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In this article, we explore the transformative impact of advanced, parameter-rich

Large Language Models (LLMs) on the production of instructional materials in

higher education, with a focus on the automated generation of both formative

and summative assessments for learners in the field of mathematics. We

introduce a novel LLM-driven process and application, called ItemForge, tailored

specifically for the automatic generation of e-assessment items in mathematics.

The approach is thoroughly aligned with the levels and hierarchy of cognitive

learning objectives as developed by Anderson and Krathwohl, and takes specific

mathematical concepts from the considered courses into consideration. The

quality of the generated free-text items, along with their corresponding answers

(sample solutions), as well as their appropriateness to the designated cognitive

level and subject matter, were evaluated in a small-scale study. In this study,

three mathematical experts reviewed a total of 240 generated items, providing

a comprehensive analysis of their e�ectiveness and relevance. Our findings

demonstrate that the tool is proficient in producing high-quality items that align

with the chosen concepts and targeted cognitive levels, indicating its potential

suitability for educational purposes. However, it was observed that the provided

answers (sample solutions) occasionally exhibited inaccuracies or were not

entirely complete, signalling a necessity for additional refinement of the tool’s

processes.

KEYWORDS

large language models, e-assessment, mathematical item generation, higher education

mathematics, generative pretrained transformer, artificial intelligence, educational

technologies, competence-orientation

1 Introduction

Recent advancements in Artifical Intelligence (AI) and Natural Language

Processing have substantially impacted education and personalized learning

(Kasneci et al., 2023), particularly through the use of LLMs to design and

generate educational content. LLMs offer the potential to scalable generate

tailored, high-quality, and challenging materials that align with modern

pedagogical approaches, like constructive alignment (Biggs, 1996), responding to
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diverse learning needs (Das et al., 2023; Laverghetta Jr and Licato,

2023; Kumar et al., 2023). In response to contemporary challenges

such as a scarcity of specialized personnel, limited time, and

general resource constraints, LLMs may support educators and

respective institutions in developing versatile and adaptive content,

like assessmentmaterials, with the simultaneous potential to elevate

their quality and enhance the educational experience (Kasneci et al.,

2023). By providing tailored, pertinent, and challenging content,

it is possible to foster the development of critical, scientific and

entrepreneurial skills, essential for sustainable lifelong learning in

a society. However, these technical advancements also present a

dual-edged scenario, offering both opportunities and challenges

regarding the content’s quality and pertinence due to missing LLMs

domain skills and their tendency to hallucinate1 (Kasneci et al.,

2023; Zhai and Nehm, 2023).

The present article examines the appraisal of LLM generated

competency-oriented mathematical assessment items2 for

formative and summative purposes. The overarching purpose of

this work is to estimate the limitation to which the technology

is suitable for the precise creation of high-quality assessment

items that correspond to the Intended Learning Outcomes (ILOs)

of respective courses, and to which degree educators might be

supportable or relievable in the process. Benefits are expected to

be time savings and the precise generation of high-quality items

that correspond to the ILOs of respective courses. The temporally

equalised and individual generation of items (of sufficient quality)

may also benefit learners, aligning with personalized learning

situations, individual needs or based on desired outcomes,

utilizable through adaptive learning systems (Sok and Heng, 2024;

Zhai and Nehm, 2023).

From a procedural perspective, the generation of mathematical

items through LLMs was predicated on a high-quality corpus

of mathematical literature, encompassing higher-education

textbooks, research articles, and academic lecture notes of a

bachelor grade’s university course. This corpus was systematically

encoded into a vector representation and stored within a vector-

database, used to direct the LLM prompting. Two LLMs were

facilitated: GPT-3.5 for extracting relevant data pertaining to

distinct mathematical concepts, which were thereafter transformed

into comprehensible items by GPT-4. Thus, we built upon

a Retrieval Augmented Generation approach, drawing on

Multiple Agent and Chain of Thought prompting strategies, and

implemented ItemForge, that utilizes the LLM capabilities in a

directed and reliable way. Through this approach, item creation

skills can be examined more precisely, which significantly increases

result validity compared to frequently observed scenarios with

ChatGPT (Zhai, 2023; Sok and Heng, 2024; Lee, 2024).

The evaluation of the generated items was conducted by

experienced higher-education mathematicians. They audited 240

Abbreviations: AI, Artifical Intelligence; FAISS, Facebook AI Similarity Search;

ILO, Intended Learning Outcome; LLM, Large Language Model.

1 The LLMs’ ability to present fact-like statements containing false or

misleading information.

