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Fractions are a relevant yet complex topic of school mathematics. Fortunately, 
educational research issued rich knowledge of central concepts and associated 
difficulties for students. Using this knowledge for monitoring learning and formative 
assessment could support students’ learning process. However, access to apt 
evidence-based tests is restricted, and paper-based testing limits their practical 
usability. The digital adaptation of paper-based tests may address these challenges 
due to affordances like automated test scoring. Further, digital tests may facilitate 
repeated test use necessary for monitoring and formative activities. The present 
contribution focuses on fraction subconstruct knowledge and informal fraction 
knowledge and is part of a systematic research effort to transform paper-based tests 
into a digital format. With two cross-sectional studies in Grades 6 (N = 233) and 5 
(N = 271), each with three measurement points, we investigated the psychometric 
properties of adapted digital parallel tests regarding their suitability for repeated 
testing. The internal structure of the adapted digital tests proved to be comparable 
to that of the original paper-based tests in many, but not all, aspects. Parallel tests 
were found to be sufficiently parallel. The findings for the two focused constructs 
support that systematic efforts lead to usable tools for students’ fraction learning. 
The discussion considers how this supports the transformation of research findings 
to support the adoption of formative assessment.
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1 Introduction

Diagnosing student learning is a key to adaptive instruction, especially in areas where 
students often struggle (Black and Wiliam, 2004), such as fraction learning (Obersteiner et al., 
2013; Vamvakoussi et al., 2011; Van Dooren et al., 2015). Prior studies allow to synthesize 
sophisticated cognitive models of how students’ understanding of fractions develops (Hansen 
et al., 2015; Schadl and Ufer, 2023a, 2023b; Vukovic et al., 2014; Ye et al., 2016). For example, 
prior studies showed the relevance of prerequisites like proportional reasoning or multiplying 
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and dividing whole numbers. While assessment instruments based on 
these models were developed in the past, the (often paper-based) 
research instruments have limited practical usability.

The advent of digital assessment offers new opportunities to apply 
ideas of evidence-based assessment (e.g., from the context of special 
education, Deno, 2003) more broadly, including in general 
mathematics education. However, transferring tests from paper to 
digital formats presents challenges. For instance, paper-based formats 
may not directly translate to digital formats, potentially affecting the 
tests’ psychometric properties. Accordingly, test developers must 
newly investigate the properties of the adapted tests, especially 
regarding practical needs, for instance, their suitability for 
repeated measurement.

This contribution reports the digital adaptation of tests for 
assessing components of fraction knowledge based on an evidence-
based model: Fraction subconstruct knowledge (FSK) and informal 
fraction knowledge (IFK). For both, a long and two parallel short tests 
were constructed from prior, paper-based tests. The main goal is to 
evaluate the tests’ psychometric quality, compared to the prior tests. 
Aspects of validity, reliability, and parallel testing were considered. The 
study is part of a systematic effort to translate research findings into 
usable instructional tools, integrating assessment approaches 
previously considered separately.

2 Toward digital evidence-based 
assessment of learning based on 
cognitive models

Owing to the importance of diagnostics in teaching and learning 
contexts (Black and Wiliam, 2004), standardized assessments have 
gained interest as tools to diagnose and monitor students’ learning 
(Fuchs, 2004). Standardized assessments follow different approaches. 
Curriculum-based measurement (CBM), for instance, relies on 
frequently assessing basic skills, like mathematics, using broad, 
generic outcome measures to monitor progress across different 
curricular content effectively (Christ et al., 2008; Deno, 2003; Foegen 
et al., 2007). In contrast, assessments building on learning trajectories 
(LT) address specific (mathematical) contents and aim to represent an 
individual’s proficiency level with finer granularity regarding the 
specific contents (Harris et al., 2022).

Despite conceptual differences, CBM and LT-based assessment 
approaches have similarities in building on theoretically and 
empirically sound cognitive models of the learning objectives. 
However, both approaches’ intended uses and benefits differ and are 
rarely combined (see Confrey et al., 2020). CBM aims to monitor 
learning longitudinally, for example, to detect intervention effects 
in special education. As it requires highly sensitive instruments for 
a wide variety of learners, the tests often focus on a narrow set of 
“robust indicators” (Deno, 2003; Fuchs, 2004). Students with 
learning difficulties benefit from CBM (Fuchs, 2004), whereas the 
findings in the context of general education are inconsistent (Espin 
et al., 2018; Foegen et al., 2007). In contrast, LT-based approaches 
focus on diagnosing and relating prior knowledge with learning 
outcomes and were hence considered appropriate for complex 
topics in general education (Alonzo and Elby, 2019; Graf and Arieli-
Attali, 2015; Harris et al., 2022). Especially in fields like mathematics 
education, where learning cumulatively builds on prior knowledge, 
LT-based assessment that considers proficiency levels and students’ 

readiness for further learning may support teachers in adjusting 
instructional decisions to individual needs (Confrey et al., 2017). 
However, LT-based assessments must provide efficient short tests 
for the different components of the underlying cognitive model 
(Alonzo and Elby, 2019). To benefit from both approaches, 
combining CBM and LT-based approaches may merit special 
attention in general mathematics education. In addition, the recent 
advances in digital technologies give rise to the hope that evidence-
based assessments can be made broadly accessible via digital tools.

A systematic effort to develop assessment tools requires three not 
necessarily consecutive stages, as proposed by Fuchs (2004) for CBM 
and adapted to include LT-based approaches by Schadl and Lindmeier 
(2025). Stage 1 requires identifying relevant components of the 
content-specific cognitive model of learning and developing tests with 
sufficient psychometric quality. Stage 2 requires investigating the 
appropriateness of the tests to detect learning progress based on the 
cognitive model (e.g., suitability for repeated testing, predictive power 
of prior knowledge tests). Stage 3 should address the practical usability 
of assessments. We follow this roadmap for the development of digital 
instruments to monitor fraction learning, focusing in this report on 
stage 1 and stage 2 research for two components of the underlying 
cognitive model.

3 A cognitive model for fraction 
learning

Cross-sectional and longitudinal research has revealed that 
fraction knowledge is essential for later mathematical learning (e.g., 
Barbieri et al., 2021; Siegler et al., 2012; Torbeyns et al., 2015). At the 
same time, students (McMullen and Van Hoof, 2020; Vamvakoussi 
and Vosniadou, 2010) and even adults often face challenges when 
dealing with fractions (Vamvakoussi et al., 2012). Prior theoretical and 
practical research allows the synthesis of an elaborate cognitive model 
that relates components of fraction learning outcomes with 
mathematical prerequisites (e.g., Schadl 2020; Schadl and Ufer, 
2023b). This model can be used as an “underlying scale” to monitor 
student learning for formative assessment.

