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Introduction: Researchers in the learning sciences have been considering methods 
of analysing and representing group-level temporal data, particularly discourse 
analysis, in Computed Supported Collaborative Learning for many years.

Methods: This paper compares two methods used to analyse and represent 
connections in discourse, Discrete Time Markov Chains and Epistemic Network 
Analysis. We illustrate both methods by comparing group-level discourse using 
the same coded dataset of 15 high school students who engaged in group work. 
The groups were based on the tools they used namely the computer, iPad, or 
Interactive Whiteboard group. The aim here is not to advocate for a particular 
method but to investigate each method’s affordances.

Results: The results indicate that both methods are relevant in evaluating the code 
connection within each group. In both cases, the techniques have supported the 
analysis of cognitive connections by representing frequent co-occurrences of 
concepts in a given segment of discourse.

Discussion: As the affordances of both methods vary, practitioners may consider 
both to gain insight into what each technique can allow them to conclude about 
the group dynamics and collaborative learning processes to close the loop for 
learners.
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1 Introduction

Understanding how group-level measures of learner activity change over time in 
computer-supported learning environments is a continuing challenge for researchers in 
education. In the research published in the years since Reimann (2009) seminal work on event-
based measures of Computed Supported Collaborative Learning (CSCL), much of the research 
has focused on discourse (although some do address other aspects such as gaze), and many 
approaches have been used to analyse the nature of connections between topics (e.g., Siebert-
Evenstone et al., 2017), organisation within groups (Thompson et al., 2013a), interactions with 
resources (e.g., Martinez-Maldonado et al., 2013), and with instructors (Riel et al., 2018). These 
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include those that consider the comparisons of networks of activity 
(Kelly et al., 2015; Dowell et al., 2018) as well as those that account for 
order (e.g., Reimann et al., 2009; Kapur, 2011). More recently, the 
specific study of collaboration analytics, which applies learning 
analytics to focus on groups of learners through “measuring, collecting 
and analysing data from groups of learners for the purpose of 
supporting them” has expanded the conceptualisation of this research 
space and identified areas of future research including creating 
adaptive systems, contributing to theory, and expanding data 
collection techniques (Schneider et al., 2021). In 2023, Wise et al. 
identified nine elements for robust collaboration analytics. Both sets 
of authors highlight the importance of considering the analytics to 
be  actionable (able to be  acted upon) and in particular, “what 
information to provide to whom and how” (Wise et al., 2023).

Many methods considered to study connections in relation to 
collaboration analytics use some visual representation of the modelled 
connections. This paper highlights two methods: Discrete Time 
Markov Chain (DTMC) and Epistemic Network Analysis (ENA). 
We have selected these two approaches because both DTMC and ENA 
have been applied in learning sciences to study connections between 
topics in discourse and exploit visual properties to communicate 
results. Creating visual representations of group-level collaboration 
activity that comprises the contributions of individuals can aid teams 
of researchers to better understand the multiple complex processes 
that occur during collaborative learning. These visualisations created 
by teams or on behalf of teams (Akkerman and Bakker, 2011), can act 
as boundary objects, which support learners, instructors, and the 
other stakeholders of learning analytics to cross boundaries concerned 
with syntax, semantics and interests (Abraham, 2017). In considering 
the use of visual representations in research, the affordances of 
representations for communicating the underlying theoretical 
assumptions of the analysis should be  considered, in addition to 
cognitive factors such as visual attention, perception, judgement or 
decision-making (Alhadad, 2018). Therefore, it is important to 
understand and contrast the different properties and features of both 
methods empirically to understand the role of visualisations in closing 
the loop for actionable learning analytics.

This paper starts by presenting the study background and briefly 
discussing visualisations in educational research. Then we present an 
overview of both methods under consideration for the analysis of 
individual contributions to collaborative learning: DTMC and ENA, 
and their affordances before presenting the analysis and visualisations 
of coded discourse of a CSCL task (Thompson et al., 2013a,b) using 
these two approaches. A comparison of the representational affordances 
of the two approaches in terms of analysis and communication is then 
provided before concluding with considerations for the use of 
visualisations for actionable learning analytics.

