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Mental rotation (MR), a key aspect of spatial reasoning, is highly predictive of 
success in STEM fields. This study analyzed strategies employed by 27,600 eighth-
grade students during a digital MR task from the 2017 National Assessment of 
Educational Progress (NAEP) in mathematics. Utilizing K-means cluster analysis 
to categorize behavioral and performance patterns, we identified four distinct 
profiles: Cognitive Offloaders (15% of the sample), Internal Visualizers (55%), 
External Visualizers (5%), and Non-Triers (25%). Cognitive Offloaders, skilled at 
minimizing cognitive load by eliminating incorrect options, demonstrated the 
highest MR accuracy rates at 45%. Internal Visualizers, relying less on digital tools 
and more on mental strategies, achieved robust performance with an average 
score of 38%. External Visualizers, despite their extensive use of assistive tools 
and greater time investment, scored an average of 36%. Non-Triers showed 
minimal engagement and correspondingly the lowest performance, averaging 
29%. These findings not only underscore the diverse strategies students adopt 
in solving MR tasks but also emphasize the need for educational strategies 
that are tailored to accommodate different cognitive styles. By integrating MR 
training into the curriculum and enhancing teacher preparedness to support 
diverse learning needs, this study advocates for educational reforms to promote 
equitable outcomes in mathematics and broader STEM fields.
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1 Introduction

Spatial ability, a pivotal component of human intelligence, is strongly linked to success in 
high-demand fields such as architecture, engineering, and science (Park et al., 2010; Thompson 
et al., 2013; Johnson and Moore, 2020). Central to spatial ability is mental rotation (MR)—the 
capacity to mentally manipulate spatial figures and accurately predict their appearance from 
different perspectives (Shepard and Metzler, 1971). Proficiency in MR enhances performance 
in geometry and overall math achievement (Frick, 2018; Young et al., 2018; Newcombe et al., 
2019), correlating with a higher likelihood of pursuing Science, Technology, Engineering, and 
Math (STEM) careers (Shea et al., 2001; Wai et al., 2009). In the United States, where only 26% 
of eighth graders reached proficiency in mathematics in 2022 National Assessment of 
Educational Progress (NAEP), bolstering spatial abilities is seen as crucial for global 
competitiveness in STEM (NAEP, 2023).

OPEN ACCESS

EDITED BY

Xiang Hu,  
Renmin University of China, China

REVIEWED BY

Yunxiao Chen,  
London School of Economics and Political 
Science, United Kingdom
Moleboheng Mokhele-Ramulumo,  
University of South Africa, South Africa

*CORRESPONDENCE

Xin Wei  
 xwei@digitalpromise.org

RECEIVED 26 April 2024
ACCEPTED 16 July 2024
PUBLISHED 05 August 2024

CITATION

Wei X, Zhang S and Zhang J (2024) Identifying 
student profiles in a digital mental rotation 
task: insights from the 2017 NAEP math 
assessment.
Front. Educ. 9:1423602.
doi: 10.3389/feduc.2024.1423602

COPYRIGHT

© 2024 Wei, Zhang and Zhang. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  05 August 2024
DOI  10.3389/feduc.2024.1423602

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2024.1423602&domain=pdf&date_stamp=2024-08-05
https://www.frontiersin.org/articles/10.3389/feduc.2024.1423602/full
https://www.frontiersin.org/articles/10.3389/feduc.2024.1423602/full
https://www.frontiersin.org/articles/10.3389/feduc.2024.1423602/full
https://www.frontiersin.org/articles/10.3389/feduc.2024.1423602/full
mailto:xwei@digitalpromise.org
https://doi.org/10.3389/feduc.2024.1423602
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2024.1423602


Wei et al.� 10.3389/feduc.2024.1423602

Frontiers in Education 02 frontiersin.org

Eighth grade is a transformative period for cognitive development, 
where abstract thinking, including spatial reasoning essential for 
advanced mathematics and science, becomes refined. Historically, 
U.S. education systems have not emphasized spatial abilities in 
curricula or assessments (Park et al., 2010). This oversight is more 
pronounced among underprivileged students, who often exhibit lower 
spatial skills, hindering their potential success in STEM fields 
(Gonthier, 2022). Recent educational shifts, recognizing the 
importance of spatial skills, have led to their integration into 
assessments like the 2017 digital NAEP. This assessment introduces 
universal design (UD) tools—such as color contrast adjustments, 
zoom functionalities, text-to-speech (TTS) options, digital 
scratchpads, equation editors, and calculators— that aid in evaluating 
spatial reasoning, providing a more inclusive and equitable 
testing environment.

The 2017 digital NAEP leverages advanced technology to gather 
detailed process data from a MR task, offering unprecedented insights 
into students’ problem-solving strategies. This study exploits these rich 
data to identify distinct MR strategy profiles among eighth graders, 
using cluster analysis to explore how students interact with digital 
tools and tasks. These profiles reveal diverse approaches to spatial 
tasks, underscoring the need for educational strategies that address 
varying cognitive styles.

Understanding these MR strategy profiles is crucial for tailoring 
educational practices and policies that support diverse learning needs. 
It informs the development of specific instructional strategies and 
teacher training programs aimed at enhancing spatial reasoning across 
diverse student groups. Ultimately, this research aims to influence 
curriculum development and educational policies to foster equitable 
and effective STEM education.

1.1 Theoretical framework

The theoretical underpinning of this study is grounded in 
cognitive psychology and Howard Gardner’s Multiple Intelligences 
Theory (Gardner, 1983), which identifies spatial intelligence as one of 
the several critical intelligences. This theory highlights the necessity 
of recognizing individual differences in spatial intelligence to 
understand the varied strategies students use in MR tasks. 
Emphasizing these differences enables educators to adopt more 
personalized teaching approaches, enhancing students’ learning 
outcomes in math and science.

Building on the theoretical framework that recognizes diverse 
cognitive strengths, we delve into the specific visualization strategies 
that students employ in MR tasks. Visualization plays a dual role in 
mathematical problem-solving, incorporating both internal and 
external processes.