Different conceptions of fractions and their learning were 
proposed (e.g., part-whole view: Behr et  al., 1983; Jiang et  al., 
2021; conceptual and procedural knowledge: Rittle-Johnson et al., 
2001; magnitude view: Siegler et al., 2011). Our study builds on 
the part-whole view, as this approach emphasizes the different 
representations of fractions that contribute to students’ deep 
understanding of fractions. Specifically, Schadl (2020) describes 
desired outcomes of fraction learning with three components: 
FSK, fraction arithmetic skills, and fraction word problem-
solving skills.

Fraction learning is also known to build on a range of 
prerequisites, especially different components of prior 
mathematical knowledge (e.g., Schadl and Ufer, 2023b; Stelzer 
et al., 2019; Ye et al., 2016), among them skills to multiply and 
divide whole numbers, proportional reasoning, but also 
IFK. Studies detail how different components predict later 
learning (e.g., Schadl and Ufer, 2023b) and imply that different 
forms of instructional support (e.g., remedial intervention for 
central prerequisites) may promote students’ fraction learning in 
the long term. Recent research (Schadl and Ufer, 2023a) could 
even describe relations between prior knowledge and outcome 
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components beyond linear relations based on item-response-
theory (IRT) scaled proficiency levels.

3.1 Fraction subconstruct knowledge (FSK) 
as a central outcome of fraction learning

FSK refers to knowledge of particular interpretations of 
fractions, namely the interpretation of part-whole relations, ratios, 
operators, quotients, and measures. Schadl (2020) used data from 
a paper-based study of N = 751 sixth- and seventh-grade students 
to describe FSK based on IRT methods through proficiency levels. 
The different fraction representations were found to differentiate 
between proficiency levels. Particularly, representations as part-
whole relations were demarcated from the others as ratios, 
operators, quotients, and measures. In addition, the degree of 
situational pre-structuring was impacting difficulty. Students on 
proficiency level 1 were able to deal with part-whole relations in 
structured situations, including structured models with equal 
parts. Level 2 required knowledge to be  applied in less or 
non-structured situations that may require the production of 
equal parts. Furthermore, knowledge regarding fractions in terms 
of representing ratios, operators, quotients, and measures in 
structured situations indicated level 2. Dealing with less and 
non-structured situations in different representations, for 
instance, evaluating statements regarding more answer options, 
was required on level 3. Finally, level 4 required more complex 
knowledge of the different fraction representations, particularly 
regarding ratios, operators, and measures.

3.2 Informal fraction knowledge (IFK) as a 
central prerequisite for fraction learning

Following the part-whole approach, Schadl and Ufer (2023b) 
suggested IFK as a central prerequisite for fraction learning. The 
systematic introduction of fractions is usually part of mathematics 
education in German Grade 6. However, in earlier grades, students 
typically acquire IFK, which refers to knowledge about simple 
fractions that are common ( 1

2 , 1

4 , 
3

4 ) or at least accessible (e.g., 
1

3 , 
2

3 ) for students (Schadl and Ufer, 2023b). It has to be noted that this 
knowledge is not systematically taught as fraction knowledge in 
German primary schools yet relies on everyday contact with fractions, 
primarily in measurement contexts (e.g., 

1

2  hour = 30 min). Schadl 
and Ufer (2023b) demonstrated that IFK is a relevant predictor of 
fraction learning outcomes.

Schadl (2020) described IFK proficiency levels using data from 
718 fourth- to sixth-graders working on paper-based tests. The 
numerical material and the degree of prestructuring proved to 
be  relevant factors. Dealing with fractions such as one half, one 
quarter, and three-quarters was less demanding for students than 
dealing with the fractions one-third and two-thirds. Moreover, 
strongly structured situations that do not require structuring by the 
students, such as partitioning a whole into equal parts, were 
characterized as less demanding; slightly or non-structured situations 
were characterized as relatively demanding. Schadl (2020) used these 
proficiency levels to describe the relations between IFK and outcomes 
of fraction learning beyond linear relations in detail. The results 

showed that particularly students proficient in dealing with unfamiliar 
fractions and / or slightly or non-structured situations are likely to 
master higher fraction demands after the systematic introduction 
of fractions.

4 Research summary

Figure 1 provides a simplified outline of the cognitive model that 
summarizes previous research on fraction learning. This model 
informs about structure (of prerequisites and learning outcomes) and 
proficiency levels of fraction learning based on a part-whole approach. 
Moreover, it covers predictive relations between components of prior 
mathematical knowledge and fraction outcomes, which provides an 
ideal starting point for evidence-based formative assessment 
combining CBM and LT-based approaches.

Prior test instruments from research are typically not suited for 
use in instructional practice due to several reasons. First, the tests are 
often paper-based and hence need considerable resources in scoring 
and scaling, including research expert knowledge. Second, efficient 
parallel tests for repeated measurement to monitor learning are 
typically not available. Consequently, the rich research knowledge 
about student fraction learning can not be used to support student 
learning efficiently. However, as argued, digital test instruments may 
be  a means to address this problem, especially if they provide 
automated scoring and support teachers in diagnostic processes, for 
instance, by informing them about students’ proficiency levels. Prior 
tests may be digitized for this purpose. However, this also comes with 
new challenges: First, item and answer formats of paper-based tests 
may not be easily transferred to digital formats as problems when 
entering solutions could occur, particularly for open task formats. 
Second, prior studies might have indicated needs for improvement, 
for example, if tests did not cover the full range of proficiencies. 
Finally, adapted digital tests may possess psychometric qualities 
different from the original ones or may not meet the practical needs, 
for instance, in terms of length. So, test developers must newly 
investigate the properties of the adapted tests regarding the specific 
intended uses.

In a recent study, Schadl and Lindmeier (2025) examined the 
psychometric properties of digitized tests for different arithmetic skills 
in the context of fraction learning. This contribution reports on the 
digital adaptation of two tests and is part of a systematic effort to 
transform research findings into usable digital tools for 
mathematics teaching.

5 The present study

We presented an evidence-based cognitive model for fraction 
learning that seems suited to develop digital tests mathematics 
teachers can use to monitor fraction learning. This report focuses on 
the development of digitized tests for two components of fraction 
learning (FSK: learning outcome; IFK: prerequisite). Prior paper-
based tests were adapted to meet the demands of the intended use for 
monitoring learning, resulting in three digital parallel tests (one long 
and two short tests) per construct. Two studies following the same 
rationale were conducted to answer research questions (RQ) related 
to the tests’ psychometric quality (reliability, difficulty), validity 
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(replicability of level modeling), and the empirical investigation of the 
parallelism of tests.

