cut

score for mastery classification. If a respondent scores above this

score, they are classified as a master of the attribute and otherwise

as a non-master.

The posterior mastery probability can be expressed as in

Equation (7):

P(α2|xr) =

ν2 ·
exp(λ1 · sr)

∏I
i=1 1+ exp(λi,0 + λ1)

ν1 ·
1

∏I
i=1 1+ exp(λi,0)

+ ν2 ·
exp(λ1 · sr)

∏I
i=1 1+ exp(λi,0 + λ1)

(7)

To determine the cut score for mastery classification, we solve

the inequality P(α2|xr) > τ for sr :

ν2 · exp(λ1 · sr)

ν1 ·
∏I

i=1

1+ exp(λi,0 + λ1)

1+ exp(λi,0)
+ ν2 · exp(λ1 · sr)

> τ

(1− τ ) · ν2 · exp(λ1 · sr) > τ · ν1 ·

I
∏

i=1

1+ exp(λi,0 + λ1)

1+ exp(λi,0)

sr >
1

λ1

[

log

(

τ

1− τ

)

+ log

(

ν1

ν2

)

+

I
∑

i=1

log

(

1+ exp(λi,0 + λ1)

1+ exp(λi,0)

)]

(8)

It can be seen that the cut score for classification as master

depends not only on the threshold parameter (τ ) and the item

parameters (λi,0 and λ1), but also on the ratio of the population

base rate proportions of non-mastery and mastery (i.e., the prior

probabilities of latent class membership ν1 and ν2). In DCM

applications, these base rates are generally estimated from the

available data, that is, they are empirically determined. Equation (8)

shows that the cut score decreases if the mastery base rate increases.

Henceforth, we use the term “base rate" to refer to the proportion

of respondents who master the attribute (i.e., ν2). Recall that

DCM item parameters are theoretically sample-free, meaning that

item parameter estimates are independent of the sample used for

calibration (Bradshaw and Madison, 2016). However, since the cut

score also depends on the base rates, it is not expected that cut score

estimates are sample-free. To give the reader a more meaningful

impression of the influence of the base rates on cut scores, we

simulated a set of item parameters (λi,0 ∼ N(−1, 0.5) and λ1 = 2)

and computed the cut scores at τ = 0.5 for different base rates

and test lengths.3 The results can be found in Table 1, which shows

that the cut scores vary by two points across base rates for each test

length.

3 We provided one example to give an impression of the impact of base

rates on cut scores; no replications were performed.

The influence of the base rate on respondent classifications

will be stronger for shorter assessments, because less data (relative

to the prior evidence) are available, i.e., there is less empirical

evidence from the data in the likelihood to “counterbalance” the

information provided by the data from the prior distribution. This

is especially relevant for respondents who score close to the cut

score, i.e., with a mastery probability close to the threshold τ . If the

variance in cut scores across base rates is small relative to the test

length, one could specify an indifference region for the cut score

range, which means that respondents who score within this range

are not classified. If this is not feasible, accurate estimates of the

population base rates are needed to obtain accurate classifications

of borderline respondents, which requires a representative sample

for model estimation.

3 Part 2: model performance

3.1 Methods

The 1-PLCDMmakes a strong assumption that main effects are

equal across all items.We performed a simulation study to examine

how violations to this assumption impact classification accuracy,

reliability and model fit of the 1-PLCDM. In addition, we evaluated

the accuracy of cut score estimation and we examined classification

accuracy when scoring new respondents based on this estimated cut

score.

3.1.1 Study design
In the simulation study, we generated data using the LCDM

and estimated both the LCDM and the 1-PLCDM using the CDM

package in R (George et al., 2016). The models were estimated

using marginalized maximum likelihood estimation (MMLE), as

described in de la Torre (2011), with a uniform prior distribution

of the two attribute profiles. We did a brief simulation (results not

included) to examine the impact of different prior attribute profile

distributions (0.25, 0.50, 0.75) on model accuracy and reliability.

Results indicated that the impact was negligible. Therefore, we

chose the CDM package’s default prior values of 0.50.