1.2 Internal visualization

Visualization is crucial for mathematical problem-solving, 
encompassing both internal mental representations and external 
displays (Cohen and Hegarty, 2007). Internal visualization involves 
generating, manipulating, and transforming mental images to infer 
new information, a fundamental aspect of human intelligence 
essential for scientific discoveries and inventions (Hegarty, 2004). A 

seminal study by Shepard and Metzler (1971) on MR tasks illustrates 
the complexity of these cognitive processes, which involve visual 
imagery, mental representation, spatial transformation, and 
decision-making.

Research differentiates between individuals with high and low 
spatial abilities in their approach to MR tasks. Those with high spatial 
ability often use holistic strategies, swiftly alternating strategies based 
on object complexity, and exhibiting faster response times with 
unfamiliar objects (Bethell-Fox and Shepard, 1988; Wang and Carr, 
2014). Conversely, individuals with low spatial ability tend to employ 
piecemeal strategies, requiring more time for encoding and rotating 
objects (Mumaw et al., 1984; Khooshabeh et al., 2013). Brain imaging 
studies confirm these differences, showing varied brain activity in 
these groups during MR tasks (Logie et al., 2011).

1.3 External visualization and universal 
design tools

External visualization includes visual–spatial displays, both static 
(e.g., drawings, graphs, charts) and dynamic (e.g., animations), and 
plays a critical role in scientific and mathematical problem-solving 
(Cohen and Hegarty, 2007). These tools support internal visualization 
by helping individuals create accurate mental representations of 
spatial relationships, though they do not replace the need for internal 
visualization capabilities (Hegarty, 2004).

In MR tasks, external visualization could involve using pen and 
paper to sketch objects being mentally manipulated or employing 
physical models like blocks or toys. The advent of digital technology 
has significantly expanded these methods, introducing interactive 
environments that enhance understanding of complex spatial 
relationships. For instance, iPad apps allow third graders to rotate MR 
stimuli using touch controls, and virtual reality environments provide 
immersive experiences that aid comprehension (Zander et al., 2016; 
Zhou et al., 2022).

Integrating UD principles, these visualization tools make spatial 
tasks accessible and engaging for all students, including those with 
learning difficulties. They allow for flexible interaction modes—visual, 
auditory, tactile, and kinesthetic—which cater to a variety of learning 
preferences and needs (Rose et al., 2016).

1.4 Cognitive load and universal design in 
MR tasks

While external visualization tools assist in spatial understanding 
necessary for MR tasks, it is crucial to consider how these tools 
interact with cognitive load theories to optimize learning 
environments. Cognitive load theory provides a framework for 
managing the mental effort required during learning activities 
(Sweller, 1988). In this context, the use of UD tools in MR tasks 
enhances accessibility and reveals the strategies students employ. 
Specifically, digital pencils or elimination tools effectively streamline 
visual processing, simplifying how visual information is interpreted 
and managed. This simplification is crucial in reducing the extraneous 
cognitive load that often accompanies complex visual tasks, thereby 
minimizing distractions and unnecessary cognitive effort. 
Additionally, features like text-to-speech provide essential auditory 
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support, further aiding students who benefit from auditory learning 
cues. By reducing these cognitive burdens, such tools enable students 
to allocate more mental resources towards the core aspects of MR 
tasks—comprehending and manipulating spatial representations.

1.5 Existing approaches to understand MR 
strategies and their limitations

Identifying the adoption of strategies during MR tasks is 
inherently challenging. Traditional tests like the Vandenberg and Kuse 
Mental Rotations Tests and the German Cube Comparison Test only 
capture the final answers without revealing the cognitive steps leading 
to these responses. Researchers have employed four primary methods 
to uncover MR strategies. The most common method involves asking 
participants to report their strategies through surveys post-experiment 
(Khooshabeh et al., 2013; Wang and Carr, 2014). Another method is 
the think-aloud technique, where participants articulate their thought 
processes during the MR task (Taylor and Tenbrink, 2013). 
Eye-tracking technology analyzes eye movements to infer cognitive 
processing (Peters et al., 1995), while brain imaging studies locate 
active brain regions during MR tasks to identify engaged cognitive 
functions (Logie et al., 2011).

Each method, however, has its limitations. Surveys may suffer 
from response biases, leading to skewed or incomplete data. The 
think-aloud method is less effective with participants who are not 
verbally expressive or self-aware, potentially limiting the diversity of 
the study sample. Eye-tracking is resource-intensive and may exclude 
participants with physical limitations or discomfort, besides 
presenting challenges in data analysis due to its voluminous nature. 
Brain imaging requires costly, specialized equipment and expertise, 
restricting the scalability of research efforts.

1.6 Use process data to study MR strategies

Process data, or behavioral log data, offers a dynamic view of how 
students engage with MR tasks, contrasting with the static nature of 
traditional assessments. This approach not only fills a gap in existing 
research but also provides deeper insights into students’ cognitive 
strategies and problem-solving behaviors. Analyzing detailed 
interactions and timings helps uncover nuanced strategies, facilitating 
a more refined understanding of how students approach complex 
spatial problems.

Time on task correlates highly with a test-taker’s problem-solving 
process and performance, often following an inverted U-shape 
relationship (Goldhammer et al., 2014; Greiff et al., 2016). Examining 
the time to the first action in addition to the total time is also 
important because it measures the speed of problem-solving, reading 
the question, understanding the math question, and formulating the 
action plan before any actions are taken (Chen, 2020; Lundgren and 
Eklöf, 2020).

The observable actions from test-taking process data, such as test 
takers performing specific actions or utilizing UD tools, help infer 
aspects of a test taker’s problem-solving process and engagement. For 
instance, the digital scratchpad allows users to visually plot and 
manipulate data (Kwak and Gweon, 2019), which could aid in 
solidifying mental rotations and spatial reasoning. Similarly, TTS can 

help lessen the cognitive load by providing auditory reinforcements of 
visual information, which is particularly beneficial for students who 
struggle with visual–spatial tasks (Wei, 2024). NAEP usability study 
found UD tools reduce unnecessary cognitive strain, thereby allowing 
students to focus more on solving the problems presented (Way and 
Strain-Seymour, 2021).