RQ1: Are the adapted digital tests sufficiently reliable? Do they 
discriminate between students’ abilities in the target population?

RQ2: Which proficiency levels can be described based on digitized 
tests? Are—as an aspect of validity—these levels similar to those 
derived using prior (paper-based) tests?

RQ3: Can the long and short tests per construct be considered 
parallel tests as intended to be suitable for repeated testing to monitor 
fraction learning? Specifically: Are items intended to be parallel of 
similar difficulty? Are students assigned to similar proficiency levels 
based on the different tests?

As we adapted highly reliable paper-based tests (Cronbach’s alpha 
>.8) for both constructs (Schadl, 2020; Schadl and Ufer, 2023b), 
we assumed high reliabilities for the digitized tests. We assumed item 
and test difficulties to be similar to the paper-based settings, with 
differences most likely appearing owing to the adapted task formats 
(see method section for further details). Regarding the proficiency 
levels, we  expected the same aspects to be  decisive for the levels, 
supporting content validity. Regarding the parallel tests, we expected 
the items and tests intended to be parallel to have similar difficulties. 
In addition, we  expected most students to be  assigned to similar 
proficiency levels by all tests per construct.

6 Methods

6.1 Design of the studies

We conducted two studies with different samples of students 
following the same rationale. We administered the three digital tests in 
each study (IFK in Grade 5; FSK in Grade 6) at three measurement 
points. We  used a long test of approximately 45 min for the first 
measurement and short tests of approximately 20 min for the second and 
third measurements. The time frame in both studies was about 
three weeks, with roughly one week between two measurement points, 
and students were not instructed on fractions during this time. The first 

study on FSK in Grade 6 took place from June 2022 to July 2022. Formal 
instruction on fractions was completed at this point so that students 
could be considered representative of the target population for fraction 
outcome measures. The second study on IFK in Grade 5 took place from 
October 2022 to January 2023. Students had not yet encountered formal 
fraction instruction so they could be considered representative of the 
target population for fraction prior knowledge measures. We briefly 
introduced the fraction term in study 2  in each test. All tests were 
administered in a whole-class setting, either in computer rooms or on 
tablets. The items per test were randomized using the Levumi online 
platform (Mühling et  al., 2019). We  obtained approval from the 
responsible authorities and the principals of all participating schools and 
ethical approval from the commission responsible for certifying ethical 
clearance at our university.

6.2 Samples

The total sample of study 1 (Grade 6, 12-year-olds) consisted of 
N = 233 students (48.9% female, 51.1% male) from nine German 
classes in Thuringia and Saxony preparing for higher education 
(Gymnasium). Of the students, 221 (48.4% female) worked on the 
long test, and 213 (48.4% female) and 216 students (47.2% female) 
worked on the first and second short tests, respectively; 193 (47.2% 
female) worked on all three FSK tests. Dropouts occurred because of 
non-participation at single measurement points. Preliminary analyses 
with a subsample have been presented in conference proceedings 
(Schadl and Lindmeier, 2023).

The total sample of study 2 (Grade 5, 11-year-olds) comprised 271 
students (53.9% female, 46.1% male) from 16 German classes in 
Thuringia, of which three classes were in a comprehensive school and 
13 classes prepared for higher education (Gymnasium). Of the 
students, 215 (57.7% female) worked on the long test, 221 (51.6% 
female) worked on the first short test, and 222 (50.5% female) on the 
second short test. Of the students, 147 (51.7% female) worked on all 
three IFK tests, with dropouts due to illnesses not uncommon for this 
time of the year.

FIGURE 1

Simplified outline of the cognitive model for fraction learning, relating components of prior knowledge with outcomes.
Note: Components include proficiency levels. Black components are focal in this contribution.
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6.3 Instruments

6.3.1 Study 1: FSK
We followed Schadl and Ufer (2023b) and operationalized FSK 

as understanding fractions as representing part-whole relations, 
ratios, operators, quotients, and measures. We  adapted paper-
based tests to assess knowledge related to these subconstructs in 
a digital setting and prepared three parallel tests (one with 36 
items and two with 21 items). Examples of the test items are 
presented in Table 1. For all constructs, we considered items that 
were strongly structured (see part-whole and operator 
subconstructs in Table 1), slightly structured (see tasks with some 
answer options regarding quotient and measure subconstructs in 
Table 1), and non-structured (see ratio subconstruct in Table 1, no 
answer options given). Each test included four kinds of assessment 

items (so-called “subtypes”) for the part-whole and three subtypes 
for the other subconstructs.

Tasks of subtype 1 for most subconstructs (except the measure 
subconstruct) required checking the correctness of fraction 
statements, as can be seen for the operator subconstruct in Table 1. 
Regarding the measure subconstruct, subtype 1 required placing 
numbers (number one or fractions) on number lines. Subtype 2 
required the judgment of slightly structured fraction statements with 
more answer options. Subtype 2 differed only for the part-whole 
subconstruct, which required determining parts in graphical 
representations (see part-whole subconstruct in Table 1). Subtype 3 
was specific for each subconstruct. This subtype required shading 
parts, identifying ratios, using the inverse operation for the operator 
subconstruct, dealing with partitive and quotative situations for the 
quotient subconstruct (see Table 1), and naming the fractions marked 

TABLE 1 Exemplary test items to assess FSK with parallelized graphical representations, numerical symbols, and text modules.

Subconstruct (number of 
items in long | each of the 
short test)

Long test Short test 1 Short test 2

Part-Whole (10 | 6)
Mark the fraction 

1
4  in the rectangle.* Mark the fraction 1

4
 in the rectangle.* Mark the fraction 1

4
 in the rectangle.*

What proportion of all shapes are 

triangles?

What proportion of all shapes are 

triangles?

What proportion of all shapes are 

circles?

Ratio (7 | 4) A school offers 70 bicycle stands. 40 

children cycle with a bike to school on 

one Monday. The ratio of free to taken 

bicycle stands is the following: __:__*

A roller coaster offers 80 seats. 50 

persons enter for a ride. The ratio of free 

to taken seats is the following: __:__*

Operator (6 | 4) If you multiply a number with five and 

then divide by six, you get the same 

result as if you divide the number by 
5
6

. 

□ correct | □ incorrect | □ you cannot 

say that*

Quotient (6 | 3)
2
7

 is the result of □ 7–2 | □ 2–7 | □ 2: 7 | 

□ 7: 2 | □ all of the given calculations 

are incorrect.*

7 children eat 4 pizzas. The children 

share the pizzas fairly. Write down the 

fraction each child will get.*

10 children eat 3 sheet cakes. The 

children share the sheet cakes fairly. 