In generating item parameters, item difficulty and

discrimination varied across items, but we fixed the overall

test difficulty and quality. For each item, the intercept λi,0 was

sampled from a normal distribution with mean −1 and standard

deviation 0.3 and the main effect λi,1 was sampled from a truncated

normal distribution on the interval [0.5,∞) with a mean of 1.7

and varying standard deviations. This results in average correct

response probabilities of 0.27 and 0.67 for non-masters and

masters, respectively, and thus an average item discrimination

of 0.40. Further, we manipulated four fully-crossed factors: main

effects variance (4 levels), number of items (3 levels), sample size (3

levels), and base rate (3 levels), as is described next. The resulting

108 conditions were replicated 500 times.

Main e�ects variance

This factor was of main interest in the simulation, since the

objective was to examine how violating the constraint of equal

main effects impacts 1-PLCDM results. Four levels were used:
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TABLE 1 Cut scores for mastery classification (at τ = 0.5) for di�erent attribute mastery base rates and test lengths.

Base rate

Number of
items

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5 4 4 3 3 3 3 3 2 2

10 7 6 6 6 6 6 5 5 5

15 9 8 8 8 8 7 7 7 7

20 12 12 12 12 11 11 11 11 10

zero, low, medium and high variance. This was achieved by setting

the standard deviation of the truncated normal distribution from

which the main effects λi,1 were sampled to 0, 0.2, 0.6, and 1,

respectively. These values reflect variances in main effects found in

empirical data (see e.g., Bradshaw et al., 2014). The zero-variance

condition corresponds to a correctly specified 1-PLCDM and the

remaining conditions correspond to varying levels of 1-PLCDM

misspecification.

Number of items

Since we are evaluating a single-attribute situation, as little as

five items can produce accurate results for the LCDM (Madison and

Bradshaw, 2015). We used three levels for the number of items to

examine how test length influences results of the 1-PLCDM, namely

5, 10, and 15 items.

Sample size

We used three sample sizes to reflect a variety of samples in

educational context, namely 200, 500, and 1,000 respondents.

Base rate

The base rate is the proportion of respondents who master

the attribute. We included multiple levels for this factor to reflect

multiple scenarios, namely low (0.3), medium (0.5), and high (0.7)

base rates.

3.1.2 Outcome measures
To assess the impact of 1-PLCDM assumption violations (i.e.,

varying main effects), we evaluated classification accuracy and

reliability. For classification accuracy, we calculated the proportion

of estimated attribute classifications (using a threshold of 0.5) that

matched the generated attribute classifications. For reliability, we

used a metric recommended by Johnson and Sinharay (2020),

namely the squared point biserial correlation between the true skill

and the posterior mean of the skill. This measure can be interpreted

as the proportion reduction in prediction error, more specifically

as the mean proportional reduction in variance after observing

the posterior mean. This metric was estimated with the following

estimator:

ρ̂bis =

1
N

∑R
r=1(E[αc | xr])2 − ν2c

νc(1− νc)
(9)

Here, E[αc | xr] indicates the posterior mastery probability

for respondent r and νc indicates the estimated proportional latent

class sizes.

Further, global absolute model fit was tested with the maximum

χ2 statistic of item pairs and with the maximum absolute value

of the deviations of Fisher transformed correlations as in Chen

et al. (2013), and we evaluated the standardized root mean squared

residual (SRMSR; Maydeu-Olivares and Joe, 2014). To compare the

1-PLCDM and LCDM in each replication, we evaluated the AIC

and BIC and we performed a likelihood ratio test (LRT).

Finally, for the conditions without varying main effects (i.e.,

when the 1-PLCDM was the true generating model), we evaluated

the accuracy of the estimated cut score by comparing it with the true

cut score (computed using Equation (8) with the generating model

parameters) and we examined the classification accuracy when the

estimated cut score was used to classify new respondents.

3.2 Results

3.2.1 Classification accuracy
Figure 1 shows the average classification accuracy across

replications (with 90% error bars) for the 1-PLCDM and LCDM

across different levels of main effects variance and number of items.

The presented results are aggregated for the different sample sizes

and base rate levels, because these variables did not substantially

impact the results. The results of the 1-PLCDM and LCDM were

almost indistinguishable in all conditions. This means that there

was virtually no loss in classification accuracy by imposing the

equality constraints on the main effects, even when the true

variance in the main effects was high. For all conditions with five

items, the accuracy was around 0.80, for 10 items around 0.90

and for 15 items around 0.95. The average classification agreement

between the two models was high in all 108 simulated conditions: it

varied between 0.87 and 0.99.