2 Background

2.1 Study background

Computer-supported collaborative learning (CSCL) “refers to 
situations in which computer technology plays a significant role in 
shaping the collaboration” (Goodyear et al., 2014, p. 440). Accounting 
for tracking student learning over time has grown as an area of interest 
for CSCL researchers, many of whom draw on Reimann (2009) 

research on process mining (e.g., Thompson et al., 2014; Malmberg 
et al., 2015; Sonnenberg and Bannert, 2018). In many cases, CSCL 
research addresses the challenge of accounting for individual and 
group-level learning (Cress and Hesse, 2013; Stahl et al., 2014). This 
paper assumes that group-level learning is an emergent property of 
the individual-level activity of learners. Understanding this, and the 
roles of individuals has been discussed further in the literature about 
collaboration literacy (Worsley et  al., 2021). Worsley et  al. (2021) 
consider factors in relation to data collection, such as climate, 
communication, conflict, contribution and constructiveness, 
among others.

The study presented in this paper aimed to evaluate the group 
dynamics and how effectively they used the different elements of 
learning design, as defined by the Activity Centred Analysis and 
Design (ACAD) framework (Goodyear et  al., 2014). The project 
involved 15 students from the same high school (aged between 12 and 
17 years) and 11 adults from educational and government agencies. It 
was funded by local councils and supported by an environmental 
rehabilitation organization. The goal was for the students to develop a 
multimedia resource to engage other students in learning about water 
and land management issues. The project ran over 5 months and the 
students participated in planning sessions, a site visit, and a day of 
hands-on site restoration at a local creek; before attending the Design 
Day at the University of Sydney’s Educational Design Research Studio 
(Martinez-Maldonado et al., 2016).

Students had worked together in groups of five before the Design 
Day, and the composition (gender and age) of each group differed, as 
did the tools they accessed to support the task. Here, the groups are 
identified by the tools they used: the computer, the iPad and the 
Interactive Whiteboard (IWB) groups. This paper follows the three 
groups during the ideate stage, which ran for 40 min during the 
six-hour Design Day. The 40-min idea was naturally contained (three 
separate groups) and scaffolded but open (ideation). To stimulate the 
period of learning activity under analysis, the students had to generate 
ideas to create an online resource, for other students, about water and 
land management that would inform the design brief given to the 
multimedia designer.

2.2 Visualisations in educational research

Visual representations of data, both quantitative and qualitative, 
is one of the cornerstones of educational research as a commitment to 
improving the communication of scientific information to a broader 
set of audience. Educational research inherently has the impetus for 
impact, whether in practice, policy, or further research. Given the 
multidisciplinary nature of educational research and practice, this 
places greater importance on communicating research findings in 
ways that transcend singular disciplinary epistemologies with varying 
degrees of data literacy (Pangrazio and Sefton-Green, 2020; Raffaghelli 
and Stewart, 2020; Wise, 2020). While the impetus for data 
visualisations in enhancing science communication is clear, the details 
foreboding researcher judgement and decision-making of how they 
might best represent the data to support effective communication 
remains an empirical challenge (Alhadad, 2018; Zacks and Franconeri, 
2020; Franconeri et al., 2021).

Ineffectively designed data visualisation can disrupt or hinder 
fundamental information processing processes for further 
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comprehension such as overloading one’s working memory, misguided 
attentional orientation, or even questioning conventions of data 
representations (Alhadad, 2018). This has consequential implications 
when the intention is to communicate findings to high-stakes 
practitioners or policymakers as poorly designed data visualisations 
can create confusion, misunderstanding, and even scepticism or 
distrust about the research or related risk (Wiley et al., 2018; Zacks 
and Franconeri, 2020). Uncertainty representation in data 
visualisations provides information about the underlying properties 
of the data and enables one to understand probabilities, risk or 
occurrence, or even the extent of meaningfulness of the data for their 
context. Recent research has shown that even decisions about line 
segmenting in high variability line graphs can perceptually bias 
readers towards overestimating averages and trends (Moritz 
et al., 2023).

In this paper, we refer to the affordances of the two visualisations 
we have selected to compare in the analysis of groups of individuals 
interacting in learning situations. By using the term affordance, we are 
drawing on Gibson (2014) work concerning the actionable properties 
between the world and a particular actor. In other words, we are using 
this term to indicate the actions that the visualisations allow the user 
to take in terms of decisions about learning and collaborative 
processes. These visualisations can also, as mentioned in the 
introduction, be considered to act as boundary-negotiating objects 
(Lee, 2005). This means that they can act as an object around which 
instructors, students and other stakeholders of learning can use to 
explore and share ideas, create a venue for the exchange of information, 
and create a shared understanding of specific design problems 
(Lee, 2005).