Extending the analysis of process data to the realm of profiling, 
previous studies have shown that analyzing behavior sequences in 
terms of action patterns and time-on-task can help identify problem-
solving strategies. For instance, Teig et al. (2020) used process data 
from the 2015 PISA to identify three student interaction profiles that 
reflect their science inquiry performance. Song (2021) reported four 
problem-solving profiles: inactive, struggling, proficient, and adaptive, 
based on process data from the Norwegian PISA 2012.

To date, no studies have examined MR strategy profiles using 
process data. This study utilizes a parsimonious set of theoretically and 
empirically supported time and action features as well as performance 
to identify student profiles emergent in a MR task. By leveraging the 
rich, process-oriented data from the 2017 NAEP, we seek to delineate 
clear, actionable profiles that can inform both current educational 
practices and future research directions in spatial cognition.

1.7 Research questions

This study aimed to answer the following research questions:

	 1	 What are the unique student profiles of strategies employed to 
solve a MR problem?

	 2	 How do test-taking behavior, MR problem-solving accuracy, 
and general math achievement differ across these profiles?

	 3	 Are there differences in sociodemographic characteristics 
across these profiles?

2 Materials and methods

2.1 Data sources

The NAEP, a low-stakes assessment, evaluates student 
performance across various subjects, including mathematics, by 
employing a deeply stratified multistage cluster sampling technique. 
This approach ensures the representativeness of the selected schools 
and students from 6,500 schools, with a total of 144,900 students 
participating. For the students who were sampled to take NAEP math 
assessments, they engaged in two 30-min blocks of math assessments 
and a subsequent 15-min survey, all administered on tablets.

2.2 Study sample

The NAEP released restricted-use process data for two out of ten 
math item blocks from the 2017 assessment. This study analyzed the 
one block which has a larger sample size, involving 28,200 students, 
with the final analytical sample comprising 27,620 students. This 
group includes 1,530 students identified with learning disabilities, 150 
with autism, 540 with other disabilities, and 25,400 from general 
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education, all of whom worked on a MR item. Figure 1 shows the 
interface of the MR item. It is the 8th item on the test.

The restricted process data used in this study include response, 
process, and survey data. The response data recorded the students’ 
answers to each math item, while the process data documented the 
clicks, entries, and timestamps during students’ interactions with the 
test items. The survey data included demographic characteristics and 
responses to survey questions. This study utilized a rich dataset to 
analyze and compare time and action features during MR, MR accuracy, 
general math achievement, and student demographic characteristics.

2.3 Extract time and action features from 
process data

We extracted key time and action features based on an extensive 
literature review and expert review. Subject matter experts in cognitive 
science, math assessment, special education, and psychometrics 
collectively reviewed the MR item and process data to derive 
consensus-based categories of appropriate time and action features 
that measure the strategies used in MR.

2.4 Measures

2.4.1 Total time spent
The total time spent on the MR task variable is more complex than 

the commonly used “time on task,” as Goldhammer et al. (2014) defined, 
which only measures the time from task onset to task completion. In the 
NAEP math assessment, test takers can jump between items, including 
revisiting the same item multiple times. Therefore, the total time spent 
on the MR task is the cumulative time spent during each visit to the item 
across multiple attempts. This study uses the total time to measure a 
student’s engagement with the MR task as the sum of the time spent on 
initial attempts and subsequent revisits, measured in seconds.

2.4.2 Time to the first action
To calculate the time to first action, we measured the time in 

seconds from when a test-taker entered an item to the first logged 
action during their initial visit.

2.4.3 Number of visits
To assess the effort invested by each student in completing the MR 

task, we tallied the number of times a student visited the MR item, with 
visits lasting less than 3 s excluded. To differentiate between genuine 
problem-solving and repaid guessing, we followed the 3-s rule proposed 
by Kong et al. (2007). According to Kong et al. (2007), interactions with 
a math item that lasts less than 3 s are unlikely to involve significant 
cognitive engagement. This amount of time is insufficient for performing 
math operations. Such fleeting visits may be  due to human errors, 
navigation to another question, blind guessing, or system errors. Since 
the frequency of visits is moderately and significantly correlated with 
performance (Bezirhan et  al., 2021), this variable could help us 
distinguish between the MR strategies adopted by different students.

2.4.4 Number of times submitted answers
This variable tracks the total number of times an examinee submits 

an answer, including the initial attempt and subsequent revisions. This 
includes the initial answer and any changes made to the answer during 
the initial visit or revisits. For instance, if an examinee answers a 
question once without making any changes, the “number of times 
submitted answers” would be 1. However, if the examinee answers the 
question, then changes their answer, and later changes it back, the 
“number of times submitted answers” would be 3. Previous research 
suggests that high-ability examinees benefit from changing their 
answers, while low-ability examinees do not (McMorris et al., 1987).

2.4.5 UD tool use
The NAEP math test was administered on Microsoft Surface Pro 

tablets with an external keyboard, a stylus, and a pair of earbuds for 
audio. The equation editor and calculator are not available for this MR 
item. The study conducted a detailed analysis of the utilization of four 
most frequently used UD tools during MR tasks:

	 1	 Drawing Tool Usage: This feature tracked the number of times 
students used the drawing tool, accessed by clicking the 
scratchwork icon on the upper left of the screen. The use of the 
digital pencil allows students to draw directly on the screen, 
aiding in the rotation of objects, such as a triangle. Usage was 
measured by counting the total instances of pencil use across 
all task sessions.

	 2	 Eraser Utilization: This feature counted how often students 
erased their drawings or writings, reflecting adjustments or 
changes in strategy. It was quantified by the number of times 
the eraser tool was activated during the MR tasks.