2 A specific task, question, or activity designed not only to evaluate but also

to provide formative feedback on an individual’s knowledge, skills, or abilities

in a particular subject or area of study.

generated items against multiple criteria: alignment to the

mathematical concept (or topic), correctness and completeness

of item tasks, and validity and completeness of corresponding

sample solutions. Items were also rated with levels from Anderson

& Krathwohl’s taxonomy of learning objectives (Anderson and

Krathwohl, 2001), allowing to report on the LLMs capabilities

to generate items targeting specific cognitive processes and

knowledge levels. These criteria enable to delineate the strengths

and weaknesses of the generated items and thus approach, thereby

yielding constructive insights into LLM item generation skills,

usable for progressive refinement of AI-driven educational tools.

The findings from this evaluation enhance the comprehension

of harnessing the potential of LLMs within educational contexts

for the generation of high-quality and targeted learning resources.

Additionally, they open the opportunity for founded dialogues

regarding the prospective incorporation of AI within educational

institutions and the imperative need for balance between

automated processes and human expertise, as well as shared effort

in the development of educational content. Such insights are pivotal

for elaborating the function of AI within educational context,

utilizing its potential, reducing the resource load on educators and

enhancing the contents quality.

This article begins with a characterization of our procedural

approach for item generation and a description of the developed

tool—ItemForge—in Section 2, before characterizing the executed

study in Section 3. The outcomes thereof are discussed as of

Section 3.2, including an expert reviews, before concluding on the

subject with Section 5. Additionally, an overview of related work,

covering recent advancements in the field, and a discussion on

study limitations is given in Section 4.

2 Framework for automated
generation of mathematics
assessment items

The manual creation of high-quality mathematical problems

and sample solutions is a laborious task that demands expertise

from professionals in mathematical education. Generative AI

tools, such as ChatGPT, have impressively shown potential in

aiding the creation of mathematical problems, yet frequently yield

poor or inappropriate results. Many studies demonstrated the

potential to fine-tune LLMs, either through adjustments to learned

parameters or via strategic prompting and focusing on contextual

information, with impressive improvements in addressing the

targeted issue. Thus, LLMs might be capable of generating high-

quality mathematical items and the following section describes

our prompting strategy and approach to contextual information,

developed with GPT-4.

2.1 LLM-based mathematics item
generator—ItemForge

A Python-based web application, named ItemForge, was

developed to create competence-oriented mathematics items

through an iterative process, utilizing mathematical concepts,
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retrieved concept summaries, retrieved ideal student knowledge,

and an instructional description of the cognitive process- and

knowledge dimensions (Anderson and Krathwohl, 2001)3. This

tool serves as a resource for instructors and aids in generating

learning materials and assessment items. ItemForge is built with

the Streamlit4 Python framework for its visual interface, the

LangChain5 framework for programmatic utilization of LLMs, and

the Facebook AI Similarity Search (FAISS)6 library.

To create items using ItemForge, users need to choose from

a list of provided mathematical concepts (or topics), which were

extracted from a bachelor grade’s mathematical university course,

called Mathematics for Computer Scientists I—Fundamentals,

Linear Algebra, Analysis, and Differential Calculus (translated

from German) the proof of concept was built for. Based on

the chosen concept, a matching knowledge text is generated

through information retrieval and summarization (see section 2.2

for an explanation on the available hyperparameters), based on

extensive higher-education textbooks for the respective course. The

retrieved knowledge text is used as a basis for concept-related item

generation by the employed LLM and should be checked by the

user to not contain any mistakes and to be relevant (see left half

of Figure 1). After a successful review of the generated knowledge

text, users can proceed to generate concept-related items either for

a selected taxonomy level (a specific process- and knowledge level

from these dimensions), or for all 24 taxonomy levels. Depending

on the chosen and reviewed options (concept, knowledge text,

single or all taxonomy levels), a LLM prompt is dynamically

constructed and inherited by a LangChain chain, which is lastly

issued against the chosen LLM to generate a set of one to 24 items,

displayed to the user on completion.

In the instructional prompt, already containing the mentioned

options from above, there is a requirement to formulate a

mathematical item corresponding to a specific concept and

taxonomy level, accompanied by guidelines and rules for the

educational design of these items. These encompass a contextual

background specifying the target audience and purpose of the

items, along with a concise summary of the anticipated learner

knowledge extracted from the course’s lecture notes. Furthermore,

the instructional prompt entails a mathematically framed

and instructional description of taxonomical dimensions,

as outlined in Section 2.3, which all were aligned with

educationalist experts.

