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Introduction: The foundational practices of Computational Thinking (CT) present 
an interesting overlap with neurodiversity, specifically with differences in executive 
function (EF). An analysis of CT teaching and learning materials designed for 
differentiation and support of EF show promise to reveal problem-solving strengths 
of neurodivergent learners.

Methods: To examine this potential, studies were conducted using a computer-
supported, inclusive, and highly interactive learning program named INFACT that 
was designed with the hypothesis that all students, including neurodivergent 
learners, will excel in problem solving when it is structured through a variety of 
CT activities (including games, puzzles, robotics, coding, and physical activities) 
and supported with EF scaffolds. The INFACT materials were used in 12 treatment 
classrooms in grades 3–5 for at least 10  h of implementation. Pre-post assessments 
of CT were administered to treatment classes as well as 12 comparison classes 
that used 10  h of other CT teaching and learning materials. EF screeners were also 
used with all classes to disaggregate student results by quartile of EF.

Findings: Students using INFACT materials showed a significant improvement in 
CT learning as compared to comparison classes. Students with EF scores in the 
lower third of the sample showed the greatest improvement.

Discussion: This study shows promising evidence that differentiated activities with 
EF scaffolds situated across several contexts (e.g., games, puzzles, physical activities, 
robotics, coding) promote effective CT learning in grades 3–5.
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1 Introduction

This paper reports on a study of teaching and learning materials designed for the inclusion 
of neurodivergent learners in computational thinking (CT) in grades 3–8. We define an 
inclusive classroom as one that has at least 20% of students with individual education plans 
(IEPs) or equivalent alternative programming for cognitive differences. The study examines 
how materials supported executive function (EF) and differentiated teaching and learning, 
specifically in inclusive classrooms in grades 3–5.

Inclusive classrooms are typically general education classrooms where neurodivergent and 
neurotypical students learn together. Inclusive classrooms often do not include learners with 
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profound needs that cannot be accommodated in a general classroom. 
As of 2017, in the US, approximately 65% of learners receiving special 
education services were spending 80% or more of the school day in 
inclusive classrooms (Horowitz et al., 2017; McFarland et al., 2019). 
While there are varying levels of severity of many of the conditions 
requiring special education, inclusive classrooms typically include 
learners who need light or moderate supports, but not those who need 
more intensive supports to accomplish daily tasks (Polirstok, 2015). 
As today’s classrooms are becoming more inclusive of neurodiversity—
the differences in the ways students think and learn—teachers and 
those designing for classroom settings need to look for new 
approaches to engage all learners.

The term neurodiversity refers to a growing perspective that 
variation in human brain activities is comparable to the natural 
variation in race, sexuality, and other human factors (Blume, 1998; 
Singer, 1998). Terms such as neurodiversity and neurodivergence are 
often used to steer away from labels such as autism, ADHD, and 
dyslexia, which come from a medical perspective. The diagnostic 
labels may be useful in identifying potential interventions as well as 
crucial for accessing potential educational resources for some learners, 
but they may also come with prejudice and stigmatization that ignore 
the talents of these learners. Focusing on strengths, and taking an 
asset-based approach to education, offers each learner a chance to 
reveal their strengths and supports equity in the classroom (Bang, 
2020; Madkins et al., 2020).

Inclusive classrooms often include students who demonstrate 
outstanding talents in specific areas related to problem solving, while 
also requiring supports for EF (Asbell-Clarke, 2023). EF is the set of 
processes the brain uses to coordinate sensory, emotional, and 
cognitive aspects of learning (Antshel et al., 2014; Varvara et al., 2014; 
Bellman et al., 2015; Meltzer, 2018; Meltzer et al., 2018; Demetriou 
et al., 2019). These processes include attention, working memory, and 
self-regulation, which are required when organizing and prioritizing 
information and tasks and when conducting tasks such as setting goals 
and designing and implementing a plan to achieve those goals (Brown, 
2006; Diamond, 2013). EF is considered essential for deeper learning 
and developing transferable skills for success in school, college, and 
one’s career (Pellegrino and Hilton, 2012).

EF is rapidly being recognized as a key area of focus for education 
for all learners, not just those in special education (Immordino-Yang 
et al., 2018; Meltzer, 2018). EF is responsible for regulating attention, 
emotions, and impulse control, which enables persistence and 
motivation to achieve these goals (Meltzer et al., 2018; Semenov and 
Zelazo, 2018). EF can be a struggle for many neurodivergent learners, 
as well as learners undergoing stress, trauma, and/or anxiety 
(Immordino-Yang et al., 2018), all of which are on the rise in today’s 
schools (Hawes et al., 2022; Rodriguez and Burke, 2023). Overall, 
supporting EF in learning activities may produce better performance 
which can, in turn, increase motivation, causing a positive learning 
cycle and improved self-efficacy (Semenov and Zelazo, 2018).