3.2.2 Reliability
For reliability, we evaluated the squared point biserial

correlation between the true skill and the posterior mean of

the skill, which we estimated using Equation (9) (Johnson and

Sinharay, 2020). Figure 2 shows the average reliability across

replications (with 90% error bars) in the conditions resulting from

crossing sample size, number of items, and main effects variance.

The presented results are aggregated for the different base rate

levels, since highly similar results were found for this manipulated

variable. It can be seen that in the conditions with short tests and

small sample sizes (I = 5, R = 200), the LCDM produced slightly

more reliable results on average than the 1-PLCDM, yet there was

substantial variance across replications. This discrepancy between
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FIGURE 1

Average classification accuracy across replications (with 90% error bars) in the conditions resulting from crossing main e�ects variance and number

of items. Results are aggregated for the di�erent sample sizes and base rate levels.

the two models diminished with longer tests and larger samples,

although with high main effects variance the LCDM tends to be

somewhat more reliable on average.

Further, Figure 2 shows that reliability is not highly influenced

by sample size, but more by the number of items. Johnson and

Sinharay (2020) suggest a lower bound of 0.75 for the squared point

biserial correlation to indicate fair reliability. On average, this was

not achieved with either of the two models in the conditions with

I = 5, suggesting that more items are needed. For I = 10, average

reliability ranged from 0.70 to 0.83 and for I = 15 from 0.81 to 0.91.

These results indicate that generally 10 to 15 items are needed to

attain the lower bound suggested by Johnson and Sinharay for both

the 1-PLCDM and the LCDM given the simulated item quality.

3.2.3 Absolute model fit
To evaluate the performance of absolute model fit tests, the

rejection rates of the maximum χ2 statistic of item pairs and the

maximum absolute value of the deviations of Fisher transformed

correlations were computed (at α = 0.05). To control for

multiple comparisons, p-value adjustments according to the Holm-

Bonferroni method were conducted (Holm, 1979). For the LCDM,

rejection rates of both test statistics were close to zero in all

conditions. This aligns with results from Chen et al. (2013), who

found that, under the correction for multiple comparisons, the

Fisher transformed correlation test is too conservative with type

I error rates much lower than the nominal level. For the 1-

PLCDM, rejection rates of the maximum χ2 test were substantial

even in the zero-variance conditions, making it unsuitable to

evaluate the equality constraint violations (see Appendix B for

details). The Fisher transformed correlation test, by contrast, seems

useful and has adequate power to detect misfit under certain

conditions, as can be seen from the rejection rates in Table 2. In

the zero-variance columns, rejection rates indicate type I errors

and in the remaining columns they indicate power. Rejection rates

increased with increasing variance of the main effects, i.e., with

stronger violation of the equality constraints. The power to reject

the 1-PLCDM in conditions with non-zero main effects variance

expectedly increased with increasing test length and sample size.

Adequate power (0.80, indicated in boldface) to detect medium

constraint violations (i.e., medium main effects variance) was

achieved with at least 10 items and 500 respondents.

Finally, we evaluated the SRMSR, for which a value below

0.05 is generally considered as an acceptable approximation to

the data (Maydeu-Olivares and Joe, 2014). For the LCDM, the

average SRMSR was around or below 0.05 in all conditions with

little variance across replications. For the 1-PLCDM, Figure 3

shows the average SRMSR across replications (with 90% error

bars). Results are aggregated for the different base rate levels,

because highly similar results were found for varying base rates.

It can be seen that the SRMSR tended to be smaller as sample

size increased, aligning with findings from Ma (2020). Further,

the SRMSR increased with increasing main effects variance, justly

indicating stronger model misfit, with average values above 0.05

in the conditions with medium and high main effects variance. In

the conditions with zero and low main effects variance, the average

SRMSR was above 0.05 for R = 200 (indicating misfit) and below

0.05 for R = 500, 1, 000 (not indicating misfit). Thus, the SRMSR

indicated model misfit even when the 1-PLCDM was the true

generating model for the small sample size, but not for the larger

sample sizes.