	 3	 TTS Tool Utilization: This measured the number of times 
students engaged the TTS tool to have the math item read 
aloud. Activation involved clicking the TTS icon, usually 
located on the upper left of the screen, and was recorded by 
counting each use across sessions.

	 4	 Elimination of Answer Choices: This feature assessed the 
strategic elimination of answer choices by students, determined 
by the number of times the elimination icon next to each 
answer choice was clicked.

2.4.6 MR accuracy
This MR test item has a maximum score of 1 and a minimum 

score of 0. Incorrect responses are assigned a score of 0, and one 
correct answer is scored 1.

FIGURE 1

2017 NAEP 8th Grade Mental Rotation Math Item 8. Source: https://
nces.ed.gov/NationsReportCard/nqt/Search.
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2.4.7 General math achievement
This math test includes a total of 15 test items, including questions 

about fractions, lines, shapes and rotations, the product of two 
two-digit decimals, x- and y-intercepts, circle graphs, box plots, stem-
and-leaf plots, the diameter and circumference of circles, and the area 
of shapes. The total score, a summation of item-level scores across all 
15 test items with a maximum score of 25, is included in the NAEP 
dataset. The total score is a measure of a student’s general 
math achievement.

2.4.8 Student demographic characteristics
The demographic variables used in this study to describe the 

student sample included the age of the student in years at the time of 
testing, gender, race/ethnicity (coded as four dichotomous variables 
for African American, Hispanic, white, or other, which includes Asian, 
American Indian, Pacific Islander, or multiple races), disability 
category, and free or reduced-price lunch status.

2.5 Statistical analysis

2.5.1 Descriptive analysis
All analyses used R version 4.1.0 (R Core Team, 2021). We describe 

the time and action features extracted from the process data, student 
performance, and demographic characteristics in Table 1.

2.5.2 Cluster analysis
Using cluster analysis to identify student profiles has been well-

documented in the literature (Wei et al., 2014; Stenlund et al., 2018; 
Lundgren and Eklöf, 2020). K-means cluster analysis procedures in R 
(cluster package, Maechler et al., 2021) were used to identify groups 
of students with typical time and action features solving the MR task. 
Individuals were clustered based on nine variables: eight time and 
action features extracted from the NAEP process data and the MR 
accuracy extracted from the NAEP response data. General math 
achievement and student demographic characteristics were not 
included in the cluster analysis. The clustering was conducted based 
on the Euclidean distances computed from nine variables. 
Observations close to each other were assigned to the same cluster, 
whereas those far away were assigned to different clusters. We used R 
package “cluster” for cluster analysis, ensuring reproducibility through 
detailed documentation of software versions.

2.5.2.1 Preprocessing details
Eight time and action features were log-transformed. Log 

Transformation reduces the influence of extreme values or outliers, 
which can disproportionately affect the mean and standard deviation 
of the data, thereby influencing the distance calculations in K-means. 
Eight log-transformed features and the MC accuracy variable were 
then normalized to a mean zero and standard deviation one before the 
cluster analyses. Normalization ensures that each feature has equal 
importance, preventing features with larger scales from overpowering 
those with smaller scales in the clustering process.

Cluster determination was guided by the elbow plot and silhouette 
plot methods to ascertain the optimal number of clusters. Both plots 
are crucial in justifying the number of clusters chosen, enhancing the 
validity of our clustering approach by aligning statistical evidence with 
the interpretative clarity of the resulting clusters.

2.5.2.2 Elbow plot
The elbow plot method involves plotting the within-cluster sum 

of squared errors (WSS) against different numbers of clusters (k). This 
graph helps identify the most appropriate number of clusters by 
pinpointing where the WSS begins to level off, forming an “elbow” 
(Kaufman and Rousseeuw, 2009). This point suggests that adding 
more clusters does not significantly improve the model’s fit. For this 
study, the elbow was observed at k = 4 (Figure 2), indicating that four 
clusters provided a reasonable trade-off between complexity and 
explanatory power, without overly fragmenting the data.

2.5.2.3 Silhouette plot
Complementing the elbow plot, the silhouette plot assesses the 

quality of clustering by measuring how similar each point is to its own 
cluster compared to other clusters. A silhouette value ranges from −1 
to 1, where values closer to 1 indicate a clear distinction between 
clusters (Kaufman and Rousseeuw, 2009). Our analysis showed that at 
k = 4, the average silhouette score peaked, suggesting that the clusters 
are well separated and cohesive (Figure 3). This supported the decision 
to select four clusters, aligning with theoretical expectations and 
ensuring meaningful differentiation within the data.

2.5.2.4 Robustness check of cluster grouping
The sample was randomly divided into two equal halves, and 

separate cluster analyses were performed on each subset as well as on 
the entire sample. This approach involved several steps to verify the 
consistency and reliability of our findings:

	 1	 Descriptive Comparison: We computed basic statistics such as 
mean, median, and standard deviation for key variables within 
each cluster across the half-samples and the full sample. This 
step helped assess whether the central tendencies and 
variability of the clusters were preserved across different 
subsets of the data. Our descriptive statistics show that the 
clusters are very similar across half-samples and the full 
sample, indicating consistent cluster characteristics regardless 
of the sample subset.

	 2	 Visual Analysis: Scatter plots were utilized to visualize and 
compare the clustering configurations between each half-
sample and the entire dataset. This visual inspection helped 
identify any discrepancies or anomalies in cluster formations 
across the splits. The plots revealed no significant visual 
discrepancies, suggesting that the clusters maintained their 
integrity across different data splits.