Write down the fraction each classmate 

will get.*

Measure (7 | 4) Mark the number 1 on the number line 

as you drag the slider to the correct 

place.*

How many fractions lie between the 

fractions 1
3

 and 1
2

? □ None | □ only a 

few | □ many | □ infinitely many |  

□ none of the given answers is correct.

How many fractions lie between the 

fractions 7
9

 and 8
9

? * □ None | □ only a 

few | □ many | □ infinitely many |  

□ none of the given answers is correct.

Stars mark the items presented in Figure 3. Introducing words that were also inserted for the presented study are removed.
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on number lines. Subtype 4 demanded the determination of 
the whole.

For the parallelization of the test, we systematically varied the 
items. For example, we manipulated graphical representations (for 
strong parallelization, see rectangles in the first row of Table 1; for 
slighter parallelization, see representations of triangles and circles 
for both short tests in the second row). Furthermore, we parallelized 
the numerical symbols, as seen for the slightly structured items for 
the measure subconstruct in Table  1, and the text using text 
modules. Therefore, regarding the ratio subconstruct in Table 1, 
we replaced the school with a roller coaster, bicycle stands with 
seats, taken bicycle stands with persons entering, days with a ride, 
and so on.

Beyond these aspects, digitization required adapting paper-based 
formats, as problems students could face when entering solutions 
should be removed. Consequently, we replaced open task formats with 
closed ones based on students’ responses from the paper-based setting. 
For example, the paper-based test did not include answer options for 
the sample task presented in Table 1 for the measure subconstruct. In 
addition, we supported the students in entering fractions by providing 
a simplified equation editor, where applicable. Furthermore, the digital 
tests were intended to capture a broader proficiency range than the 
original paper-based tests.

6.3.2 Study 2: IFK
We operationalized IFK as knowledge about simple fractions such 

as 
1

2 , 
1

4
, 

3

4
, and less-known fractions such as 

1
3  and 

2
3 , which are 

acquired before fractions are systematically introduced in German 
Grade 6. The digitized tests included the task types identifying simple 
fractions and word problems with four subtypes per task type (see 
Table 2 for exemplary items), and they were adapted from Schadl and 
Ufer (2023b).

Subtype 1 required unit conversion to identify simple 
fractions, such as converting minutes into hours or vice versa. In 
contrast to the paper-based setting, this subtype was presented in 
a closed format with six answer options. Subtype 2 required 
determining simple parts shaded in continuous models, presented 
as circles or rectangles divided into equal parts. Subtype 3 required 
shading simple parts in continuous models, presented as 
rectangles divided into equal parts. Subtype 4 required 
determining the larger of two simple fractions.

Regarding word problems, subtypes 1 and 2 required determining 
simple parts, while subtypes 3 and 4 required determining quantities 
in situations, including graphical representations. Regarding 
determining simple parts, subtype 1 required forming a part from two 
natural numbers. Subtype 2 focuses on fair sharing (e.g., chocolate 
sharing). Regarding the determination of quantities, subtype 3 required 
determining the whole, and in reverse, subtype 4 required determining 
the part with the given whole. All graphical representations were 
presented in rows with equal distances between the objects. Although 
graphical representations had to be  used to solve the problems of 
subtype 3, this was not necessarily required for subtype 4.

For test parallelization, we  systematically varied the numerical 
material, graphical representations, and relevant text modules. For 
digitization, we primarily removed open task formats. The long test 
consisted of 33 items (21 items to identify simple fractions and 12 word 
problems), and both short tests of 25 items, with 13 items requiring the 
identification of simple fractions and 12 word problems.

6.4 Data analysis

6.4.1 Treatment of missing data
The MCAR test by Little indicated data were missing completely 

at random in both the Grade 6 (χ2(453, N = 233) = 390.3, p = .985) 
and Grade 5 (χ2(800, N = 271) = 812.3, p = .373) samples (Little, 
1988; Peugh and Enders, 2004). To use the maximum information 
available, we estimated missing data through multiple imputation 
(five imputation samples) based on IBM SPSS’s implementation of 
Markov chain Monte Carlo techniques (Rubin, 1987, 1996). As 
we worked with binary variables, the final analyses based on the 
pooled dataset included the imputed value 0 if the averaged imputed 
values of the five imputation samples were smaller than 0.5 and the 
imputed value 1 if the averaged values were larger than 0.5. Hence, 
analyses base on the total sample of N = 233 sixth and N = 271 
fifth graders.

6.4.2 Item-response-theory (IRT)-based methods
The dichotomous Rasch model (Rasch, 1960), as implemented in 

ConQuest 2.0 (Wu et al., 2007), was applied. This model scales the 
difficulties of digital tests, represented as item estimates, and students’ 
performance per test, represented as person estimates, based on IRT 
methods. Goodness-of-level modeling was explored using standard 
fit indices such as reliability (Field, 2014; Rost, 2004), item 
discrimination (Fisseni, 1997; Kelava and Moosbrugger, 2012), and 
infits (weighted fits). Reliabilities larger than 0.7 (George and Mallery, 
2003) or 0.6 (Hair et al., 1998), primarily positive item discrimination 
(Kelava and Moosbrugger, 2012), and infits in a range from 0.5 to 1.5 
(Linacre, 2002; Wright and Linacre, 1994) or in a tighter range from 
0.7 to 1.3 (Bond and Fox, 2013) imply acceptable fits. A Wright-Map 
(Wilson, 2011) allows the joint visualization of item and person 
estimates with simple tasks and low-performing students visualized 
further down, and complex tasks and high-performing students 
further up. If both estimates are the same for a person and an item, 
the probability of the person answering the item correctly is 50%.

6.4.3 Bookmark method
The bookmark method (Mitzel et  al., 2001) is commonly 

applied to determine test proficiency levels. Item estimates from 
IRT analyses are used to order items from low to high in a booklet, 
and experts are asked to identify clusters of items of similar 
demands and use bookmarks to separate them, which yields 
proficiency levels. Characterizations based on these demands are 
derived for each proficiency level, yet overlaps of levels in single 
cases may occur, as item estimates show statistical variation. As 
the present study was based on previous paper-based studies 
(Schadl, 2020; Schadl and Ufer, 2023b), factors influencing item 
difficulties for FSK and IFK were well-known, and items were 
designed accordingly. Hence, no external experts were needed to 
determine item demands. We used the averages of the highest 
(lower level) and smallest (higher level) item estimates as 
boundary scores for neighboring levels (see Dimitrov, 2022).