A Langchaing JSON OutputParser is utilized to convert

the response results of the Chain into a specific Python

Class format for automated response processing. In addition

to translation and matching logic, the OutputParser includes

a response format specification in the prompt, requiring the

LLM to adhere to the specified JSON format when generating

the requested item7. The resulting item(s) are presented to the

3 Containing six process- and four knowledge levels.

4 Streamlit Framework Homepage: https://streamlit.io/.

5 LangChain Framework Homepage: https://www.langchain.com/.

6 Facebook AI Similarity Search Documentation: https://ai.meta.com/

tools/faiss/.

7 Which is a OpenAI supported functionality, also supported by other LLM

providers.

user with a sample solution and can be saved as a JSON file

for external processing. In addition to this main LLM prompt

to generate items, users got the possibility to use additional

prepared Chains and prompts to automate error checks and

corrections for items or adjust the perceived difficulty level

of the generated item(s). The full workflow is depicted with

Figure 1.

Thus, the applied LLM prompting includes generated

knowledge (Liu et al., 2022) to execute a Retrieval Augmented

Generation (RAG) (Lewis et al., 2020) chain, resulting in a fine-

tuned Zero Shot Chain-of-Thought prompting approach (Wei et al.,

2022a; Kojima et al., 2022), which incorporates a prompt template

and injection of specially prepared knowledge (Martino et al.,

2023), augmented by a simplified Multiple-Agent approach (Du

et al., 2024). The highest-level prompt template is depicted within

Listing 1.

Listing 1 Prompt for generating competency-oriented and

concept-related mathematics items. Variables are represented with {...}.

Cre a t e a math e x e r c i s e on th e ma thema t i c a l

concep t { concep t } r e p r e s e n t i n g th e p r o c e s s

d imens ion { pd } and the knowledge dimens ion

{ kd } .

### I n s t r u c t i o n s ###

1 . The i t ems shou ld c on t a i n ma thema t i c a l

a nno t a t i o n s and fo rmu l a s in l a t e x fo rmat !

2 . The i t ems shou ld be f o rmu l a t ed in German !

3 . The i t ems shou ld c on t a i n random numbers

and not j u s t enumerated numbers ( 1 , 2 , 3 , 4 , 5 ,

. . . ) !

4 . The i t ems shou ld not p rov i d e any h in t s ,

he lp , example s or e x p l a n a t i o n s !

5 . Think s t e p by s t e p about how to g e n e r a t e

t h i s i t em c o r r e c t l y

### Contex t ###

The g en e r a t e d i t ems a r e i n t ended f o r f i r s t −

s eme s t e r B a ch e l o r s t u d e n t s in computer

s c i e n c e , who a r e to be i n d i v i d u a l l y suppo r t ed

and c h a l l e n g e d so t h a t t h e y s a t i s f y t h e

demands o f t h e mathemat i c s c ou r s e .

The s t u d e n t s a r e p r e s e n t e d wi th th e g en e r a t e d

i t ems by an au toma t i c recommendation sy s t em

and can respond to them in t e x t form .

The i t ems a r e s e l e c t e d p e r s o n a l i s e d f o r t h e

s t u d e n t s a c c o r d i n g to t h e i r l e v e l o f

competence ( r e p r e s e n t e d by a knowledge

dimens ion and p r o c e s s d imens ion ) and

c u r r e n t l y r e l e v a n t c on c ep t s .

The r e fo r e , i t i s e x t r eme l y impor t an t t h a t

t h e i t ems on ly f i t t h e s p e c i f i e d ma thema t i c a l

concept , t h e p r o c e s s d imens ion and the

knowledge dimens ion !

{ l e c t u r e _ a n d _ s t u d e n t _ i n f o rma t i o n }
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FIGURE 1

Item generation workflow, implemented within ItemForge.

### Knowledge ###

Use th e f o l l ow i n g knowledge ( concep t

i n f o rma t i on ) to c r e a t e t h e i t em :

{ c on c ep t _ i n f o rma t i on }

I t ems on the p r o c e s s d imens ion { pd } f o l l ow

t h e s e r u l e s :

{ pd_ in fo rma t i on }

I t ems on the knowledge dimens ion { kd } f o l l ow

t h e s e r u l e s :

{ kd_ in fo rma t i on }

{ o u t p u t p a r s e r _ f o rm a t _ i n s t r u c t i o n s }

2.2 Retrieval and integration of
mathematical concept information

While developing Itemforge (see Section 2) to generate

mathematical items, it became evident that the focused LLMs

GPT-3.5 and GPT-4 already possess broad knowledge of general

mathematical concepts. Nevertheless, they frequently exhibit

inaccuracies, especially when addressing more complex topics in

higher education. The utilization of these models by learners

poses a risk, as they may uncritically accept the models’

seemingly convincing responses as accurate. These inaccuracies

also hinder the generation of items, which are expected to be

accurate and correct, particularly in the context of an automatic

recommendation system, we are aiming for.