	 3	 Quantitative Validation with ARI: The Adjusted Rand Index 
(ARI) was calculated to quantitatively measure the similarity 
between the cluster results obtained from each half and those 
from the full dataset. ARI values range from −1 to 1, where 1 
denotes perfect agreement between two clusterings, 0 indicates 
no better agreement than chance, and values below 0 suggest 
less agreement than expected by chance. A value close to 0 
would imply that the clusterings do not align better than 
random. To ensure the robustness and consistency of our 
clustering results, the dataset was randomly divided into two 
halves, and this 50/50 split process was repeated 100 times. The 
analyses of these 100 iterations yielded an average ARI value of 
0.78, indicating a high level of similarity and affirming the 
reliability of our clustering approach.
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2.5.2.5 Missing data handling
In our study, the missing data rates for the nine variables utilized 

in the cluster analysis were notably low, at 1%, and for other variables, 
at 3%. The primary cause of missingness in the time and action 
feature data stemmed from system anomalies that occasionally 
disrupted the data collection process. These incidents impacted only 
a very small proportion of subjects. Consequently, we employed a 
complete case analysis approach, which included only those students 
who had no missing data across all nine variables used in the 
cluster analysis.

2.5.3 Ethical considerations
Access to the restricted-use 2017 NAEP process data was secured 

through a comprehensive license application process overseen by the 
National Center for Education Statistics (NCES). The application 
included a detailed proposal that outlined our research objectives and 
the necessity of restricted data for these aims, a comprehensive data 
security plan, signed nondisclosure agreements by all team members, 
and mandatory annual training. Once approved, our team adhered to 
strict guidelines to ensure student privacy and data confidentiality, 
with NCES conducting regular compliance audits. Our protocols, 
under constant scrutiny, included operating within secured data 
environments and restricting data access exclusively to authorized 

personnel, thus protecting the sensitive demographic information of 
the students.

2.5.4 T-test to detect group differences
Statistical assumptions, including the assumption of normality 

required for t-tests, were thoroughly examined. To analyze variations 
among students in different clusters based on time, action, 
performance, and demographic characteristics, we  employed 
independent sample t-tests.

Specifically, for the nine variables included in the cluster 
analysis, the t-tests were utilized to support interpretations of the 
clusters rather than for formal hypothesis testing. This approach 
underscores that our primary intent was interpretative rather 
than confirmatory.

For variables not involved in the cluster analysis, such as general 
math achievement (total score) and demographic variables, the 
application of t-tests serves to independently validate or explore 
associations with the clusters identified. This ensures that our findings 
are robust and provide meaningful insights into how these external 
variables correlate with the cluster patterns observed.

To rigorously control type I error rates, adjustments for multiple 
comparisons were made using the Bonferroni method. Specifically, 
the alpha value was set to 0.0083 to account for six pairwise 

TABLE 1  Sample characteristics.

Variables Scale Mean SD Min Max Skewness Kurtosis

Time features (log)

Total time Seconds 3.96 0.68 0.23 7.02 −0.65 4.57

Time to first action Seconds 3.48 0.82 0.44 6.46 −0.77 3.78

Action features (log)

Number of times drew Counts 0.16 0.64 0 4.92 4.26 20.78

Number of times eliminated choices Counts 0.28 0.61 0 5.38 2.07 6.31

Number of times used TTS Counts 0.09 0.42 0 5.7 4.98 29.53

Number of times erased answers Counts 0.04 0.28 0 4.43 8.03 74.32

Number of visits Counts 0.8 0.22 0.69 2.71 2.14 7.67

Number of answers submitted Counts 0.81 0.29 0 5.55 3.36 23.53

Performance

MR accuracy 0–1 0.37 0.48 0 1 0.56 1.31

General math achievement Continuous 8.86 4.69 0 25 0.73 3.15

Demographic characteristics

Age Continuous 14.41 0.54 12.00 18.00 0.81 2.96

Male 0–1 0.51 0.5 0 1 −0.03 1

African American 0–1 0.16 0.37 0 1 1.81 4.28

Hispanic 0–1 0.21 0.41 0 1 1.44 3.07

White 0–1 0.52 0.5 0 1 −0.09 1.01

Other 0–1 0.10 0.31 0 1 2.58 7.65

Students with learning disabilities 0–1 0.05 0.23 0 1 3.91 16.32

Students with Autism 0–1 0.01 0.07 0 1 13.45 181.84

Students with other disabilities 0–1 0.04 0.2 0 1 4.66 22.72

Free or reduced lunch status 0–1 0.48 0.5 0 1 0.07 1.01

The sample size is 27,600. SD, standard deviations; Min, minimum; Max, maximum.
Source: U.S. Department of Education, National Center for Education Statistics, “Response Process Data from the NAEP 2017 Grade 8 Math Assessment.”
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comparisons per variable. Details of the significance levels are 
provided in the last column of Table 2.

3 Results

3.1 Four distinct student profiles in a MR 
task solving

Our analysis utilized both the elbow plot and the silhouette 
plot to determine the optimal number of clusters for classifying 
student strategies in mental rotation tasks. While the elbow plot 
(Figure 2) did not show a distinct elbow, a marked decrease in the 
WSS was noted at four clusters, indicating a substantial reduction 
in variance within each cluster beyond this point. Concurrently, 
the silhouette plot (Figure  3) demonstrated that the average 
silhouette widths reached their peak at four clusters, suggesting 
that this number of clusters best captured the distinct groupings 
within the data. These statistical indicators, coupled with 
theoretical expectations about diverse learning strategies in 
educational psychology, supported the selection of a four-
cluster solution.

The detailed examination of the nine variables involved in the 
cluster analysis identified distinct profiles, each with unique 

approaches to the MR task. These profiles—cognitive offloaders, 
internal visualizers, external visualizers, and non-triers—constituted 
15, 55, 5, and 25% of the sample, respectively. Their specific patterns 
in terms of time spent on tasks, action frequency, MR task 
performance, and demographic characteristics are summarized in 
Table 2 and depicted in Figures 4–6.