2.3 Overview of discrete time Markov 
chains and epistemic network analysis

The two fundamental premises about collaborative learning 
(change over time and emergent properties of collaborative learning) 
informed the decision to investigate the affordances of the 
visualisations produced as a result of analysis of the discourse of 
individuals in teams that unfold over time: Discrete Time Markov 
Chains and Epistemic Network Analysis. Discrete Time Markov 
Chains and Epistemic Network Analysis (ENA) are both mathematical 
frameworks used to model systems with interconnected states or 
variables but have different characteristics.

Markov Chains (MC) model stochastic processes where the 
probability of transitioning from one state to another depends only on 
the current state and not on the sequence of events that preceded it 
(also known as memoryless property; Gagniuc, 2017). Thus, MC can 
be used for describing systems in which future events depend only on 
their current state, that is, the events are likened as in a chain. Discrete-
time Markov Chains (DTMC) allow for the modelling of transition 
probabilities between discrete states. These transitions are typically 
represented by a transition matrix. Even though a DTMC model is not 
a graphical model, the transition matrix is often represented visually 
as a directed graph or network.

DTMC statistical models have been applied in many fields to 
model complex real-world processes, such as estimating the time of 
travel on highways (e.g., Yeon et al., 2008) or inferring the magnitude 
of financing costs (Hennessy and Whited, 2007). In the learning 

sciences, DTMC has been used to model patterns of decision-making 
(e.g., Reimann, 2009), problem-solving (Thompson et al., 2014); self-
regulation (e.g., Malmberg et  al., 2015; Sonnenberg and Bannert, 
2018) and idea generation (Thompson et al., 2014).

Epistemic Network Analysis (ENA) was created and used 
specifically to identify and quantify connections among elements in a 
coded dataset, which are then illustrated in a network model (Shaffer, 
2017; Shaffer and Ruis, 2017). ENA represents the frequency of 
association within a selected segment of data (or stanza) as a symmetric 
adjacency matrix, in which columns and rows are the existing codes 
characterised by a binary classification (1: codes occur within the same 
stanza, 0: otherwise). These matrices are used to quantify the 
co-occurrence of codes in the groups’ dialogue. Then these connections 
are represented in a two-coordinate space as a discourse network, 
where its location is defined by its centroid (centre position), and its 
nodes represent the codes. This method enables the comparison of 
different networks by contrasting their weighted structure of 
connections, both visually and through summary and test statistics.

ENA allows for the use of sliding window analysis (Dyke et al., 
2012; Suthers and Desiato, 2012) to account for the context of each 
speech act of individuals within the groups, as it is usually a response 
to some previous speech act. The considered “context” is defined by a 
chosen number of previous utterances. This technique constructs an 
adjacency matrix with the connections in the considered “window” of 
analysis (context) of each utterance. The use of sliding windows has 
been suggested as a method to track student activity over time (e.g., 
Dyke et al., 2012; Kelly et al., 2015; Siebert-Evenstone et al., 2017), in 
particular in reference to the analysis of discourse and considering the 
influence of the recent history of student activity. ENA has been 
applied to many contexts of learning, for instance, to understand the 
effects of ability grouping on the learners’ collaborative problem-
solving patterns (An and Zhang, 2024), to model learners’ experience 
with procedural simulators in medical education (Ruis et al., 2018), 
and to assess the usefulness of virtual internship on preservice teachers’ 
technological pedagogical content knowledge (TPACK; Oner, 2020).

2.4 The affordances of DTMC and ENA

A selection of the affordances of the DTMC and ENA 
representations and approaches are presented in Table 1.

Some of the affordances highlighted in Table 1 are intrinsic to the 
specific method of analysis (e.g., the nature of the matrices), while others 
depend on the software package used to conduct the analysis (e.g., the 
possibility of visualising the matrices). Other differences illustrated in 
Table 1 are due to the differences in the theoretical framework that 
informs each method (e.g., DTMC is based on the Theory of Probability 
whereas ENA builds on the Theory of Graphs). In what follows, we aim 
to illustrate these affordances by analysing the same data (discourse of 
three groups of five high schools engaged in a CSCL task) with both 
methods to gain some insight into what each method can allow us to 
conclude about the group dynamics and collaborative learning process.

3 Methods

To compare the representational affordances for analysis and 
communication, the same coded dataset was analysed using DTMC and 
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ENA. Even though this dataset has been analysed previously (Thompson 
et al., 2013a, b), this particular analysis has not been published before.