3.2.4 Relative fit
We evaluated the proportion of replications in which the AIC

and BIC were lower for the LCDM than for the 1-PLCDM, i.e.,

preferred the LCDM over the 1-PLCDM, and we evaluated the

proportion of replications in which the LRT selected the LCDM

over the 1-PLCDM. The AIC and LRT tended to prefer the (more

complex) LCDM even in conditions with zero or low main effects

variance, aligning with results from Lei and Li (2016) and from

Maas et al. (2022b) showing that the AIC tends to erroneously

favor more complex DCMs (see Appendix B for details). The BIC,

by contrast, generally selected the 1-PLCDM in the conditions

where the main effects variance was zero or low. With medium and

high main effects variance, the BIC increasingly showed preference
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FIGURE 2

Average reliability across replications (with 90% error bars) in the conditions resulting from crossing sample size, number of items, and main e�ects

variance. Results are aggregated for the di�erent base rate levels.

for the LCDM, especially with longer tests and larger samples

(see Figure B.1 in Appendix B). These results indicate adequate

performance of the BIC in model selection.

3.2.5 Cut score recovery
For the conditions in which the 1-PLCDM was the true

generating model, we evaluated whether the cut score was

accurately estimated. We computed the true cut score using

Equation (8) with the generating model parameters and compared

it with themodel estimated cut score. Recall that cut score estimates

are not expected to be sample-free. Here, we only evaluated cut

score recovery with samples that were representative in terms of

proficiency, i.e., the generating base rate parameters that were used

to generate sample data are also used to compute the true cut

score. Table 3 shows the proportion of replications in which the cut

score was correctly estimated, overestimated, or underestimated.

Over- and underestimation was nearly always a 1 point difference

between the true and estimated cut score; only in 0.33% of all

replications across all conditions the difference was 2 points, in

0.01% it was 3 points and never more than that. The results in the

table are aggregated for the different sample size levels, because

similar trends were found across varying sample sizes. It can be

seen the cut score recovery is fairly accurate. However, with short

tests (I = 5) in combination with unbalanced base rates (0.3 or

0.7), the cut score was overestimated in a substantial proportion of

replications. This shows that even with representative samples, one

may obtain biased estimates of the cut score with extreme base rates

if tests are short. This might stem from the rounding of the true cut

scores, which are rounded up to the nearest integer.

Since the difference between true and estimated cut scores

was generally not more than 1 point, the bias in the estimates
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TABLE 2 Rejection rates of the maximum Fisher transformed correlation tests for the 1-PLCDM per condition. Values ≥ 0.80 are displayed in boldface to

indicate adequate power.

Base R = 200 R = 500 R = 1, 000

Number
of items

Rate Zero Low Med. High Zero Low Med. High Zero Low Med. High

5 0.3 0.05 0.09 0.25 0.39 0.07 0.09 0.41 0.67 0.06 0.14 0.68 0.90

0.5 0.06 0.10 0.27 0.47 0.05 0.10 0.49 0.77 0.05 0.15 0.73 0.93

0.7 0.08 0.10 0.26 0.46 0.09 0.12 0.43 0.70 0.06 0.17 0.69 0.91

10 0.3 0.07 0.14 0.37 0.66 0.08 0.16 0.76 0.94 0.09 0.22 0.93 0.99

0.5 0.10 0.16 0.56 0.82 0.10 0.18 0.86 0.97 0.07 0.32 0.96 1.00

0.7 0.11 0.15 0.50 0.83 0.14 0.19 0.80 0.96 0.11 0.32 0.94 1.00

15 0.3 0.11 0.15 0.53 0.79 0.08 0.22 0.90 0.99 0.09 0.34 0.98 1.00

0.5 0.13 0.17 0.66 0.93 0.10 0.31 0.96 1.00 0.10 0.52 1.00 1.00

0.7 0.11 0.15 0.64 0.92 0.11 0.27 0.94 1.00 0.12 0.46 0.99 1.00

FIGURE 3

Average SRMSR across replications (with 90% error bars) for the 1-PLCDM in the conditions resulting from crossing sample size, number of items,

and main e�ects variance. Results are aggregated for the di�erent base rate levels.

TABLE 3 Proportion of replications in which the cut score was correctly estimated, overestimated, or underestimated.

I = 5 I = 10 I = 15

Base rate 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

Correct 0.66 0.83 0.57 0.80 0.83 0.75 0.89 0.81 0.80

Overestimated 0.26 0.07 0.40 0.09 0.15 0.19 0.05 0.13 0.18

Underestimated 0.08 0.09 0.04 0.11 0.03 0.06 0.05 0.06 0.02

TABLE 4 Classification accuracy in scoring samples based on calibrations with varying test lengths and base rates.