Cognitive offloaders were characterized by their proactive strategy 
of eliminating answer choices, with an average logarithm of number 
of eliminations being 1.56, significantly higher than the near-zero 
logged attempts by internal visualizers and non-triers and only 0.47 
by external visualizers. This approach correlated with the highest MR 
task accuracy of 45%, significantly surpassing internal visualizers at 
38%, external visualizers at 36%, and non-triers at 29%. Moreover, 
cognitive offloaders demonstrated superior general mathematics 
achievement, scoring an average of 10.23, which was significantly 
higher than other profiles—0.26, 0.31, and 0.51 standard deviations 
above internal visualizers, external visualizers, and non-triers, 
respectively. This efficiency in filtering incorrect options likely confers 
academic advantages, enhancing performance in standardized 
assessments and classroom learning.

Internal visualizers, in contrast, were slow to act, taking the 
longest before their first action but spending the second shortest total 
time. They utilized UD tools minimally, recorded the fewest visits, and 
submitted the fewest answers, yet still managed the second-best 

FIGURE 2

Elbow plot illustrating within-cluster sum of squared errors by number of clusters. This graph displays the decline in within-cluster sum of squared 
errors as the number of clusters increases, aiding in the selection of an optimal cluster count based on the “elbow” method. Source: U.S. Department 
of Education, National Center for Education Statistics, “Response Process Data from the NAEP 2017 Grade 8 Math Assessment.”
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performance among the profiles. Their strategy suggests a deep, 
reflective engagement with tasks rather than frequent tool interaction.

External visualizers heavily employed digital drawing and erasing 
tools, significantly more than their peers, and also used text-to-speech 
tools more frequently than internal visualizers and cognitive 
offloaders. They spent the most time on tasks, visited items most 
frequently, and frequently revised their answers, culminating in the 
third-highest performance level.

Non-triers engaged minimally, spending the least amount of time 
and seldom using the available tools, which resulted in the lowest 
performance in both the MR tasks and the general mathematics test. 
Their minimal engagement reflects in their significantly lower 
achievement levels compared to other groups.

3.2 Demographic differences by profile

Significant demographic variations were observed across profiles 
(Table 2 and Figure 7). The non-triers had a higher proportion of 
students with learning disabilities than the other three groups. 
Cognitive offloaders had notably fewer low-SES or African American 
students than the other three groups. Gender differences were also 
prominent, with the non-triers having the highest proportion of male 
students, and the external visualizers having the least.

4 Discussion

The 2017 NAEP math digital assessment process data unveils a 
variety of strategies in mental rotation tasks, highlighting four distinct 
profiles: cognitive offloaders, internal visualizers, external visualizers, 
and non-triers, each exhibiting unique behaviors and 
performance metrics.

The MR task is very cognitively demanding. Cognitive offloaders 
effectively managed task demands through strategic elimination of 
options, a practice supported by cognitive load theory which 
emphasizes the importance of reducing working memory load 
(Sweller, 1988; Risko and Gilbert, 2016), contributing to the best MR 
performance. Cognitive offloading is “the use of physical action to 
alter the information processing requirements of a task to reduce 
cognitive demand” (Risko and Gilbert, 2016, p. 677). Offloading can 
avoid exceeding the capacity limits of working memory or visual 
perception (Risko and Gilbert, 2016). In this multiple-choice MR task, 
holding all five answer choices in working memory could exceed 
capacity limits. Eliminating the wrong choice make it easier for 
students to focus on the remaining choices and ultimately choose the 
correct answer. This elimination process is also known as “weeding” 
according to the cognitive offloading theory, and it involves 
eliminating extraneous material that could distract the examinee from 
the task at hand (Mayer and Moreno, 2003). Studies have shown that 

FIGURE 3

Silhouette plot for determining optimal cluster number. This silhouette plot displays the coherence within clusters at varying numbers of clusters k 
from 2 to 10. A higher silhouette score indicates better-defined clusters. The plot highlights a peak at k = 4, suggesting optimal cluster separation at 
this configuration, thus guiding the selection of four clusters for analysis. Source: U.S. Department of Education, National Center for Education 
Statistics, “Response Process Data from the NAEP 2017 Grade 8 Math Assessment.”

https://doi.org/10.3389/feduc.2024.1423602
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Wei et al.� 10.3389/feduc.2024.1423602

Frontiers in Education 09 frontiersin.org

this load-reducing strategy is associated with improved performance 
in spatial reasoning (Chu and Kita, 2011). Therefore, it is possible that 
cognitive offloading is the reason why cognitive offloaders performed 
the best on this MR task. However, the underrepresentation of 
disadvantaged students, such as those with learning disabilities, 
African American students, and students from low-SES families, in 
this group suggests the need for targeted interventions to broaden the 
benefits of cognitive offloading strategies.

Internal visualizers tended to take the longest time before taking 
action but the shortest time from their first action to task completion. 
This suggests that these students spent considerable time reading and 
understanding the question, mentally representing and rotating the 
object, and comparing it to the target before taking action. 
Additionally, 83.6% of internal visualizers’ first action was to select an 
answer, indicating they had a clear mental representation of the MR 
task. Once they completed their thought process, they quickly chose 
the final solution. Their pre-action mental preparation and efficient 

task execution likely reflects high mental rotation abilities, suggesting 
that minimal intervention is likely required for this group.

External visualizers’ extensive use of digital tools highlights a 
reliance on visual aids to support problem-solving, which may indicate 
challenges in inherent spatial abilities. Although digital tools could 
have helped reduce the working memory load and help with spatial 
reasoning, these strategies may not fully compensate for their lower 
spatial ability. Therefore, their overall performance was not on par 
with cognitive offloaders or internal visualizers, pointing to a need for 
enhancing fundamental spatial processing skills through 
targeted interventions.

Non-triers present a critical concern due to their minimal 
engagement and poor performance, pointing to a need for 
motivational and educational interventions that are engaging and 
relevant. Alarmingly, the non-trier group has a high concentration of 
male, African American, and low-SES students. These demographic 
trends may reflect structural inequality issues such as unequal access 

TABLE 2  Characteristics of students, by profiles.