3.1 Coding

As students engaged in an educational design task, we used the 
Activity Centred Analysis and Design (ACAD) framework to code 
the transcript (Goodyear et  al., 2014). The ACAD framework 
describes three design elements that can be considered in the process 
of design for learning: the epistemic (knowledge creation processes, 
sometimes referred to as tasks), the social (the roles and rules for 
individuals in a learning situation), and the set (the tools in the digital 
and physical learning environment). Once the design is enacted, the 
co-configuration and co-creation of learning occurs as learners and 
instructors implement the design. In this case, we were interested in 
learners’ discourse in the three groups as it related to the task 
(epistemic), the social (interactions and roles), and the tools (the 
physical and digital learning environment) differentiated between 
planning and action. The discourse was also coded for ‘off-task’ 
discussion. The student discourse codes related to the elements of the 
framework (plan-epistemic, epistemic, plan-social, social, plan-tools, 
tools, and off-task). A researcher expert in learning sciences coded 
the data manually.

3.2 Data analysis

In the analysis, co-occurrences indicate the connections among 
speech acts that serve to distribute the thoughts and actions of the 

group. To implement each of the methods, the DTMC and ENA, 
we used two packages from the R Project Software (R Core Team, 
2018), the markovchain (Spedicato, 2017) and rENA (Marquart et al., 
2018), respectively. We used the igraph package (Csardi and Nepusz, 
2006) to plot the DTMC diagram and the ggplot2 package (Wickham, 
2016) for the descriptive plot.

A first-order DTMC was applied, where the codes represented the 
states and the rows in the dataset, corresponding to an utterance from 
a group member, represented the time. When plotting the transition 
matrix, to only show connections that seemed to be sizeable, we chose 
a minimum of 25 connections or 20% of all connections. If both 
conditions were satisfied the connections were represented by a solid 
line. A dashed line was used if only one condition was satisfied. To 
compare networks, we tested if the transition matrices of the groups 
come from the same unknown chain. This method was inspired by 
Kullback et al. (1962) and its test statistics follow a chi-squared law. 
Here, we  used the function verifyHomogeneity from the 
markovchain package.

For the ENA analysis, we coded the data in the ENA format, 
where each row in the dataset corresponded to an utterance from 
a group member and each column corresponded to a code 
(epistemic, plan-epistemic, tool, plan-tool, social, plan-social), to 
which was attributed a binary code (1 if the code was present, 0 
otherwise). The size of the window considered here was four turns 
of talk, that is, a connection was considered if the code was up to 
four utterances distant from the considered utterance. For 
plotting, we adopted the default threshold. We obtained the mean 
locations of each group with confidence intervals (as well as 
independent samples t-tests). Because the graphs of the network 
of each team are coordinated in the projected metric space 

TABLE 1 Affordances of the DTMC and ENA approaches.

DTMC ENA

Connections Directed Undirected

Weights of connections In proportion (transition matrix) and number of 

connections between codes (sequence matrix)

In abstract weights (sum-of-squares-centrality)

Nature of matrix Transition Matrix (Cumulative) Adjacency Matrix

Visualisation of matrix Provided Not Provided

Threshold Threshold for showing connections in proportions or 

counting

Threshold for showing connections in abstract weights (sum-of-

squares-centrality)

Calculation of connections Use the immediate previous state to calculate the 

connections (Markov Property)

Use a set of previous states to calculate the connections (Sliding 

Window)

Overall network comparison Statistical test to compare homogeneity of sequence 

matrices

Network centroid for overall network comparison Statistical 

testing for comparing networks

Detailed network comparison - Network subtraction for detailed network comparison

Visualisation Network diagram with connections Network diagram with connections; with points, centroid and 

confidence intervals; Subtracted Network diagram

Capacity for multiple codes per utterance None Yes

Ease of interpretation Directionality helps with understanding the transition 

from one code to the next.

Graph elements colour, and the overall shape helps with making 

comparison and interpretation.

Uncertainty DTMC display probability of each transition, further 

uncertainty elements can be included in relation to the 

discrete time steps chosen and displayed in the 

network diagram or transition matrix.

Graph elements such as node distance, line thickness, helps with 

making relative comparison; confidence interval figures provide 

visual representation of extant of certainty per dimension.
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(Marquart et  al., 2018), ENA was then used to create mean 
network graphs for each group by computing the average value for 
each edge weight. Then, to see the differences in the relative 
strengths of connections between each pair of networks, ENA was 
used to obtain difference graphs that subtract the edge weights of 
one network from another, indicating which connections are 
stronger in each network.