6.4.4 Graphical model tests
For RQ3, graphical model tests based on bivariate scatter plots 

were used. Specifically, plots were used to compare estimated item 
difficulties for parallel items and person ability estimates, including 
proficiency level assignments gained from the parallel tests.
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6.4.5 Differential item functioning analyses
Beyond graphical model tests, we conducted differential item 

functioning (DIF) analyses to investigate parallelism on the item level 
(Riley, 2011). Specifically, we investigated whether items that were 
intended to be parallel and administered in the different tests were 
indeed not affected by differences in item difficulties. Wu et al. (1998) 
consider items affected if |DIF-estimate| > 2 × DIF-estimate standard 
error. Alternatively, the half-logit rule identifies affected items by 
|DIF-estimate| > 0.5 logits (Draba, 1977). More specifically, the 
relation |DIF-estimate| ≥ 0.43 logits identifies light-to-moderate and 
|DIF-estimate| ≥ 0.64 logits moderate-to-strong differences (Tristán, 
2006). Özdemir (2015) advises carefully examining items with 
possible parameter differences for plausible explanations, as different 
criteria may lead to different results. DIF analyses were run for 
intended parallel (triples of) items across all tests using ConQuest 2.0 

(Wu et al., 2007) so that 22 (FSK) and 18 (IFK) items were investigated 
for DIF.1

Depending on the research question, we  used two different 
analytical approaches. First, we used all data per construct across the 
three parallel tests, so also across points of measurement. This can 
be considered reasonable because the three measurement points were 

1 DIF analyses are often used to investigate whether items are affected by 

DIF for certain groups, e.g., female vs. male students. In our application, we 

subjected item triples of intended parallel items to the DIF analyses with groups 

corresponding to the different tests/measurement points. Hence, if item DIF 

had been observed, it would indicate that the items intended to be parallel 

were of different difficulties.

TABLE 2 Exemplary test items to assess IFK with parallelized graphical representations, numerical material, and text modules.

Task type (number of 
items in long | each 
of the short test)

Long test Short test 1 Short test 2

Identifying simple fractions 

(21|13)

Transform. Examples: 50 cm = half a 

meter, 30 min = half an hour.

20 min are …

□ a twentieth of an hour

□ half an hour

□ a quarter of an hour

□ a fifth of an hour

□ a third of an hour

□ None of the given answers is correct.*

Which fraction is shaded?* Which fraction is shaded?* Which fraction is shaded?*

Which fraction is shaded? Which fraction is shaded? Which fraction is shaded?

Shade three-quarters.* Shade three-quarters.* Shade three-quarters.*

Which number is larger? Choose.*

□ two-quarters | □ two-thirds

Which number is larger? Choose.*

□ two-quarters | □ two-fifths

Word problems (12|12) Class 6a has 20 children. 5 children are 

sick today. Which fraction is sick today?*

Class 5c has 20 children. 15 children wear 

jeans today. Which fraction wears jeans today?

Tim and Jonas share a litre of orange juice 

fairly. Which fraction does each get?

Anne and Sarah share a pizza fairly. Which 

fraction does each get?*

Paul and Klara share a bar of chocolate 

fairly. Which fraction does each get?*

Johanna lights candles. In the picture, 

you see three-quarters of the lighted 

candles. How many candles does she light in 

total?

Mareike sharpens pens. In the picture, 

you see three-quarters of the sharpened 

pens. How many pens does she sharpen in 

total?*

Marc sharpens 12 pens. He has already 

sharpened half of them. How many pens is 

that?*

Laure squeezes 8 oranges for an orange 

juice. She has already squeezed half of 

them. How many oranges is that?

Stars mark the items presented in Figure 7.
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within three weeks of instruction on fractions; therefore, we did not 
expect changes in students’ abilities. This cross-sectional perspective 
on parallel tests can be considered to equate the tests with a common-
person strategy (e.g., Yu and Osborn-Popp, 2005). We  used it to 
investigate the tests’ psychometric quality per construct (RQ1), as the 
basis for level modeling with the bookmark method (RQ2), and as an 
approach for inspecting the parallelism of tests (RQ3). For the latter, 
we conducted graphical model tests with corresponding bivariate 
scatter plots showing the item estimates per test based on the 
common IRT-scaling across tests plotted against each other and 
calculated the Pearson correlation to test the strength of the 
association. Second, we used the data per construct per test for the 
questions of psychometric quality that referred to the single tests 
(RQ1). Regarding RQ3, the graphical model tests based on this 
approach show the person estimates per test plotted against each 
other. Where applicable, we compared the findings of both approaches 
to check for consistency of results across analytical approaches 
(RQ1, RQ3).

7 Results

The results of the two studies are reported separately and have the 
same rationale. The first part answers the RQ regarding FSK (study 1), 
and the second answers those regarding IFK (study 2).

7.1 Study 1: FSK

Regarding the 78 FSK items and RQ1, we  observed largely 
acceptable-to-good fits judged by internal consistencies 
(Cronbach’s α = .85; WLE-reliability = .85), item discrimination 
(.02 < rpoint-biserial < .55), and infits from 0.84 to 1.16 (Bond and Fox, 
2013; Field, 2014; Linacre, 2002; see Supplementary Table A1 for 
corresponding fits for the tests).

7.1.1 Replication of proficiency levels
The Wright-Map in Figure 2 visualizes the digitized items of all 

three tests ordered according to the explored subconstructs and test 
affiliation and highlights the subtypes with numbers. Selected items 
from this map are shown in Figure 3.

Level 1. Determining parts in strongly structured graphical 
representations (part-whole subconstruct). Level 1 describes the part-
whole subconstruct in strongly structured task formats for subtypes 2 
and 3. Typical tasks require determining parts in strongly structured 
graphical representations such as identifying parts in models, including 
triangles and circles, or shading one quarter of a rectangle.

Level 2. Evaluating fraction statements for the subconstructs 
part-whole, ratio, and quotient as correct or incorrect. Level 2 is 
characterized by judging statements about part-whole relations, ratios, 
and quotients, primarily for subtype 1, using the restricted answer 
option (correct vs. incorrect). The quotient subconstruct also includes 
tasks that require judging slightly structured statements with more 
answer options.

Level 3. Evaluating a range of fraction statements and specific 
subtypes for the part-whole, (quotient), and measure subconstruct. 
Level 3 describes the evaluation of fraction statements in a range of 
situations regarding ratio, operator, and quotient subconstructs. 