Characteristic Profile 1: 
cognitive 
offloader 

(n =  4,100; 
14.9%)

Profile 2: 
internal 

visualizer 
(n =  15,140; 

54.9%)

Profile 3: 
external 

visualizer 
(n =  1,510; 

5.5%)

Profile 4: the 
non-trier 

(n =  6,850; 
24.8%)

Significant 
differences 
(p <  0.0083)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Time features (log)

Total timea 4.23 (0.45) 4.14 (0.42) 4.73 (0.47) 3.21 (0.68) 3 > 2 > 1 > 4

Time to first actiona 3.49 (0.64) 3.94 (0.45) 3.07 (0.8) 2.53 (0.68) 1 > 2 > 3 > 4

Action features (log)

Number of times drewa 0.03 (0.2) 0.01 (0.09) 2.65 (0.76) 0.01 (0.12) 3 > 2 > 4 = 1

Number of times eliminated choicesa 1.56 (0.43) 0.01 (0.09) 0.47 (0.75) 0.05 (0.23) 2 > 3 > 4 > 1

Number of times used TTSa 0.09 (0.43) 0.04 (0.27) 0.21 (0.59) 0.19 (0.59) 3 = 4 > 2 > 1

Number of times erased answersa 0.01 (0.1) 0 (0.07) 0.69 (0.94) 0 (0.07) 3 > 2 = 1 = 4

Number of visitsa 0.83 (0.25) 0.79 (0.2) 0.83 (0.25) 0.79 (0.21) 3 = 2 > 4 > 1

Number of answers submitteda 0.84 (0.32) 0.8 (0.26) 0.84 (0.35) 0.82 (0.29) 2 = 3 > 4 > 1

Performance

MR accuracya 0.45 (0.5) 0.38 (0.48) 0.36 (0.48) 0.29 (0.45) 2 > 1 = 3 > 4

General math achievement 10.23 (4.74) 9.03 (4.49) 8.84 (4.38) 7.94 (4.88) 2 > 1 = 3 > 4

Demographic characteristics

Age 14.39 (0.54) 14.41 (0.53) 14.37 (0.5) 14.42 (0.56) 1 = 2 = 3 = 4

Male 0.45 (0.5) 0.5 (0.5) 0.33 (0.47) 0.56 (0.5) 4 > 1 > 2 > 3

African American 0.14 (0.34) 0.16 (0.37) 0.17 (0.38) 0.18 (0.38) 4 = 3 = 1 > 2

Hispanic 0.22 (0.41) 0.21 (0.41) 0.22 (0.41) 0.2 (0.4) 1 = 2 = 3 = 4

White 0.54 (0.5) 0.52 (0.5) 0.53 (0.5) 0.52 (0.5) 1 = 2 = 3 = 4

Other 0.11 (0.31) 0.11 (0.31) 0.08 (0.27) 0.1 (0.3) 1 = 2 = 4 > 3

Students with learning disabilities 0.04 (0.2) 0.05 (0.21) 0.06 (0.23) 0.08 (0.28) 4 > 3 = 1 = 2

Students with Autism 0 (0.06) 0.01 (0.07) 0 (0.05) 0.01 (0.08) 1 = 2 = 3 = 4

Students with other disabilities 0.03 (0.18) 0.03 (0.18) 0.04 (0.21) 0.06 (0.23) 1 = 2 = 3 = 4

Free or reduced lunch status 0.44 (0.50) 0.47 (0.5) 0.49 (0.5) 0.52 (0.5) 4 = 3 = 1 > 2

aThis variable was included in the cluster analysis.  
Bonferroni adjustment was used by setting the alpha value to 0.0083 because 6 pairwise comparisons were conducted for each variable. = indicates no statistically significant difference; > 
or < indicate statistically significant difference at alpha < 0.0083.
Source: U.S. Department of Education, National Center for Education Statistics, “Response Process Data from the NAEP 2017 Grade 8 Math Assessment.”
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to quality educational resources, differing cultural attitudes towards 
education, and varying levels of parental or community support. To 
combat these inequities, targeted interventions are essential. These 
could include programs designed to increase engagement among 
underrepresented groups, policies aimed at equalizing access to 
educational technologies and resources, and curricular adjustments 
to better accommodate diverse learning needs. Such strategic 
initiatives are crucial to dismantling barriers and fostering an 
educational environment that supports all students equitably, 
promoting inclusivity and fairness in educational outcomes.

The study’s findings reinforce Howard Gardner’s Multiple 
Intelligences Theory, particularly the facet of spatial intelligence. 
Gardner posits that individuals possess distinct types of intelligence, 
including spatial intelligence, which significantly influences their 
ability to manipulate and visualize spatial information effectively 
(Gardner, 1983). The identification of different student profiles, such 
as cognitive offloaders and internal visualizers, aligns with this theory, 
suggesting that these students exhibit strong spatial intelligence. 
Understanding these MR profiles not only deepens our comprehension 
of cognitive processes but also highlights the necessity of designing 
educational practices that cater to the diverse cognitive strengths of 
students. This approach could help maximize each student’s learning 
potential, advocating for educational strategies that recognize and 
nurture multiple intelligences in the classroom.

Digital tools play a pivotal role in facilitating spatial reasoning, a 
concept that is deeply rooted in the universal design for learning 
framework which emphasizes the importance of multiple 

presentations and supports in learning environments. These tools, 
such as digital scratchpads and visualization software, provide tangible 
aids for students to manipulate spatial information dynamically and 
intuitively. By externalizing complex spatial manipulations, digital 
tools help reduce cognitive load, allowing students to allocate more 
mental resources to understanding and solving spatial problems. This 
supports cognitive theories that suggest external representations can 
enhance the internal cognitive processes of students by providing 
visual and interactive experiences that are otherwise challenging to 
achieve. The effective integration of these tools into educational 
settings can, therefore, significantly bolster students’ spatial reasoning 
skills, aligning with educational objectives that aim to enhance 
cognitive competencies across diverse learning profiles.