4 Results

4.1 Coding summary

The Computer group had 723 utterances, the iPad group had 470, 
and the IWB group had 525. Every utterance was coded as “epistemic,” 
“plan-epistemic,” “tools,” “plan-tools,” “social,” “plan-social,” and “off 
task.” The following are examples of utterances coded with each of 
these elements:

 • Epistemic: “And we  were thinking you  could put that into a 
virtual world”

 • Plan-Epistemic: “Did you  have any other ideas that 
you can include?”

 • Tools: “No, that was CAPS lock I think.”
 • Plan-Tools: “Can you copy this down? Are you erasing that?”
 • Social: “That’s so cool.”
 • Plan-Social: “Who wants to go next?”
 • Off Task: “I just really want to eat, I’m so hungry”

The percentage of utterances coded by each element also varied 
(Figure  1), but all groups tended to focus more on epistemic 
discussion (around 40% of the utterances). Discussion about tools 
was the second most frequent (Computer: 19%, iPad: 19%, IWB: 
20%), only slightly less frequent than social for the Computer group 
(22%). The Computer group had double the number of utterances 
coded for social discussion when compared with the iPad (10%) and 
IWB (12%) groups, but had the least number of utterances coded as 

off-task discussion (Computer: 2%, iPad: 12%, IWB: 6%). Overall, 
across all groups, the least number of utterances were coded as 
planning (ranging from 2 to 11%), regarding epistemic, tools 
or social.

4.2 Discrete-time Markov chains vs. 
epistemic network analysis

4.2.1 Network morphology and interpretation
Figure 2 shows the DTMC and ENA diagrams of the Computer 

(red), iPad (blue) and IWB (green) groups. In the DTMC (Figure 2, 
left), each box represents a code, and the arrows represent the 
direction of the connections. A solid line represents that a minimum 
of 25 connections and 20% of all connections were satisfied, while 
a dashed line represents that only one of these conditions were 
satisfied. The number of transitions and the percentage that this 
represents are next to the arrow. Note that although some 
connections reach the threshold of 20%, the number of connections 
can be as small as two, as it is relative to all connections made by 
the particular code.

In all groups, most connections were within a particular code, with 
limited transitions between codes (Figure 2, left). Once students began 
discussing an element of the design of their learning resource, they 
continued talking about that. For the Computer group (Figure 2A), 
most inter-coding connections were between plan-epistemic and 
epistemic, and plan-tools and social. Similarly, the iPad group 
(Figure 2C) also had two main sets of code connections, one between 
plan-epistemic and epistemic and another between plan-social, plan-
tools and tools. The discourse coded as Off-Task (OT) was not highly 
connected with any other code in these two groups. In the IWB group 
(Figure  2E), OT connected with plan-social. Other connections 
identified in the discourse by the IWB group were mainly between 
plan-social, tools and social, and between plan-tools and tools.

In the ENA (Figure  2, right column), the width of the lines 
represents the strength of the connections. Therefore, the thickest lines 
are those connections most influencing the position of the centroid. 

FIGURE 1

Relative frequency (x-axis) of the ACAD codes (y-axis) for all three groups.
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FIGURE 2

DTMC (left) and ENA (right) diagrams for each group: Computer (Top, Red), iPad (Middle, Blue) and IWB (Bottom, Green). In the DTMC diagrams (A,C,E) 
the solid lines mean that both conditions (at least 20% of the connections and at least 25 connection) were satisfied, while the dashed lines mean that only 
one of these conditions were satisfied. In the ENA diagrams, the linewidth represents the strength of the connections between codes (B,D,F).

By analysing the networks, the first quadrant is only epistemic, the 
second is planning (epistemic and tools), the third is mainly tools, and 
the fourth is social. By connecting this information with that in the 
DTMC diagrams (Figure 2, left), we can conclude that there were 
more connections in the discourses within the epistemic code for the 
Computer Group and some discourse coded as social, the iPad Group 
engaged in more continuous planning and the IWB group more 
discourse coded for tools, epistemic and social.