Furthermore, it describes specific subtypes of the part-whole, 
(quotient), and measure subconstructs. In Level 3, the statements 
from the preliminary level refer to the operator subconstruct (subtype 
1) or are more complex, as they require comparing ratios with 
fractions. Moreover, regarding the quotient and ratio subconstructs, 
typical tasks require the judgment of fraction statements from several 
answer options, including equivalent fractions for the quotient 
subconstruct. Regarding specific subtypes, Level 3 primarily includes 
subtypes 2, 3, and 4 of the part-whole subconstruct. Whereas subtype 
4 occurs for the first time at this level, subtype 2 and 3 tasks are less 
structured compared to Level 1, as the whole has to be identified 
before determining the parts (subtype 2), or as the models are not 
divided into equal parts (subtype 3). Regarding the quotient 
subconstruct, tasks require determining a fairly shared whole. 
Regarding the measure subconstruct, number lines require locating 
number one at the correct location.

Level 4. Evaluating fraction statements for the ratio, operator, 
and measure subconstruct out of several answer options and 
specific subtypes for the quotient and measure subconstruct. Level 
4 is primarily characterized by the evaluation of statements from 
several answer options (subtype 2). This refers to the ratio, operator, 
and measure subconstruct. Regarding the ratio subconstruct, these 
tasks require identifying ratios based on given numbers or using 
ratios, whereas tasks at the preliminary level require comparing ratios. 
Regarding the quotient subconstruct, the tasks of subtype 3 require 
determining fair shares. Regarding the measure subconstruct, tasks 
require placing fractions on number lines.

Level 5. Non-structured task formats for the ratio, operator, 
and measure subconstruct. Level 5 primarily comprises 
non-structured task formats (subtype 3) for the ratio, operator, and 
measurement subconstructs. Therefore, typical tasks require 
identifying ratios using an inverse operation or naming fractions 
marked on number lines.

In summary, the FSK proficiency levels describe the demands for 
the part-whole subconstruct and structured situations at lower levels. In 
contrast, higher levels require interpreting fractions beyond part-whole 
relations as ratios, operators, quotients, or measures, primarily in 
non-structured situations. In this context, interpreting fractions as 
quotients seems more accessible to most students than other 
interpretations, such as ratios. Hence, as the demand to translate 
between the part-whole subconstruct and other fraction subconstructs 
and more or less structured situations seems to generate task difficulty 
in the digital setting, the proficiency levels are similar to those from the 
paper-based setting, which supports the tests’ validity (RQ2) (Schadl, 
2020). However, when adapting the test, we included easier items. The 
bookmark method differentiates the lowest level of the part-whole 
subconstruct such that basic knowledge of part-whole relations is 
characteristic of the lowest level in the digital setting.

7.1.2 Test parallelism
Regarding RQ3 for FSK, we observed similar total test scores 

averaged beyond all subconstructs for the long (M = 0.40, SD = 0.15) 
and short tests (Mshort-test-1 = 0.43, SDshort-test-1 = 0.15; Mshort-test-2 = 0.43, 
SDshort-test-2 = 0.16), indicating similar test difficulties. Similar test 
scores across the three digital tests were also reported for the 
subconstructs (see Supplementary Table A2). All graphical model 
tests in Figure 4 show strong correlations (Cohen, 1988), indicating 
that most sixth graders were assigned to similar proficiency levels 
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independent of the test. DIF analysis confirmed this finding. 
Although these analyses identify two items with DIF estimates larger 
than twice their standard errors (see items marked with a curve in 
Figure 2), one for the part-whole (DIF estimate = 0.271; standard 
error = 0.112), and one for the operator subconstruct (DIF 
estimate = 0.323; standard error = 0.112), these items are not 
considered problematic based on the half-logit rule and its fine-
grained classification. Furthermore, the plots in Figure 5 indicate that 
parallel items are of similar difficulty. So, both analytical approaches 
indicate the long and both short tests to be parallel.

7.2 Study 2: IFK

Regarding RQ1, we observed largely acceptable-to-good fits for 
the total 83 IFK items as shown by internal consistencies (Cronbach’s 

α = .93; WLE-reliability = .93), item discrimination (.04 < rpoint-

biserial < .58), and infits from 0.84 to 1.23 (Bond and Fox, 2013; Field, 
2014; Linacre, 2002; see Supplementary Table A3 for corresponding 
fits for the tests).

7.2.1 Replication of proficiency levels
Figure  6 shows the items from all three digital tests ordered 

according to task type and test affiliation and presents the subtypes with 
numbers. Figure 7 shows the order of selected items in each level.

Level 1. Identifying simple fractions in ordinary situations. 
Level 1 describes the identification of simple fractions in ordinary 
situations. Typical tasks refer to subtypes 1, 3, and 4. Regarding unit 
conversion (subtype 1), tasks refer to customary time units, such as 
one quarter or three-quarters of an hour, with conversions required in 
both directions, that is, converting hours into minutes and vice versa. 
Subtype 3 tasks require 1

2
 or 3

4
 shading cycles in continuous models. 

FIGURE 2

IRT-based proficiency levels visualized in a Wright-Map for FSK assessed in Grade 6.
Note: Item estimates based on common IRT-scaling across tests. The blue colored boxes represent items from the long test, green colored boxes 
items from the first, and orange colored boxes those from the second short test. Numbers 1, 2, 3, and 4 in boxes represent the subtypes. Parallelized 
items refer to the same subtype within one task type and one level and can be identified by underlinings or, in case of possible occurring misleadings, 
by stars. In single cases, parallelized items occur within one test. The little curve on items shows items identified by DIF analyses.
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FIGURE 4

Graphical model tests for stability of ability estimates and proficiency level assignment FSK.
Note: Each scatter plot shows the person estimates as obtained by two of the three parallel FSK tests plotted against each other. Person estimates 
based on separate IRT-scalings per test. pp = person parameter/person estimates. long = long test. short1 = first short test. short2 = second short test. 
r = correlation.

Regarding subtype 4, tasks can be solved with quasi-cardinal ideas or 
require comparing 

1
2  with one quarter or three-quarters.

Level 2. Identifying simple fractions with more flexibility and 
dealing with one half in different types of word problems. In Level 
2, simple fractions can be identified more flexibly with tasks referring 
to subtypes 1, 2, 3, and 4. Regarding unit conversion, tasks require 
converting the time units from the preliminary level to the other way 
around or referring to length units beyond the preliminary level, again 
referring to 

1
4  and 

3

4
. Subtype 2 tasks require determining of 

1
2  

shaded areas in a circular or rectangular model. Regarding subtype 3, the 
tasks require shading 

1
3 and 2

3  of the rectangular models. Regarding size 
comparison, either the component-wise comparison of nominators and 
denominators is erroneous or tasks require comparison of 1

3  or 
2
3  

against 3
4

. Characteristic tasks require dealing with 
1

2  in different types 
of word problems. Therefore, subtype 1 tasks require forming 

1

2  out of 
two given natural numbers. Regarding subtype 2, a whole, such as a 
chocolate bar or pizza, is fairly shared between two persons. For subtype 
4, the half must be determined from a given whole.