CT is an emerging area of education that may reveal the strengths 
of many neurodivergent learners and also support their EF. CT is a 
problem-solving approach that leads to generalized and replicable 
solutions that can be implemented by computers and information-
processing systems (Shute et al., 2017), and is attracting increased 
attention in K–12 education, prompting calls for new models of 
pedagogy, instruction, and assessment, particularly in younger grades 
(Wing, 2008; Cuny et al., 2010; Barr and Stephenson, 2011; Grover 

and Pea, 2017; Shute et al., 2017). The fundamental practices of CT are 
also foundational to everyday problem solving (e.g., making a meal or 
cleaning up the classroom), as well as many school-based learning 
activities (e.g., solving a math problem, conducting a science 
experiment, or writing an essay). Foundational CT practices include 
Problem Decomposition: breaking up a complex problem into smaller, 
more manageable problems; Pattern Recognition: seeing patterns 
among problems that may have similar types of solutions; Abstraction: 
generalizing problems into groups by removing the specific 
information and finding the core design of each problem; and 
Algorithmic Thinking: thinking of problem-solutions as a set of general 
instructions that can be reused in different settings. Additionally, the 
CSTA (2017) outlines a number of dispositions or attitudes essential 
to CT, including confidence in dealing with complexity, persistence in 
working with difficult problems, tolerance for ambiguity in dealing 
with open-ended problems, and the ability to work in collaborative 
groups towards a common goal.

The practices and dispositions associated with CT present an 
interesting overlap with the strengths and needs of many 
neurodivergent learners. For example, some neurodivergent learners 
such as autistic learners may not demonstrate high cognitive flexibility 
(i.e., they are very rigid in their thinking) yet excel in recognizing 
patterns within complex situations and paying attention to close detail 
(Jolliffe and Baron-Cohen, 1997; Fugard et  al., 2011). Pattern 
recognition has also been proposed as a primary basis for particular 
talents and savant behaviors in autism, such as calendar calculating, 
mathematics, and other specialized skills (Baron-Cohen, 2008; 
Mottron et al., 2009). Research also suggests that some other learners 
who may struggle to focus attention on details in pattern recognition 
(e.g., some people with ADHD) may be more open to ambiguity and 
collaborations than their peers, often making innovative connections 
between ideas and abstractions that are not seen by others (Beaty 
et al., 2015). Similarly, the differences in the brains of individuals with 
dyslexia may be beneficial for spatial reasoning, interconnectedness, 
and abstraction (Eide and Eide, 2012).

CT has the potential dual advantage of tapping into some of the 
specific cognitive strengths (e.g., pattern recognition, systematic 
thinking, and abstraction) associated with neurodiversity, while also 
structuring problems in a clear and generalizable way to assist all 
learners. Students who struggle with EF challenges may benefit from 
a problem-solving approach that emphasizes breaking up problems 
into smaller chunks to support working memory, and generalization 
of patterns in problem solutions to apply to a variety of different 
situations that may support cognitive flexibility. In addition, the 
emphasis on developing algorithms, or problem-solving tools, that can 
be named and re-used, is a mechanism to support metacognition and 
explicit reflection on the problem-solving steps (Ocak et al., 2023). A 
systematic review of the effects of CT interventions on children’s EF 
(Montuori et al., 2023) showed significant effects on students’ planning 
and core EF skills. For example, children aged 5–7 showed increased 
planning skills after using Code.org (an introductory coding 
environment) for a month. The largest effects were observed on 
children’s problem solving and complex EFs such as planning, but 
significant positive effects emerge also for core EFs like cognitive 
inhibition and working memory.

Coding and robotics programs were shown to be effective when 
they addressed the various components of CT, such as problem 
analysis, planning, evaluating and debugging, where CT interventions 
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that focused on just one component or on programming skills solely 
were less effective (Oluk and Saltan, 2015). Robotics activities have 
been shown to improve the inhibition in terms of speed and accuracy 
of information processing for a broad array young children who were 
categorized as having “special needs” (identified as having cognitive 
and behavioral differences) (Di Lieto et al., 2020).

2 Materials and methods

The challenges many neurodivergent learners face in school are 
often related to executive function processes in the brain, which 
include working memory, cognitive flexibility, and inhibitory control 
(which is closely related to self-regulation of attention) (Meltzer, 
2018). In an effort to support a broad range of neurodivergent (and 
neurotypical) learners in CT, the INFACT project provides 
differentiated teaching and learning materials using CT in a variety of 
contexts and modalities with embedded supports for learners’ 
executive function. To support and study the potential intersection 
between CT and EF in grades 3–5, a consortium of learning scientists 
and developers designed a program called Including Neurodiversity in 
Foundational and Applied Computational Thinking (INFACT).

2.1 Overview of INFACT teaching and 
learning materials

The INFACT teaching and learning materials for grades 3–8 
introduce CT practices such as Problem Decomposition, Pattern 
Recognition, Abstraction, and Algorithm Design in a variety of 
contexts like mazes, music, art, puzzles, and sports to provide many 
real-life examples of CT.

The INFACT activities are delivered in topical sequences that 
build foundational and applied CT knowledge through a multitude of 
off-line and online activities. The sequences are:

 • Sequence 1: Introduction to CT focuses on introducing learners to 
CT practices such as Problem Decomposition, Pattern 
Recognition, Abstraction, and Algorithm Design.

 • Sequence 2: Clear Commands focuses on clear and unambiguous 
communication and devising a common set of commands to give 
instructions for a task.

 • Sequence 3: Conditional Logic focuses on the use of IF-THEN 
(and IF-THEN-ELSE) commands with the introduction of 
Boolean operators such as AND, OR, and NOT.

 • Sequence 4: Repeat Loops uses REPEAT commands to group 
together patterns of commands to make repetitive instructions 
more efficient.

 • Sequence 5: Variables focuses on the use of variables to make 
commands and algorithms modifiable and reusable.

 • Sequence 6: Functions focuses on the creation and use of functions 
to build sets of commands into reusable algorithms.