I = 5 I = 10 I = 15

Calibration base rate 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

0.3 0.84 0.83 0.77 0.91 0.91 0.89 0.95 0.95 0.93

Scoring base
rate

0.5 0.79 0.82 0.80 0.89 0.90 0.90 0.94 0.94 0.94

0.7 0.75 0.81 0.83 0.86 0.90 0.91 0.93 0.94 0.95
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only impacted classifications if respondents score close to the

cut score. To evaluate what happens when a test is calibrated

with an initial sample using the 1-PLCDM and the estimated cut

score is used to classify respondents from a new sample (i.e.,

a scoring sample), we generated new item responses with the

true 1-PLCDM item parameters that represent scoring samples

and classified respondents based on the estimated cut score from

the calibration sample. The scoring samples consisted of 1,000

respondents and had varying base rates (0.3, 0.5, 0.7). Table 4 shows

the average classification accuracy in the scoring samples. The

results are aggregated for sample sizes of the calibration sample

since similar results were found for varying sample sizes. The

classification accuracy in the scoring samples was slightly reduced

in the conditions with short tests (I = 5) in combination with

unbalanced base rates (0.3 or 0.7), which are the conditions in

which the cut score tended to be overestimated. Nevertheless, the

bias in the cut score estimates with short tests only impacted the

classification accuracy if the base rates in the scoring sample did

not correspond to the base rates in the calibration sample. In

practice, this means that it is not a big issue if the calibration

and scoring samples differ in base rate for longer tests, yet

one needs to proceed with caution for shorter tests if the

calibration base rates are unbalanced, since this can impact the

accuracy if the scoring base rates are different from calibration

base rates.

3.3 Summary of simulation results

This simulation study examined how violations of the equality

constraints of the 1-PLCDM impact its classification accuracy,

reliability and model fit. The 1-PLCDM showed virtually no loss

in classification accuracy compared with the LCDM in any of the

simulated conditions. In addition, reliability was highly similar

for both models, although with high variance in main effects

the LCDM produced slightly more reliable results. Overall, the

1-PLCDM seems fairly robust to constraint violations in terms

of classification accuracy and reliability, even when the model

fit indices showed reduced model fit. Finally, we found that

with short tests, the cut score for mastery classification is best

recovered when the proportions of masters and non-masters are

balanced. With more extreme base rates, the cut score tended to be

overestimated for short tests, which slightly reduced classification

accuracy in scoring samples when base rates deviated from

the calibration sample base rates. This issue did not occur for

longer tests.

4 Discussion

The current study examined the recently introduced one-

parameter log-linear cognitive diagnosis model (1-PLCDM;

Madison et al., 2023), which imposes equality constraints on the

main effects of the LCDM in order to obtain a model with increased

ease of interpretation. We showed that the unidimensional 1-

PLCDM is equivalent to a constrained Latent Class/Rasch Model

(Formann, 1995), and thereby we bridged two (often separated)

modeling frameworks, namely DCM and IRT/Rasch. We further

examined the model in a DCM framework. We derived the

likelihood of the model and we demonstrated that the sum

score sufficiency property holds in general for the 1-PLCDM,

which allowed for the derivation of a cut score for mastery

classification. Further, simulations showed that the model is fairly

robust to violations of the main effect equality constraints in terms

of classification accuracy and reliability. We also examined the

performance of the 1-PLCDM in practical situations when items

are first calibrated and subsequently new respondents are scored.

We found that for short tests, when the calibration base rate

did not match the scoring sample base rate, the estimated cut

score produced slightly less accurate classifications for the scoring

sample, yet not for longer tests.

4.1 Implications for practice

The current study provided insight in the trade-off between

model interpretability and accuracy to support modeling choices.

The choice for a model to obtain mastery classifications stems

from a variety of considerations. The advantage of using a DCM

framework rather than a naive sum score approach or IRT models

is that classifications are model based, which removes the need

for a potentially error-prone cut score setting process (Kane and

Wilson, 1984). However, recall that the cut score also depends on

a threshold parameter for mastery classification. Although there

exists a statistically optimal value for this parameter, one can choose

to deviate from this value if the costs of misclassification in one

direction outweigh the costs in the other direction. In that sense,

determining the cut score is not fully model based, but requires

considerations about the cost of misclassifications for each specific

assessment context.

Further, Templin and Bradshaw (2013) showed that DCMs can

provide more precise measurement than analogous IRT models.