FIGURE 3

Item examples visualizing proficiency levels of FSK ordered from low to high.
Note: Letters in parentheses represent the corresponding fraction knowledge subconstructs part-whole (pw), ratio (r), operator (o), quotient (q), and 
measure (m).
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FIGURE 5

Graphical model tests for parallelism of item difficulties FSK.
Note: Each scatter plot shows the item estimates of parallel items as obtained by two of the three parallel FSK tests plotted against each other. Item 
estimates based on common IRT-scaling across tests. σ = item difficulty/item estimates. long = long test. short1 = first short test. short2 = second 
short test. r = correlation.

FIGURE 6

IRT-based proficiency levels visualized in a Wright-Map for IFK assessed in Grade 5.
Note: Item estimates based on common IRT-scaling across tests. Numbers 1, 2, 3, and 4 in boxes represent the subtypes. Parallelized items refer to the 
same subtype within one task type and one level and can be identified by underlinings or, in case of possible occurring misleadings, by stars. In single 
cases, parallelized items occur within one test. The little curve on items shows items identified by DIF analyses.
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FIGURE 7

Items examples visualizing proficiency levels of IFK ordered from low to high.
Note: Letters in parentheses represent the task types identifying simple fractions (id) and word problems (wp).

Level 3. Identifying simple fractions in more difficult situations 
and determining quantities with the given part or whole beyond 
dealing with one half. Level 3 describes the identification of simple 
fractions in more difficult situations, with characteristic tasks referring 
to subtypes 2 and 4. Subtype 2 tasks require determining 

1
4  or 

1
3  that 

is shaded in rectangular models or 
3
4  in a circular model. This open 

task format exceeds the preliminary level by 
1
2 . Regarding subtype 4, 

tasks require comparing 
1
4  or 

1
2  with the less ordinary fractions, such 

as 1
3

, 2
3

, or 2

5
, with the parts that largely include the same numerators. 

Such situations might be more difficult because the same nominators 
may plausibly trigger the misleading use of component-wise 
comparisons of denominators more often than in the case of unequal 
nominators, as in the preliminary level. Furthermore, regarding word 
problems, Level 3 describes the determination of quantities with a given 
part or whole beyond dealing with 

1
2 . Typical tasks refer to subtypes 3 

and 4. Regarding subtype 3, graphical representations represent 
1

4  or 
3
4 , and the whole subtype must be  determined. If graphical 

representations represent 
1
4 , the demand proves to be easier than if 

3
4  

is provided. For subtype 4, either 
1
4  or 1

3
 must be determined from the 

given whole beyond the preliminary level.
Level 4. Converting time or length units including one-third, 

two-thirds, or one-fifth, dealing with ordinary parts in more 
difficult situations, and dealing with less ordinary parts in different 
types of word problems. Level 4 describes unit conversion with fewer 
ordinary parts for identifying simple fractions. Therefore, tasks 
primarily refer to subtype 1, including 

1
3 , 

2
3 , and 

1
5  when converting 

time or length units. Regarding word problems, this level describes 
dealing with ordinary parts such as 1

2
, 1

4
, or 3

4
 in more complex 

situations, and dealing with less ordinary parts such as 1
3

 or 2
3

 in 
different types of word problems, with tasks at this level referring to 
subtypes 1, 2, and 3. Regarding subtype 1, typical tasks require either 
forming 2

3
 out of two given natural numbers or identifying two 

solutions for ordinary parts, such as 
1
2 , 

1
4 , or 

3
4 . Regarding subtype 

2, a fair share is achieved among three persons, and the part shared is 
either the whole or 

3
4 . Regarding subtype 3, the graphical 

representations represent 
2
3 , and the whole must be determined.

In summary, the IFK proficiency levels from the digital setting 
describe particular ordinary parts, such as 

1
2  in lower levels concerning 

both types of tasks, and less ordinary parts, such as 
2
3  at higher levels. 

This is consistent with the paper-based setting and supports the tests’ 
validity (RQ2) (Schadl, 2020). Demands requiring identifying simple 
fractions prove to be easier than those requiring dealing with simple 
fractions in different types of word problems. Contrary to the paper-
based setting and consistent with the expanded item subtypes, the 
digital tests cover a broader proficiency range over four levels.

7.2.2 Test parallelism
To answer RQ3 for IFK, similar total test scores, averaged across 

both task types, can be observed for the long (M = 0.54, SD = 0.18) 
and both short tests (Mshort-test-1 = 0.58; SDshort-test-1 = 0.20; Mshort-

test-2 = 0.55, SDshort-test-2 = 0.22). We also observed similar test scores for 
both task types beyond the three tests (see Supplementary Table A4). 
Furthermore, strong correlations (Cohen, 1988) in all graphical model 
tests in Figure 8 provide evidence that most fifth graders showed 
similar proficiencies beyond the three tests. This was largely confirmed 
by the DIF analyses, indicating three items to be affected by DIF (see 
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items marked with a curve in Figure  6): one for simple fraction 
identification (DIF-estimate = 0.391; standard error = 0.112) and two 
word problems (|DIF-estimates| of 0.247 and 0.420 with standard 
errors of 0.119 each). These items show DIF estimates larger than 
twice their standard error, but they were not considered to show DIF 
based on the half-logit rule and its fine-grained classification. 
Furthermore, the strong correlations shown in Figure  9 indicate 
parallel items with similar difficulty. So, both analytical approaches 
indicate that the long and both short tests are parallel.

8 Discussion

Fraction learning was found to be challenging yet highly relevant 
for later mathematical development; hence, supporting its learning, 
for instance, through formative assessment, is indispensable. Merging 

CBM and LT-based approaches to monitor learning seems promising 
as prior research provides a good base to derive a sophisticated 
cognitive model of fraction learning (e.g., Schadl and Ufer, 2023a, 
2023b). This model allows us to answer questions about the structure 
of fraction knowledge and skills, central predictors, and the 
hierarchical organization of the outcomes and prerequisites of 
fraction learning. Although these results regarding fraction learning 
are highly important and can support mathematics teachers in 
monitoring students’ fraction learning, they are still restricted to 
paper-based testing requiring high resources. Thus, the findings have 
not found their way into practice so far. To close this gap, 
we systematically investigate the development of digital assessments 
and merge the advantages of CBM and LT-based assessments. In 
addition to Schadl and Lindmeier (2025), we present digital parallel 
tests for the FSK and IFK that explore the psychometric quality of 
repeated test use for monitoring digital fraction learning.