Each INFACT learning sequence consists of a number of different 
possible Activation activities, Foundational activities, Applied activities, 
and Wrap Up activities that the teacher can choose according to their 
students’ interests and their classroom needs. Each sequence also has 
a default set of activities for a quick start. Activation activities motivate 

and prepare learners for the sequence topical activities. The 
Foundational activities build conceptual knowledge associated with 
CT topics and practices. The Applied activities have students apply CT 
topics and practices in supported tasks. The Wrap Up activities allow 
students to reflect upon the sequence and focus on the main take-
aways. These materials are available through Open Access 
(INFACT, 2024).

2.2 Supporting differentiated instruction in 
INFACT materials

For effective inclusive education, educators need to differentiate 
their teaching strategies to draw on the unique strengths of all learners, 
including neurodivergent learners, while also supporting the different 
EF needs of all students (Tomlinson and Strickland, 2005; Van 
Garderen et  al., 2009; Brownell et  al., 2010; Armstrong, 2012; 
Immordino-Yang et al., 2018). Differentiated instruction presents all 
learners with the same learning goal but provides students varied 
pathways to reach that goal and also allows students to demonstrate 
knowledge in different ways by adapting activities to support multiple 
modalities (Galiatsos et al., 2019). The Universal Design for Learning 
(UDL) framework (Rose, 2000) provides guidance on differentiating 
for neurodiversity by offering multiple means of representation, 
multiple means of action and expression, and multiple means of 
engagement. Some neurodivergent students may need additional 
supports with EF, as well as with navigating social interactions, 
sensory demands, and barriers posed by disability-related bias or 
social stigma (Schindler et al., 2015; Chandrasekhar, 2020; Mellifont, 
2021). Students’ need for differentiated learning, particularly around 
EF, has only grown during COVID (Myung et al., 2020). Without 
these supports, neurodivergent learners may “underperform” because 
extraneous barriers mask their problem-solving talents (Shattuck 
et al., 2012; Gottfried et al., 2014; Austin and Pisano, 2017; Galiatsos 
et al., 2019).

Differentiation strategies for inclusive classrooms that are 
embedded in the overall design of INFACT include:

 • Clean and consistent interface design
 • Activation strategies to engage and prepare learners
 • Multiple entry points into an activity
 • Alternate representations and modes of learning.

The INFACT activities are delivered through a teacher 
differentiation portal that allows teachers to select activities based 
upon availability of technology, student grouping (e.g., pairs or whole 
class), and interest area or theme. The portal also offers multiple 
versions of many activities allowing for different entry points and 
scaffolds for different learners. The INFACT themes include game-
based learning, robotics, and/or coding, as well as activities that allow 
a more general exploration of CT. Robotics activities are designed for 
use with Spheros, and a guide is provided to “translate” the activities 
for other popular robotics systems. The game-based learning theme 
of INFACT focuses on Zoombinis, a popular and award-winning CT 
puzzle game that has been shown to support teaching and learning of 
CT practices in grades 3–8 (Asbell-Clarke et al., 2021). Unplugged 
activities, puzzles, and games are used to build CT concepts before (or 
instead of) jumping into coding activities. Many of the INFACT 
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activities include “get up and go” embodied activities, where students 
physically act out a puzzle or walk through a maze. Unplugged and 
digital CT activities complement robotics and gameplay to help build 
foundational understanding of problem decomposition, pattern 
recognition, abstraction, and algorithm design.

2.3 Supporting executive function in 
INFACT materials

Robertson et al. (2020) argue that the link between EF and CT is 
worth exploring for two reasons. First, EF is a predictor of academic 
success in general, including in the development of mathematical 
skills and science learning (Gilmore and Cragg, 2014). Second, there 
is some evidence that the development of CT practice may support the 
improvement of EF. Castro et al. (2022) found that an 8-week CT 
intervention program had a favorable effect on metacognitive 
processes, as well as cognitive processes such as working memory. 
DePryck (2016) suggests that “the metacognitive abilities required for 
CT (including connecting new information to former knowledge, 
deliberately selecting thinking strategies, planning, monitoring and 
evaluating thinking processes, breaking down complex actions into a 
conditional sequence) rely on executive function.” Other recent 
research shows that teaching coding and robotics may have an impact 
on students’ planning abilities (Gerosa et al., 2019; Arfé et al., 2020; Di 
Lieto et al., 2020). This research is just emerging and generally has 
small study numbers, so these linkages merit further investigation.

The INFACT online and offline activities are designed with 
embedded supports for EF. Supports for EF that are offered alongside 
offline and online INFACT activities include:

 • Vocabulary cards to support working memory by introducing 
and keeping key terms and phrases at hand during activities 
(Figure 1).

 • CT learning checkpoints to support metacognition and foster 
explicit expression of understandings (Figure 2).

 • “Set up for success” teaching strategies to support working 
memory and attention through differentiation (Figure 3).

 • Prompts to support metacognition including reflection and 
connections to other contexts (Figure 4).

In addition, digital supports for EF that are embedded within 
online puzzles from the CT learning game Zoombinis include:

 • A flashlight tools to support attention by highlighting salient 
information (Figure 5).

 • Graphical organizers to support working memory by enabling 
visual recording of information (Figure 6).

 • Expression tools to support metacognition by promoting explicit 
expression of learning (Figure 7).

2.4 Research questions

The goal of this study was to address three research questions 
during the implementation of INFACT in inclusive classrooms in 
grades 3–5:

 • Research Question 1 (RQ1): To what extent does a CT program 
designed for inclusion (e.g., with built-in differentiation strategies 
and EF supports) impact foundational CT learning?