Analysing each network in more detail, it is important to note 
that the discourse coded as epistemic and plan epistemic as well as 
epistemic and social were more strongly connected (thicker line) 
than other connections between coded discourse in the Computer 
Group (Figure  2B). There were weaker connections between 
discourse coded as epistemic and tools, and also social and tools. The 
iPad Group ENA diagram (Figure  2D) shows the strongest 
connections between epistemic and plan-epistemic, and some 
weaker connections between epistemic and plan-tools, epistemic 

and off-task, epistemic and tools and epistemic and social, as well as 
plan-tools and tools. The IWB ENA diagram (Figure 2F) shows that 
most connections made in the discourse in this group were between 
epistemic and tools and also some between those codes and social. 
There were also some weaker connections between these three codes 
and plan-epistemic. Most of the weight of this network structure is 
between the third and fourth quadrants.

An instructor examining the diagrams for each group in Figure 2, 
above, could interpret them as follows. The DTMC diagram for the 
Computer group (A) shows that this group stays discussing a particular 
topic once it starts and is very rarely distracted, but they also did not 
revisit topics after they have moved on. They use the tools (e.g., 
keyboard and mouse) to plan the roles of the people in the group, but 
neither of these are connected to their knowledge creation discussion. 
The ENA diagram (B) shows that discussion that related to planning 
for the task, doing the task and the social roles were all connected, with 
weak links to the discussion of the tools. An instructor may intervene 
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to help students better connect a considered approach to how to 
organise themselves and the technology to doing the task, but given 
how little off task discussion was occurring, and that it appears 
unrelated to any other code (and so probably incidental), they may 
choose not to intervene. The DMTC diagram for the iPad group (C) 
indicates that this group too stayed on topic once discussing it with 
little revisiting once they had moved on. there were a larger number of 
off task utterances that seemed to occur in a block. They used the tool 
use to plan, particularly in relation to roles and rules for the group to 
work together, but very little discussion of social roles and rules in 
connection to knowledge creation or during tool use. The ENA (D) 
showed that for this group, knowledge creation was central in relation 
to social roles and rules and also the use of technology. The off-task 
discussions seemed to be  in relation to the epistemic code. An 
instructor could have intervened to reduce the off task discourse, and 
to help provide better connections between planning for how to 
approach the collaboration and the enactment of that collaborative 
activity. The DTMC diagram for the IWB (E) showed that this group 
was able to engage with ideas and knowledge creation in a focused way 
and connected their use of tools with their roles in the group, with 
planning directly connected to their discourse. The ENA (F) diagram 
shows a network with many connections, including strong connections 
between the use of tools in the creation of knowledge and social roles 
and rules. Off-task discourse was connected to all aspects of their 
conversation. An instructor could decide to not intervene when 
viewing these diagrams depending on other markers of progress 
through the task. It appears that planning is connected to action and 
that the group is discussing roles, technology and ideas in a 
connected way.

4.2.2 Network morphology comparison
There is no standard way of visually comparing the DTMC 

networks of the different groups. Here, we tested if they came from the 
same unknown chain. The results indicate that all groups have 
non-homogeneous chains, i.e., they all come from different unknown 
chains: Computer versus iPad group � 2 48 189 57� � � . , p-value = 0; 
Computer versus IWB: � 2 48 124 96� � � . , p-value= 8 9 9

. � �e  and iPad 
versus IWB: � 2 48 79 7� � � . , p-value=0 003. .

For the ENA, we can visually compare the difference in the 
strength of each connection (Figure  3), that is, it compares the 
mean network graphs. When comparing the networks from the 
Computer with the iPad group (A), the connections between social 
and tools, and social and epistemic are stronger in the Computer 
group than in the iPad group. The iPad group had stronger 
connections between plan-tools and tools and plan-tools and 
epistemic, and OT and epistemic and OT and tools. In summary, 
the Computer group had more connections towards quadrants 1 
and 4, while the iPad group had more connections in quadrants 2 
and 3. They had similar connections with plan-epistemic 
(subtraction equals or very close to zero).

When comparing the Computer with the IWB group (B), the 
Computer group has stronger connections between epistemic and 
social and epistemic and plan-epistemic. The IWB group had stronger 
connections between OT and epistemic, tools and social and between 
epistemic and tools and plan-epistemic and tools. In general, the 
Computer Group had stronger epistemic and social connections (in 
quadrants 1 and 4) while the IWB had stronger tools and OT 
connections (quadrant 3). Finally, comparing the iPad with the IWB 

group (C), the iPad group has stronger connections between epistemic 
and plan-epistemic and plan-tools, and plan-tools and tools. The IWB 
group demonstrated stronger connections between tools and epistemic 
and tools and social, as well as OT and social. In summary, the iPad 
group had stronger epistemic and tools connections, with a focus on 
planning, while the IWB group had stronger tools and social 
connections, with some epistemic connections but also OT.