Within a DCM framework, one is faced with the choice between

models of different complexity. The LCDM is often used because of

its generality and model refinement capabilities, yet simpler models

like the 1-PLCDM are easier to interpret. The useful measurement

properties of the 1-PLCDM, like sum score sufficiency, can be

attractive for assessment practice. If assessments have precalibrated

cut scores that define mastery vs. non-mastery, they can easily

be used in classrooms to assess students’ skills without the need

for complex statistical software. With the 1-PLCDM, this can be

achieved while maintaining accurate classifications and adequate

reliability.

The 1-PLCDM separates two ordered groups that differ with

respect to the extent to which they show evidence of attribute

mastery through correct item responses, and the model provides

a cut score for mastery classification. Since the cut score is

model based, it can be difficult to interpret the meaning of

mastery. As acknowledged by Bradshaw and Levy (2019), this is an

important and nontrivial step for DCMs. The cut score, and thus

mastery classification, depends on the base rates, item parameters,

and threshold for classification based on posterior probabilities.

Assessment developers need to establish a shared interpretation

of the resulting attribute classifications that is supported by the

model and test design. The equivalence of the 1-PLCDM to a
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constrained LC/RM can potentially support the interpretation of

mastery. The item main effect in the 1-PLCDM is similar to the

difference in ability level between the latent classes in the LC/RM,

and therefore its magnitude can provide information about how

mastery vs. non-mastery is defined.

4.2 Limitations and future work

The simulation results showed that sample base rates impacted

the accuracy of cut score estimation. For short tests, cut score

estimation was less accurate with unbalanced proportions of

masters and non-masters. Although extreme base rates could

lead to overestimation of the cut score for short tests, this only

slightly impacted classification accuracy for scoring samples in

the simulated conditions and only for short tests. In this study,

we only examined calibration samples that were representative

in terms of proficiency. Earlier simulations have shown that

for the LCDM, respondent classifications based on precalibrated

assessments did not substantially vary when calibrations were based

on samples with different base rates (Bradshaw and Madison,

2016), yet it is unclear to what extent these results hold for

the 1-PLCDM and how test length impacts these results. More

research is needed to shed light on classification accuracy of

the 1-PLCDM with non-representative samples, especially for

shorter assessments where bias in cut score estimates is expected

to have a stronger influence on classifications. For this end, it

would be useful to examine the estimated cut scores in more

detail, for example by evaluating the bias and root-mean-square

error (RMSE).

Further, the one-to-one mapping from sum scores to posterior

mastery probabilities is based on the assumption that response

patterns contain no missing values. It is up to the practitioner

to decide whether responses are forced or missing values are

allowed, and if these are allowed, whether they are treated as

incorrect or as missing. Response patterns with missing values

would have a different cut score, computed from the items that were

completed. This can be a limitation for educational practice, which

is interesting to explore in future work.

We examined the 1-PLCDM in a single-attribute setting.

Although unidimensional DCMs are used in research and practice

(e.g., Templin and Bradshaw, 2013; Madison, 2019; Dynamic

Learning Maps Consortium, 2021) and model-based classifications

can be advantageous in a unidimensional setting, one of the

major benefits of DCMs is the potential for multidimensional

measurement with complex item loading structures. Based on

preliminary explorations, we found that in a multi-attribute

setting, sum scores are sufficient statistics for the posterior mastery

probabilities only if attributes are assumed independent. In

educational applications, this assumption is rarely met. Future

work could examine the impact of violation of this assumption

on model performance. In addition, other applications of the

1-PLCDM are worthwhile to examine, including application

to longitudinal measurement (Madison and Bradshaw, 2018),

attribute hierarchies (Templin and Bradshaw, 2014), and

polytomous attributes (Bao, 2019). These ideas for model

extensions demonstrate that, although the 1-PLCDM is not novel

in a statistical sense (since it is equivalent to a constrained LC/RM),

examining it in a DCM framework provides a different starting

point to extend the model.

As a final suggestion for future work, we propose to

examine how classifications from the 1-PLCDM would compare

to classifications based on a non-model based cut score setting

procedure. Empirical research in this context can provide more

insight in the practical value of the model.

4.3 Concluding remarks

Although more research is needed to fully illuminate

the properties of the 1-PLCDM, the model shows promising

opportunities for educational practice. The adequate model

performance in combination with useful measurement properties

can make the model attractive for stakeholders to apply in

various assessment settings. We hope that our results support

practitioners’ modeling choices when seeking a balance between

model interpretability and accuracy.
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