 • Research Question 2 (RQ2): To what extent does a CT program 
designed for inclusion moderate the effects of individual EF 
differences for learners?

 • Research Question 3 (RQ3): What connections between CT and 
EF do teachers recognize and use when implementing a CT 
program designed for inclusion?

2.5 Research sample

Our independent research team studied the implementation of 
INFACT in 12 inclusive classes in grades 3–5. Another 12 comparison 
classes used other CT materials for the same duration. Pre-post CT 
proficiency assessments and EF assessment screeners were 
administered to INFACT and comparison classes.

2.5.1 Student participants
In most inclusive classrooms, neurodivergent learners may 

receive an individual education plan (IEP) or equivalent. Our study 
included classrooms with at least 20% of students having an IEP. The 
provision of IEPs, however, is often complicated by unequal access 
to diagnostic resources as a function of social economic strata and 
cultural disparities in what behavior is considered problematic or 
disruptive (Rucklidge, 2010; Russell et al., 2016; Shi et al., 2021). 
Therefore, we  use a screener test with EF tasks rather than IEP 
status to get a more direct and equitable, albeit limited, measure of 
student neurodivergence for disaggregation of our sample. 
We divided the student population into thirds so that we were able 
to compare students who demonstrated low, medium, and high 
levels of EF.

A total of 1,009 students (515 treatment and 494 comparison) in 
grades 3–8 had consent to participate in the study. We obtained full 
pre-and post-assessment data for 659 (307 treatment and 352 
comparison) of these students. However, due to the impact of COVID 
on recruitment, pre-instruction assessment scores for middle school 
(grades 6–8) students differed too significantly between the treatment 
and comparison participants for rigorous comparison, so the final 
analytic sample consisted of matched data from 364 students (182 
treatment and 182 comparison) in grades 3–5.

FIGURE 1

INFACT Vocabulary Cards help teachers support vocabulary in just-
in-time learning.
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2.5.2 Teacher participants
To obtain the student sample, INFACT recruited individual 

teachers through social media and teacher mailing lists. Eligible 
teachers could work at any kind of school (public, private, etc.) and 
teach any subject, but had to confirm 20% or more of the students they 
typically teach had IEP/other classification or teacher/parent 
designation as needing learning support. Each teacher could enroll up 
to five grade 3–8 classes in the study.

A comparison group was recruited from teachers who were 
already teaching CT. For this group, we  purposely selected 
experienced CT teachers so they had an established curriculum they 
considered business-as-usual for CT teaching and learning. Many of 
the control teachers were focusing on CT activities that related 
specifically to coding. These included using introductory coding 
activities from Code.Org (e.g., hour of code) or having students build 
games and animations using Scratch (scratch.mit.edu). None of the 
control teachers reported specific EF supports used in the other 
materials. The treatment group was notably less experienced in 
CT. To participate as part of either group, teachers needed to commit 
to 10 h of CT instruction (using either INFACT or their existing 
curriculum) during a specific 10-week time period in Fall 2021 or in 
Spring 2022. Across both implementation periods, a total of 14 
teachers participated in the treatment condition and 13  in the 
comparison condition.

2.5.3 Research design 
To address RQ1 (To what extent does a CT program designed for 

inclusion (e.g., using differentiation strategies and EF supports) impact 
foundational CT learning?), we  examined the difference in CT 
proficiency of students in grades 3–5 who have had 10 instruction 
hours with INFACT teaching and learning materials compared to 
equivalent students who have had 10 instruction hours with business-
as-usual CT activities.

To address RQ2 (To what extent does a CT program designed for 
inclusion moderate the effects of individual EF differences for learners 
in grades 3–5?), we examined the difference in CT proficiency for 
students who had the lowest third of EF scores in grades 3–5, 
comparing students who were in the INFACT program with 
equivalent students in the business-as-usual condition.

To address RQ3 (What connections between CT and EF do 
teachers recognize and use when implementing a CT program 
designed for inclusion in grades 3–5?) we  studied teachers’ 
perspectives on CT and EF through their descriptions of their 
experience of teaching INFACT. We included the perspectives of 
all 14 teachers who implemented the program for RQ3, since this 
question did not include a comparative element. That means that 
RQ3 includes the perspectives of teachers working in grades 3–8, 
though the samples for RQ1 and RQ2 only included students in 
grades 3–5.

FIGURE 2

Metacognitive “I Can” Statements.

FIGURE 3

Teacher tips on when and how to use scaffolds are accompanied by suggested offline strategies for inclusive implementation of INFACT.
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2.6 Data sources

2.6.1 CT measures
Assessment of CT practices is challenging due to a lack of standard 

measures, particularly at the elementary level. Compounding that 
complexity is the issue that CT is a thinking process, and measuring 
thinking processes can be more nuanced than assessing whether a 
learner can demonstrate knowledge components of a concept. 
Measuring learners’ abilities to plan, design, and solve complex 
problems is not done by a typical school test (Ritchhart et al., 2011). 
Even when CT performance is measured in a natural setting, such as 
in a coding environment, the final product may not reveal the CT 

practices or thinking processes involved in designing code (Grover 
and Pea, 2017). Current assessments often rely heavily on text 
comprehension and/or prerequisite knowledge of coding, which may 
preclude adequate measurement of these CT concepts (Kite et al., 
2021; Rowe et al., 2021).