The centroids (mean and confidence intervals) of each group’s 
network reflect the weighted structure of connections. In Figure 4, the 
means are represented by the corresponding squares, and the boxes 
around each mean indicate the 95% confidence interval for 
each dimension.

As can be  seen in Figure  4, the networks of each group are 
distinct from each other. The network of the Computer Group was 
heavily weighted in the first quadrant but with the confidence 
interval crossing to the fourth quadrant. For the iPad group 
network, the mean is confidently in the second quadrant while the 
confidence interval of the IWB group crosses the third and fourth 

FIGURE 3

Pairwise comparison of networks: Computer (Red) vs. iPad (Blue) (A), 
Computer (Red) vs. IWB (Green) (B) and iPad (Blue) vs. IWB (Green) 
(C).
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TABLE 2 Statistical comparison of the ENA diagrams of the computer, iPad and IWB groups.

Groups t-statistics df p-value Cohen’s d [95%CI]

Computer vs. iPad 9.98 7.74 1.09e-05 5.76 [2.84, 8.68]

Computer vs. IWB 3.23 8.93 0.01 1.86 [0.32, 3.48]

iPad vs. IWB −3.73 6.42 0.01 −2.16 [−3.77, −0.54]

FIGURE 4

Mean and Confidence Intervals of each group network: Computer 
(Red, Right), iPad (Blue, Left) and IWB (Green, Middle).

quadrants. Note that the confidence intervals are relatively narrow, 
revealing limited uncertainty in the estimation of the mean of 
each network.

The mean of the centroids of the three groups’ networks were 
compared via independent samples t-tests and Cohen’s d 
coefficients: Computer Group (M = 0 27. , SD = 0 11. ), iPad 
(M � �0 27. , SD = 0 06. ) and IWB (M � �0 001. , SD = 0 17. ). The 
Computer group network centroid was very distinct from the iPad 
(Table  2, Row 1). Although there appears to be  a small overlap 
between the 95%CI of the mean of the Computer and the IWB groups 
(Figure 4), their centroids are significantly different (Table 2, Row 
2).This difference between the means was expected since the 
Computer group in which the network has a positive mean. The iPad 
and the IWB groups also showed a statistically significant difference 
between their network means (Table 2, Row 3).

5 Discussion

After conducting the analysis, we can now discuss the strengths and 
limitations of each method, based on the affordances illustrated 
previously in Table 1. We particularly focus on the types of connections, 
the unit of comparison, the consideration of context, and the potential 
for use by practitioners to close the loop for actionable learning analytics 
(Alhadad, 2018; Zacks and Franconeri, 2020; Franconeri et al., 2021).

The unit adopted by the two approaches for reporting and 
comparison is different. The DTMC approach uses probabilities as 
“units,” while ENA uses weights. If Figure 2 (left column) is examined, 
then the measures of probability and counts can be  used to make 
comparisons between transitions in the groups (e.g., the probability that 
epistemic followed plan-epistemic was 35% in the iPad group, 
corresponding to 19 utterances, and 29% in the Computer group, 
corresponding to 25 utterances). While this transition accounted for a 
larger proportion of transitions in the iPad group, it occurred fewer 

times. ENA uses visual features to compare networks and provides test 
statistics to support this comparison. Figure 2 (right column) shows that 
there was a strong connection between those two nodes in both groups 
and Figure 3 demonstrates that there was a minor difference there. The 
reason for the difference is the use of the Transition Matrix in the DTMC 
approach, informed by the Theory of Probability, while the Adjacency 
Matrix used in ENA comes from Graph Theory. They both concern the 
connections between codes (states), but the former uses probability or 
counts, while the latter is binary. The Cumulative Adjacency Matrix is 
the sum of all Adjacency Matrices, so it will be made of integers (count). 
It is possible to explore the Transition Matrix generated as part of the 
DTMC approach. However, a (Cumulative) Adjacency Matrix is not 
given as an output by the rENA package.