5 Limitations

This study, while comprehensive, has its limitations. The lack of 
data on students’ actual drawings and notes on digital devices restricts 
our understanding of how these tools were specifically employed 
during the tasks. Moreover, the observational nature of the process 
data limits our ability to establish causality definitively. We can infer 
the strategies and behaviors but not their direct effects on outcomes. 
Future research should include more detailed data collection and 
possibly experimental or longitudinal designs to determine the 
causality and assess the long-term impacts of these strategies on 
learning outcomes. Another limitation is the lack of focus on how 

FIGURE 4

Mean and standard deviations of six action features across four student profiles. This figure presents the means and standard deviations of logged 
action features for four student profiles identified through cluster analysis. It highlights significant behavioral differences across the profiles during the 
MR task, such as the extensive use of drawing tools by External Visualizers and the frequent elimination of answer choices by cognitive offloaders. 
Such distinctions underscore the varied strategies employed by students to manage the task’s cognitive demands. Source: U.S. Department of 
Education, National Center for Education Statistics, “Response Process Data from the NAEP 2017 Grade 8 Math Assessment.”
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students’ understanding of specific mathematical terms impacts MR 
task performance, which should be explored in future studies. Finally, 
this study conducted complete case cluster analysis because the low 
missing data rates. However, this approach did not address the 
potential biases introduced by excluding cases with missing data, 
which could affect the generalizability of the findings. Further research 
might explore methods for handling missing data to assess whether 
the exclusion of incomplete cases significantly impacts the results.

6 Implications

Despite the limitations of our study, the insights garnered 
significantly enhance our understanding of mental rotation strategies 
within the context of digital assessments. By delineating student 
profiles based on test-taking behavior and performance, we underscore 
the necessity of bespoke educational interventions tailored to the 
distinct needs of diverse learners.

Tailored Educational Interventions: It is imperative to devise 
specific interventions that cater to each identified student profile. For 
instance, cognitive offloaders could benefit from structured problem-
solving techniques integrated within the standard curriculum to 
bolster their strategic skills. Internal visualizers might be aided by 
strategies that hasten their initial decision-making without 
compromising accuracy. External visualizers could improve with 
targeted practice designed to bolster their internal visualization skills, 
thus reducing dependency on digital tools. For non-triers, creating 

engaging and relevant learning experiences, possibly through 
gamification or real-world applications, could significantly enhance 
motivation and participation. Moreover, universally teaching effective 
cognitive offloading strategies, digital literacy, and internal 
visualization skills across all profiles can raise overall 
MR competencies.

Education Equity and Resource Allocation: This study also 
highlights the crucial need for educational equity. We advocate for 
policy changes at various administrative levels to ensure all 
students have access to resources that develop spatial reasoning 
skills. This includes advocating for integration of spatial reasoning 
in curricula and securing funding for initiatives that offer spatial 
skills training, particularly targeting underrepresented groups. 
Additionally, ensuring that digital literacy and comprehensive 
training in the use of educational technologies are embedded in 
school curricula could help bridge the current achievement gaps 
observed in STEM fields.

Professional Development and Training: There is a pronounced 
need for professional development that prepares educators to 
recognize and nurture various cognitive styles associated with MR 
tasks. Training programs should include comprehensive modules on 
spatial reasoning, cognitive offloading, and effective use of digital 
tools, complemented by approaches for engaging students who are less 
naturally inclined towards these tasks. Additionally, integrating digital 
literacy and culturally responsive teaching practices into teacher 
training programs can significantly enhance educators’ ability to 
support diverse learners.

FIGURE 5

Mean and standard deviations of time spent and initial action time across four student profiles. This figure displays the mean and standard deviations of 
two logged time variables: total time and time to first action, categorized by student profiles identified through cluster analysis. It highlights that 
external visualizers typically spend the most total time on tasks, whereas internal visualizers take the longest to initiate their first action. This distinction 
underscores the differing strategic approaches to mental rotation tasks among the profiles. The error bars represent standard deviations, indicating 
variability within each group. Source: U.S. Department of Education, National Center for Education Statistics, “Response Process Data from the 
NAEP 2017 Grade 8 Math Assessment.”
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FIGURE 6

Mean and standard deviations of general math achievement across four student profiles. This figure displays the mean and standard deviations of 
general math achievement scores for each of the four student profiles identified by the cluster analysis. The data highlights that cognitive offloaders, 
on average, score higher compared to other profiles, which aligns with their strategic elimination of incorrect choices. The error bars represent 
standard deviations, indicating variability within each group. Source: U.S. Department of Education, National Center for Education Statistics, “Response 
Process Data from the NAEP 2017 Grade 8 Math Assessment.”

FIGURE 7

Mental rotation accuracy and demographic characteristics across four student profiles. This figure illustrates the differences in mental rotation (MR) 
accuracy and various demographic characteristics across four student profiles. Each bar represents the proportion of students within a particular 
profile, showing either MR accuracy or demographic characteristics such as gender, ethnicity, presence of learning disabilities, or low socioeconomic 
status. Source: U.S. Department of Education, National Center for Education Statistics, “Response Process Data from the NAEP 2017 Grade 8 Math 
Assessment.”
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Innovative Learning Platforms: The integration of digital learning 
platforms that use adaptive learning technologies and AI-driven tutoring 
systems can provide personalized learning experiences that accommodate 
diverse learning strategies. These platforms should also be designed to 
collect and analyze process data to offer real-time feedback, helping 
students understand and utilize various cognitive strategies effectively.

Longitudinal and Collaborative Research: To truly gauge the long-
term impacts of spatial reasoning interventions, sustained longitudinal 
studies are essential. These studies should explore how improvements in 
spatial reasoning influence educational outcomes and career trajectories 
in STEM fields. Collaborative efforts between academia, educational 
authorities, and policy makers will be  crucial in evaluating the 
effectiveness of these interventions and expanding successful practices.

By addressing these implications and extending upon our 
findings, subsequent research and educational methodologies can 
more effectively equip students with the necessary skills to excel in 
STEM disciplines, thereby fostering a more inclusive and competent 
future workforce.
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