The Computational Thinking test (CTt) (Román-González, 2015) 
and Bebras Tasks (Dagienė and Futschek, 2008; Dagienė et al., 2016) 
have shown promise as general assessments of core CT constructs for 
K–12 students (Wiebe et al., 2019). At the time this research was 
conducted, the psychometric properties of these instruments had not 
been fully demonstrated, however, and most research was only 
conducted at the middle-school level. Also, some Bebras tasks were 

FIGURE 4

Prompts for reflection and connection.

FIGURE 5

Screenshot of flashlight tool to scaffold attention in Zoombinis puzzle Allergic Cliffs.
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considered too peripheral to core CT skills to stand alone as a standard 
assessment for CT in K–12 education (Román-González et al., 2019). 
Additionally, many Bebras questions are coding-centric, a common 
critique of many CT assessments (Huang and Looi, 2021). The CTt 
test is more generalizable and also has been since adapted and 
validated for elementary-aged students in the form of the BCTt and 
the cCTt (El-Hamamsy et  al., 2022), but those findings were not 
available for this research opportunity.

Learning assessments that include irrelevant barriers such as text 
or other heavy symbolic notation may also create an undue cognitive 
load for learners, particularly for those who struggle with areas of EF 
including attention and working memory (Haladyna and Downing, 
2004; Sireci and O’Riordan, 2020; Rowe et al., 2021). For equitable 

assessments of CT, assessments should be differentiated in terms of 
“engagement, representation, and action & expression” in line with 
UDL principles (Rose, 2000) so that each learner is able to learn and 
demonstrate knowledge on their own terms (Armstrong, 2012; Rowe 
et al., 2017; Murawski and Scott, 2019). For these reasons, we have 
used the Interactive Assessments of Computational Thinking (IACT) 
assessment in our study of INFACT (Figures 8–10). We developed and 
validated the IACT items in previous research, where they showed a 
strong test–retest validity and a moderate concurrent validity with 
select comparable Bebras items (Rowe et al., 2021). At the time of this 
research, the IACT items presented the best option for CT measures 
for grades 3–8 without many of the extraneous barriers presented by 
other CT assessments.

FIGURE 6

Screenshot of bookkeeping tool to scaffold working memory in Zoombinis puzzle called Pizza Pass.

FIGURE 7

Screenshot of expression tool to scaffold metacognition in Zoombinis puzzle called Allergic Cliffs.
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The IACT items were delivered at the beginning and end of the 
10-h CT-instruction period, as a pre-and post-test of CT proficiency. 
IACT consists of four modules, each containing multiple logic puzzles. 
Because each module is scored differently, z-scores are calculated for 
each separately, using all data available (including from previous large 
studies). To prepare to use the IACT items in the INFACT research 
study, we conducted an initial validation study of 167 students with 
similar but separate participants in grades 3–8. We observed that the 
variation in participants’ scores on the first (pattern recognition) 
module was much lower than for the other modules, with most 
scoring close to the maximum. Accordingly, we  chose to use a 
modified IACT score based on the remaining three modules, where 

we observed wider variation. (Data from the first module were still 
collected during the research study, and they exhibited the same 
pattern as observed during the validation study.)

The IACT scores were computed based on the performance of 
participants on a set of CT-related tasks relative to a total norming 
sample of 4,168 students in grades 3–8 in previous research (Rowe 
et al., 2021). This was done so that we could place the current study in 
the context of the full distribution of possible IACT scores. A z-score 
was computed for each student on each subscale of IACT and then 
amalgamated into a single overall z-score. Therefore, an IACT score 
of zero means average performance relative to the sample, a negative 
score indicates below average performance in units of standard 

FIGURE 8

Example Problem Decomposition task in IACT assessments (Rowe et al., 2021).

FIGURE 9

Example Abstraction task in IACT assessments (Rowe et al., 2021).
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deviations, and a positive score indicates above average performance 
in units of standard deviations. One should note that students in the 
present sample generally scored above the overall mean score on the 
IACT, which may be attributable to the increase in CT in schools since 
the time of the data collection of the norming sample.

2.6.2 EF measures
In addition to the IACT pre-test, students completed a set of EF 

tasks at the beginning of the implementation period. These tasks were 
taken from Neuroscape’s Adaptive Cognitive Evaluation (ACE), a 
game-like implementation of standard instruments to measure 
working memory, cognitive flexibility, and attention regulation 
(Younger et al., 2021). The tasks selected for the research study were 
Go/No-Go, Flanker, Task Switching, and Backwards Spatial Span. The 
results of scores on these four tasks were standardized and 
amalgamated into a single ACE score. ACE data were processed using 
the aceR package provided by Neuroscape, and the scoring metrics for 
each individual task were chosen based on the developers’ 
recommendations (Rate Correct Score for Flanker and Task Switching, 
Mean Response Time for Go/No-Go, and Maximum Object Span for 
Backwards Spatial Span). Neuroscape does not currently provide 
guidance on combining scores from different modules to create a 
composite measure. However, since scores on each module were 
weakly to moderately correlated with the other modules (after 
normalization to account for the different scoring metrics), we used a 
combined measure. We  tested several methods of creating this 
summary score, including Mahanalobis distance from a theoretical 
student who obtained the maximum score observed for each module 
and principal components analysis, but these did not significantly 
improve model fit over a basic mean of z-scores on the four modules. 
Accordingly, we proceeded with the mean score for analysis.