FIGURE 8

Graphical model tests for stability of ability estimates and proficiency level assignment IFK.
Note: Each scatter plot shows the person estimates as obtained by two of the three parallel IFK tests plotted against each other. Person estimates 
based on separate IRT-scalings per test. pp = person parameter/person estimates. long = long test. short1 = first short test. short2 = second short test. 
r = correlation.

FIGURE 9

Graphical model tests for parallelism of item difficulties IFK.
Note: Each scatter plot shows the item estimates of parallel items as obtained by two of the three parallel IFK tests plotted against each other. Item 
estimates based on common IRT-scaling across tests. σ = item difficulty/item estimates. long = long test. short1 = first short test. short2 = second 
short test. r = correlation.
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8.1 Replication of proficiency levels with 
digitized tests

Regarding the hierarchical organization, FSK and IFK can 
be described as low to high. The IRT-scaled results revealed that both 
digitized tests are suitable for assessing a broad proficiency range 
(RQ1). Confirming the tests’ validity, we observed several similarities 
to previous paper-based proficiency level models (Schadl, 2020), 
particularly regarding the central criteria for level characterization 
(RQ2). Thus, the part-whole subconstruct and structured situations 
primarily characterize lower FSK levels. In contrast, fraction 
interpretations such as ratios, operators, quotients, and measures, 
primarily in unstructured situations, define higher FSK levels. This is 
consistent with previous literature indicating that several students 
acquire well-developed ideas about the part-whole subconstruct (e.g., 
Gabriel et  al., 2013; Pantziara and Philippou, 2012), primarily in 
typically structured situations (Ciosek and Samborska, 2016), which 
is more pronounced than other fraction interpretations (e.g., 
Charalambous and Pitta-Pantazi, 2007). Prior studies have 
consistently shown that most students struggle with measure 
interpretation (Charalambous and Pitta-Pantazi, 2007; Pantziara and 
Philippou, 2012), particularly with the interpretation of density (e.g., 
McMullen and Van Hoof, 2020; Van Hoof et al., 2015). That this 
interpretation was less demanding in our study could be due to the 
closed response format with more answer options. Among the 
fraction interpretations as ratios, operators, quotients, and measures, 
our results indicate that the quotient interpretation is the most 
accessible for sixth graders. This is inconsistent with the findings of 
Charalambous and Pitta-Pantazi (2007), who provided evidence for 
the relative ease of ratio interpretation. This inconsistency may 
be attributed to cultural diversity (Jiang et al., 2017).

Regarding the IFK level model, consistent with Padberg (2002) and 
Schadl (2020), we observed that simple fractions, such as one half, were 
more familiar to several students than fractions like one-third or 
two-thirds, for example. This could be plausibly explained by the fact 
that the fifth graders in our study had encountered simple fractions in 
prior education at most in the context of measures. Furthermore, it can 
be assumed that these students have dealt with more familiar fractions, 
such as one half, more often in everyday life (e.g., half an hour, half a 
pizza) than with less familiar simple fractions. Identifying simple 
fractions seems less challenging than solving word problems involving 
simple fractions, consistent with prior findings that reading 
comprehension is related to mathematics achievement (e.g., Akbasli 
et al., 2016).

Despite the similarities between digital- and paper-based settings, 
we detected some differences, particularly regarding the number of 
levels. This resulted from our intention to assess both constructs as 
broadly as possible in a digitized setting. Moreover, we adjusted some 
task formats for digitization to offer students age-appropriate access 
to the test materials and avoid expected problems, such as entering 
fractions, when working on digitized tests.

8.2 Test parallelism

Regarding RQ3, the intended parallel tests for FSK and IFK 
proved to show sufficient parallelism and, hence, to be suitable for 
repeated testing to monitor fraction learning. This was indicated by 

the similar test scores for the total scores and those for different task 
types. Additionally, this was supported by different model tests that 
indicated the long and short tests to be of similar difficulty and 
students to be assigned to similar levels independent of whether 
they worked on the long or one of the short tests. The parallel items 
were also unremarkable regarding DIF, considering different 
detection criteria. As neither different fraction interpretations nor 
simple fractions were taught during data collection, we expected 
students’ proficiencies to remain stable. Small deviations were 
expected due to situation-related and largely uncontrollable aspects 
(e.g., student timetables) or statistical variation. However, it cannot 
be  ruled out that working on the tests itself was a learning 
opportunity for the students. In summary, these results seem 
promising for the intended formative assessment purposes in 
fraction learning.

8.3 Limitations and further research efforts

Our purpose is to investigate whether digital assessments merging 
the advantages of CBM and LT-based assessments can be  a way to 
transform research findings into usable tools for mathematics teaching. 
Thus far, we have digitized tests for different prerequisites and outcomes 
of fraction learning (e.g., Schadl and Lindmeier, 2025) and primarily 
explored questions regarding their psychometric quality. Future research 
efforts arise from these studies’ open questions and limitations. For 
instance, studies have to investigate the predictive power of the IFK 
measure and the practical usability of the FSK measure to monitor 
learning (cf. Fuchs, 2004; Schadl and Ufer, 2023a, 2023b). In this context, 
other prerequisites and learning outcomes should also be considered 
according to the underlying cognitive model of fraction learning. To 
address these limitations, future studies must replicate the results for IFK 
and FSK based on larger samples and triangulate them with further 
measures. Here, the corresponding tests might show the same length, 
with each item having parallelized items, so biased items could 
be explored based on larger datasets.

Our tests included a range of task types, although fewer task types 
are typically associated with psychometric advantages, such as the tests 
emerging as highly reliable and sensitive. However, from a mathematics 
education perspective, the variety of task types is necessary because of 
the complexity of the content, where different types of tasks are 
supposed to span a broad proficiency range from low to high levels 
(Peck et al., 2021). Nevertheless, shortening the tests might be required 
to attain efficient tests, which should be verified by further evidence. 
However, for the intended purposes, instruments’ standardization must 
be carefully weighed against the contents’ complexity (Christ et al., 
2008). Therefore, shortening might be advised for tests of prerequisites 
rather than fraction learning outcomes.

Finally, it is to be  emphasized that German curricula consider 
systematic fraction introduction in Grade 6 (12-year-olds) and that IFK 
is usually acquired earlier. Thus, our findings regarding the structure 
and proficiency levels of IFK might have to be systematically reevaluated, 
especially for the use in educational systems that thematize systematic 
fraction introduction earlier or with a different approach. Despite these 
limitations, the studies show that it is possible to transform the prior 
research based on fraction learning into evidence-based digital tests. So, 
there is hope that formative assessment based on learning monitoring 
will become more accessible to teachers.
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