DTMC allows for the representation of directionality in the 
transitions between codes. By having a directed network diagram, 
it is therefore possible to identify the “direction” of the 
conversation. Even though the standard ENA analysis presented 
here does not take into account the direction of the connections, 
a directed ENA (dENA; Fogel et  al., 2021) and an Ordered 
Network Analysis (ONA, Tan et  al., 2022) have been recently 
proposed. In the directed models the connections between 
different codes is highlighted as well as the connections between 
the same codes. This shows how much of the discussion was 
engaged in the same code. For example, for the Computer group 
the transitions with the highest probability were within each 
code. In other words, for instance, an utterance coded as 
“epistemic” was most followed by another utterance coded as 
“epistemic.” This could only be clearly seen in the DTMC diagram 
(Figure  2, left top). If the direction is not important in the 
analysis, then transforming the Markov Chain to an undirected 
chain is possible and some additional connections may become 
significant once combined. However, that would be a post hoc 
analysis. Detecting connections between the same codes is more 
challenging using ENA as each is represented by the size of the 
nodes of the network. In the ENA diagrams the information 
about within-code transitions are less obvious, being very 
difficult to compare the sizes of the vertices (Figure 2).

Context is important when considering any analysis of learning. 
While the DTMC approach only requires the current state (or code) 
to predict an unknown following state, because the ENA uses the 
Sliding Window method, it allows the consideration of the “context” 
in which some statement (use of coding) was made. The ENA can 
be conducted considering only the previous state, as in the DTMC. A 
higher-order Markov chain could be fitted to consider a broader type 
of “context,” than only the previous state. That would allow the 
consideration of a sequence of previous codes, and it is available as 
part of the markovchain package using the function fitHigherOrder. 
Although the mathematical interpretation of an ENA is not as 
intuitive as the DTMC, its graphical representation is developed in 
a more practitioner-friendly fashion, as it uses graphical features, 
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such as line thickness and distances, to convey meaning instead of 
relying on numbers. By providing multiple representations of the 
shape of a group’s network, thicker or thinner lines, or different 
colours, the representation encourages the user to make 
comparisons, thereby supporting the reader’s/ researcher’s 
comprehension of data for meaning. The representation encourages 
the user to create a language that gives meaning to the graphs, 
identifying the differences in connections in the groups by their 
location in different quadrants (e.g., Figure  3) or discussing 
comparisons between the location of networks in quadrants (e.g., 
Figure  4). ENA also provides predefined ways of comparing 
networks, considering the centroids or subtracted networks, and 
some test statistics, such as a t-test and Cohen’s d. The use of Cohen’s 
d is advisable, as it focuses on effect sizes and not on p-values. In this 
paper, both methods were used to analyse the current data and not 
to make predictions about future groups. While this is possible using 
DTMC, in this context, we  expect that each group will work 
differently depending on several contextual factors. There is only one 
package in R to fit an ENA (rENA), and if the modeller is not 
comfortable with coding, there is a website with a user-friendly 
application to fit an ENA.1 There are other packages to fit a DTMC, 
such as DTMCPack (Wilson, 2022), however, the markovchain offers 
more flexibility in handling as well as providing methods suited to 
perform statistical and probabilistic analysis.

Finally, even though only ENA has come formally from the field 
of quantitative ethnography, both of these methods can contribute to 
quantitative ethnography, as, by applying them, researchers can gain 
a deeper understanding of the social dynamics, knowledge structures, 
and behavioural patterns, enriching the insights provided by 
traditional qualitative ethnographic methods.

6 Conclusion

This paper illustrates the applications of DTMC and ENA to 
analyse discourse data to better understand two considerations 
in collaboration analytics and use visualisations for actionable 
learning analytics to close the loop. From the results presented 
here, it can be concluded that both methods are relevant when 
evaluating the code connections made by each group. The 
affordances of the two approaches selected are connected to the 
different assumptions of the statistical theory that informs them. 
However, the representations themselves as well as the 
considerations of change over time (directed analysis and sliding 
windows), how uncertainty is represented, and the inclusion of 
the context of learning further encourage particular practices 
concerning the interpretation and potential for educational 
decision-making. While DTMC, to a certain extent, provides the 
user with greater flexibility, ENA encourages network 
comparisons. ENA, with the integration of a sliding window, 
better accounts for the consideration of context, and better 
accounts for data generated by several aspects of the learning 
situation. Ultimately, because the primary goal of modelling is to 
conduct inference to the available data to answer a question, 
having multiple tools available to the modeller allows them to 
build a more complete understanding of the collaborative 

1 http://www.epistemicnetwork.org/

learning situation and therefore choose the method that better 
provides insight into their data for communication to close 
the loop.
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