2.6.3 Teacher interviews
To address RQ3 and understand how teachers implemented 

INFACT, we interviewed each teacher in the Treatment condition 3–4 

times over the course of the term. Teachers in the comparison group 
were not interviewed throughout the term, but did fill out a survey 
after their participation concluded, which included items on the types 
of activities used and time spent on CT, as well as open-ended items 
on the meaning and value of CT.

Three interviewers conducted these conversations, with each 
interviewer assigned to a small number of teachers for continuity. In 
the first interview, we asked about teachers’ reasons for participating 
and the planning process, in addition to gathering information about 
the activities they had already used and their experience. In 
subsequent interviews, we continued to ask about their experience 
with the activities used to date. In the final interview, we also asked 
about their overall INFACT experience, including curricular 
connections, impact on their teaching, and impact on their students.

2.7 Data analysis

Linear mixed-effects models were used for the quantitative 
analysis. The models included terms to control for the fixed effects of 
pre-instruction IACT score, composite ACE score, and grade level. 
The model also controlled for teacher-and school-level random effects; 
that is, it accounted for the fact that students with the same teacher or 
in the same school might show comparable outcomes. There was only 
one case in which two teachers from the same school participated, and 
both were in the comparison condition. Meanwhile qualitative 
analysis began with overarching themes identified from project goals, 
with additional themes identified iteratively through analysis.

2.7.1 Analysis for RQ1 and RQ2

2.7.1.1 Apriori analysis
See Table 1 for the equations used to model the data for analysis 

of RQ1 and RQ2. Note that these models were developed apriori in 
anticipation of the predicted structure and potential sources of noise 

FIGURE 10

Example Algorithm Design task in IACT assessments (Rowe et al., 2021).
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ahead of data collection. We present the results of the pre-registered 
study (Attaway and Voiklis, 2022) here, with additional analyses in 
the next section. Model 1 provides a test for RQ1 by looking for a 
statistically significant impact for the treatment condition while 
controlling for the other factors. Model 2 addressed RQ2 and 
included all the same variables as Model 1 but added an interaction 
effect between the ACE score used as an EF screener and 
treatment condition.

2.7.1.2 Post hoc analysis
In addition to the apriori models, to address RQ2, we conducted 

a post hoc analysis to look at the impact of the intervention on 
students in the lowest third of ACE scores. This provided a better 
sense of how well INFACT worked for students who struggle the 
most with EF barriers. As shown in Figure 11, we grouped the data 
by ACE score thirds rather than continuous ACE scores because the 
impact of the intervention on ACE scores was not linear. We also 

recoded time as a binary variable rather than including IACT 
prescores as a fixed effect. This resulted in a new model using only 
those students in the lowest third of ACE scores. Table 2 includes the 
model used.

2.7.2 Analysis of interviews
We conducted the full qualitative analysis of the teacher 

interviews using nVivo. Overarching themes were identified based 
on project goals with additional themes developed through iteration. 
We treated each individual teacher as a case study in that we coded 
all interviews with a single teacher before moving on to the next 
teacher. Participating educators reviewed these portraits as a form 
of validation, We also considered demographic and institutional 
factors (e.g., grade level [s] and school type) but saw relatively little 
variation patterned along these lines. For portraits of each individual 
teacher, see Attaway and Voiklis (2022) and Barchas-Lichtenstein 
et al. (2023).

FIGURE 11

Performance on pre-and post-assessments of CT by group, for students divided by ACE thirds.

TABLE 1 Linear mixed-effects models used to analyze the full sample.

Model Equation

Model 1 Y Prescore ACE score Grade Conditioi j k= + + + ( ) + ( ) + ( ) +β µ ν β β β β0 1 2 3 4 nn i( ) + 

Model 2 Y Prescore ACE score Grade Conditioi j k= + + + ( ) + ( ) + ( ) +β µ ν β β β β0 1 2 3 4 nn Condition ACE score i( ) + ( )( ) +β5 

Yi= Predicted IACT score for student i, β = Fixed component, ∝= Teacher j’s random component, ν = School k’s random component,   = Residual Error.
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3 Results

3.1 RQ1: impacts of INFACT on CT 
proficiency

The difference in CT proficiency between students in grades 3–5 
who used INFACT as compared to those who used other CT activities 
showed a substantial advantage to using INFACT (Table 3). Average 
IACT scores for students in classes using INFACT were one-third of 
a standard deviation (β = 0.41) higher than average scores for students 
in classes using other CT programs. This difference between 
instructional conditions appears to exceed chance occurrence 
(p = 0.02). However, because this implementation study occurred 
during COVID, the study was underpowered; post hoc power analysis 
indicates that a sample of the same size would only have a 55% chance 
of detecting an effect of this size. The comparison of INFACT to other 
CT programs was also limited by the lack of variation in the other 
programs. Many were coding-centric and did not include the 
kinesthetic and hands-on activities that were a core part of INFACT 
teaching and learning activities. Further testing is needed to confirm 
the reliability of the effect and how INFACT compares to 
other programs.

3.2 RQ2: Moderating effect of EF scores 
and INFACT on CT performance

To study the moderating effects of individual differences in EF and 
participation in INFACT on external CT assessments, we examined 
the relationship among IACT scores and ACE scores for students 
using INFACT compared to those using other CT activities. This 
analysis included only students who had a complete set of data for 
both the pre/post IACT assessments and the ACE EF tasks. 
Pre-assessment scores showed a significant predictive effect of ACE 
score on IACT performance, with students scoring lower on ACE 
tending to score lower on IACT as well. However, this effect 
disappeared at post-assessment for both INFACT and 
comparison students.

While we did not observe a statistically significant interaction 
between ACE score and experimental condition (INFACT vs. 
comparison) in our analysis of RQ2, there were interesting findings 
when we looked at students scoring in the lowest third on the ACE 
tests in our post hoc analysis. Upon closer inspection, there was 
indication that the intervention was quite effective for students with 
low ACE scores. In fact, the post hoc analysis indicates that the 
intervention may have a large impact on students who struggle most 
due to EF barriers. We observed significant increases in scores on the 
IACT post-assessment for students in the INFACT group (see 
Figure  11) with Model 3 indicating that the lowest third of ACE 
scorers exhibited statistically significant gains (see Table 4). Students 
in the highest and middle thirds on the EF scores did not show this 
improvement. This was true for the INFACT and the control groups. 
This may be caused by ceiling effects in the assessment instrument or 
by an unrelated impact that the pandemic or other extraneous factor 
had on high EF students during that time. Further research is needed 
to understand the differential effects of INFACT on low EF and high 
EF students.

3.3 RQ3: teachers’ perceptions of CT and 
EF

Interviews with teachers provided insight into the linkages they 
saw between CT and their neurodivergent learners as they used the 
INFACT materials. While teachers rarely used the term “executive 
function,” these interviews illustrate the many ways that using CT as 
a general problem-solving strategy helped teachers support 
neurodivergent learners across disciplines (Barchas-Lichtenstein 
et al., 2023).

Teachers used offline activities in complement with online coding 
and games to reach learners in different ways and reinforce the 
foundational CT concepts through related tasks. For example, 
we consistently heard teachers say that their high-energy students 
benefited from embodied, movement-based activities that helped 
them focus, while both visual and movement tasks were a valuable 
way to help less proficient readers participate alongside their peers.

Activities where students worked in pairs or small groups, rather 
than individually, were also advantageous in neurodiverse classrooms 
because teachers could encourage students with complementary 
strengths to work together; for example, a student who excelled at 
systematic thinking but who did not read as well could work with a 
strong reader who was more scattershot in their approach to problems. 
However, partnered activities required additional scaffolding for some 

TABLE 3 Fixed effects for research question 1 model.

Estimate Std. 
Error

df t value p

(Intercept) 0.29 0.15 33.10 1.95 0.06

IACT.pre 0.1 0.08 332.30 1.73 0.08

ACE 0.090 0.09 245.41 0.96 0.34

Grade4 0.13 0.12 281.23 1.11 0.27

Grade5 −0.27 0.12 315.12 −2.23 0.03

Treatment 0.41 0.16 10.11 2.65 0.02

TABLE 4 LMEM results for post hoc analysis model described in Table 2.

Estimate Std. 
Error

df t value p

(Intercept) 0.37 0.10 221.96 3.56 <0.001

Condition: 

Treatment

−0.27 0.15 221.96 −1.85 0.07

Time: Post −0.09 0.13 118.00 −0.74 0.46

Condition: 

Treatment x 

Time: Post

0.73 0.18 118.00 4.07 <0.001

TABLE 2 Linear mixed-effects model used to analyze performance of 
students in the lowest third of ACE scores.

Model Equation

Model 3 Y Condition Timei i i= + + ( ) + ( ) +β µ β β0 1 2 

Yi= Predicted IACT score for student i, β = Fixed component, ∝= Student random 
component,   = Residual Error.
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students with social difficulties. Teachers also asked for additional 
physical and auditory adaptations (e.g., speech to text) for some of 
their students.

More than one teacher told us that some of their high-achieving 
students had a harder time connecting with INFACT. Often these 
students could complete a task correctly but had a harder time 
explaining their process. The INFACT materials required more 
metacognition and explicit expression of their problem-solving 
practices, which seemed to be a struggle for some of these students.

4 Discussion

The findings in this study help show that as CT continues to 
evolve as an educational discipline, innovative strategies can be used 
to broaden its appeal and impact. In particular, this study examined 
how embedding differentiation strategies and EF supports in CT 
teaching and learning materials can support CT learning, particularly 
for neurodivergent learners. The INFACT teaching and learning 
materials were designed to scaffold EF while engaging learners (in 
grades 3–8) in differentiated CT activities. While inclusive teaching 
methods used during INFACT are documented in the study, further 
development and research is suggested to support teacher professional 
development in the types of innovative teaching strategies required for 
inclusive CT learning.

CT has interesting connections with identified cognitive strengths 
of many neurodivergent learners and may be a rich area to broaden 
participation and nurture much-needed talent in the STEM workforce 
and in our society (Austin and Pisano, 2017). Systematic thinking and 
pattern recognition have been observed as extraordinary talents of 
some neurodivergent learners (Jolliffe and Baron-Cohen, 1997; Baron-
Cohen, 2008; Mottron et al., 2009; Fugard et al., 2011), as has divergent 
thinking and abstraction of ideas (Beaty et al., 2015). INFACT was 
designed specifically with the hypothesis that these problem-solving 
talents may be  revealed and nurtured through CT education, 
providing an avenue for neurodivergent learners to excel.

Our study of students in grades 3–5 who used INFACT showed a 
significant improvement on CT measures as compared to students in 
similar classes that used other CT teaching and learning activities 
(RQ1). This finding, while potentially unstable because of the small 
number of classes in each condition, shows promise and suggests 
further investigating how supporting neurodiversity in CT may 
improve participation in STEM problem-solving for a broad range 
of learners.

To address RQ2, which examined the impact of INFACT on 
neurodivergent learners, we  explored the relationship between 
students’ performance on ACE tasks (used to measure EF) and their 
performance on IACT items (used to measure CT) in both the 
INFACT and the comparison classes. We found that the ACE scores 
had a high correlation to the pre-assessment IACT scores, with 
students scoring lower on ACE tending to score lower on IACT as 
well. This provides further evidence that CT and EF may be related. 
Interestingly, however, this effect disappeared in the post-
assessment scores for both INFACT and comparison students. To 
examine why the effect disappeared, we  conducted a post-hoc 
analysis of students with the lowest third of ACE scores. The 
analysis revealed that students scoring in the lowest ACE third on 
the pre-assessment exhibited a dramatic improvement in CT after 

implementation of INFACT. This effect was not observed in the 
comparison condition.

What is clear from the disaggregated EF data is that INFACT 
dramatically improved the CT scores of learners in the lowest third of EF, 
compared to other forms of CT instruction. This finding presents an 
interesting start towards the inclusion of neurodiversity in CT. Supporting 
EF and differentiating teaching and learning for students, in CT and in 
STEM problem-solving in general, is not only a strategy for better 
inclusive education, it also may be  critical for our future STEM 
workforce. Many STEM companies and research labs are starting to 
recognize the talent of neurodiversity, and opportunities are becoming 
more widely available for neurodivergent STEM problem solvers to 
be recognized for the contributions and innovative perspectives they 
bring to our workforce and society (Austin and Pisano, 2017).

In the examination of RQ3, we  found that teachers attributed 
INFACT’s success with neurodivergent learners, in part, to its variety 
of modalities of activities (e.g., offline activities, puzzles, games, and 
robotics) to help learners build foundational conceptual 
understandings in CT and apply those practices to new contexts. 
Teachers reported this flexibility helped them reach a wide range of 
learners and tap into the individual strengths of their students. 
Differentiation strategies such as allowing multiple entry points into 
an activity, and offering many different modalities for the activity were 
also seen to be important factors in the success of INFACT students. 
Because one of the foci of CT in INFACT is Clear Commands, the 
curriculum allows natural openings to discuss communications 
differences in class, and having different forms of activities that could 
be done individually, in small groups, or as an entire class enabled 
differentiation for students with social communication differences. 
These differentiation strategies are aligned with UDL principles and 
build on the teaching recommendations for an asset-perspective to 
education, where activities are designed to reveal and nurture 
individual learners’ strengths while supporting their challenges 
(Tomlinson and Strickland, 2005).

Teachers noted in particular that “get-up-and-go” offline 
activities were important to engage their high energy students and 
were harder to find in other CT programs. Teachers reported that 
many of their students benefited from that physical engagement. 
Teachers also noted that while INFACT was designed with UDL 
principles, further accommodations were needed to reach some of 
the students with physical and auditory challenges. INFACT was 
primarily designed for in-classroom use with a group, so the 
activities were studied in that venue. The activities were also 
designed, however, during COVID lockdowns, and many of the 
early users were trying the activities at home and with families. The 
embedded differentiation of the activities made this transition easy 
and effective. Finally, we  saw that differentiation to include all 
learners includes not only scaffolding for EF, but also an emphasis 
on vocabulary development and offering multiple contexts and entry 
points. In particular, some teachers suggested we also provide more 
choice and complexity for students who want to dig deeper into 
CT. These are some of our next steps for future design and 
development of INFACT.

There were limitations to this research compounded by the fact 
that it was conducted during the 2021–2022 school year when schools 
were still heavily impacted by the COVID pandemic, including 
lasting impacts of previous closures and restrictions. It was extremely 
difficult to find teachers who were able to commit to the rigid 
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timeframe of the study, and to do all that was required to collect a 
complete set of student data. Because of this, the study was 
underpowered, and the effects should continue to be verified with 
more teachers and learners in the coming years. The comparison 
between treatment and comparison conditions also was limited by 
the lack of a standard CT teaching and learning experience outside 
of INFACT. In addition, a lack of standard CT assessment, particularly 
for this age group and without extraneous barriers for neurodivergent 
learners, limits the interpretation of the results. Finally, because of 
our limited sample size, we were unable to disaggregate data further 
by race, gender, or other demographics that may impact students’ 
engagement in CT (Ardito et al., 2020; Leonard et al., 2021), as well 
as the likelihood they identify or have been identified as a 
neurodivergent learner (Asbell-Clarke, 2023).

Even with the limitations, the findings suggest that CT teaching 
and learning materials that support differentiation and scaffold 
executive function are worth further study. CT is an area where many 
neurodivergent learners may discover their own talents and interests. 
Supporting working memory, attention, and metacognition with CT 
activities may help reveal those talents and support innovative 
problem solving among this often marginalized group.

Features of INFACT teaching and learning materials that may 
be most responsible for supporting young neurodivergent learners 
include offering multiple entry points and modalities for learning 
activities, supporting clear communication and vocabulary, and using 
“get up and go” activities to engage high energy learners. While CT 
may be  a particularly beneficial area to support neurodivergent 
learners, these types of supports may work well in other disciplines as 
well and should be explored, particularly in other areas of STEM 
problem solving.

Because CT is, at its root, simply a form of STEM problem solving 
(Weintrop et al., 2016; Shute et al., 2017), the findings of this research 
on INFACT may illustrate how these supports can be expanded and 
integrated into other areas of STEM.
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