To ensure the generation of reliably correct items, particularly

for advanced concepts in higher education, a process was devised,

drawing inspiration from the Generated Knowledge Prompting

(Liu et al., 2022) and Knowledge Injection(Martino et al., 2023)

methodologies. The devised process entails the creation of a

knowledge text, which serves as an explanation of the targeted

mathematical concept. The knowledge text is produced through a

retrieval-based question-answering chain facilitated by LangChain,

leveraging information from two mathematics textbooks8 and the

course’s lecture script. This mechanism enables concept queries

to be addressed by a LLM utilizing a customized retriever, to

build upon secured knowledge rather than encoded knowledge of

the LLM. For ItemForge, the retriever comprises a FAISS vector

database, housing the vectorized versions of the mathematical

textbooks and lecture script, initialized during application launch

via a locally executed text embedding model with multi-stage

contrastive learning (Li et al., 2023)9. The selection of the

aforementioned embedding model was based on its superior

performance in the respective HuggingFace benchmark10 at the

time of application development (July 2023). The described

knowledge sources are conventionally extracted, separated, and

processed on a page-by-page basis.

As part of the specific query formulation (see Listing 2),

prompt engineering techniques were utilized to optimize responses

and direct the LLM in its summarization to rely solely on the

found sources rather than pre-trained knowledge. This involved

employing Chain-of-Thoughts techniques (Wei et al., 2022b),

encouraging the model to answer the question step by step and to

think through the provided steps incrementally. Additionally, the

query was structured in a Zero-Shot (Wei et al., 2022a) fashion to

8 ISBNs: 978-3-662-63313-7 and 978-3-662-64389-1.

9 For embedding purposes, the HuggingFace Model gte-large was used -

https://huggingface.co/thenlper/gte-large.

10 Massive Text Embedding Benchmark Leaderboard: https://huggingface.

co/spaces/mteb/leaderboard.
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avoid biases on expected style and contained information of the

generated knowledge text.

Listing 2 Prompt for the inference of concept-specific knowledge

Exp l a i n th e ma thema t i c a l concep t " { s e l e c t e d _

concep t } " i n a comprehens ive s e c t i o n .

Only g i v e an example , i f one i s p r e s e n t e d in

th e p rov id ed document and r e f e r to th e

documents on l y .

Let ’ s t h i n k s t e p by s t e p about how to s o l v e

t h i s t a s k . Here a r e t h e p rov id ed documents

t h a t might he l p you . Say ‘ ‘ I don ’ t know ’ ’

i f you a r e unab l e to answer based on the

documents p rov id ed .

Answer s o l e l y ba sed on the documents p rov id ed .

De s c r i b e th e qu e s t i o n in d e t a i l b e f o r e

a t t emp t i n g to answer .

Answer in German .

Upon execution of the concept explanation chain, the

FAISS database is queried for text-pages similar to the selected

mathematical concept. The user can adjust the quantity of pages

to be retrieved and the search algorithm utilized to fine-tune the

knowledge retrieval process, based on prior knowledge or observed

results. From the two selectable search algorithms, the “Maximal-

Marginal-Relevance” algorithm aims to minimize redundant

information while retaining relevance to previously assessed pages,

resulting in a higher probability of diverse content retrieved from

the vector database. The “Similarity-Score-Threshold” algorithm

identifies pages most similar to the specified concept, based on a

defined threshold, leading to the selection of pages with similar

content.

The identified pages are subsequently utilized by the LLM

to generate a textual representation of a selected mathematical

concept. Depending on a user-chosen method, the identified

pages are handed to the LLM in different fashions and either

explained as of a single prompt (Stuff-Chain), or as multiple

prompts, transferring responses of former prompts as input data

to the next prompt (Map-Reduce-, Map-Rerank-, Refine-Chain),

provided by the LangChain framework11. We found that the type

of chain and the quantity of retrieved documents impact the quality

of knowledge texts generated, showing no consistent regression

pattern.

2.3 Item alignment with competencies and
intended learning outcomes

To ensure the generation of high-quality items, it is

essential to convey to the LLM not only the explanation

of mathematical concepts and content, but also the principle

of constructing competence-oriented items in the context of

Constructive Alignment (Biggs, 1996). By precisely defining

course-specific ILOs and their corresponding taxonomic and

cognitive requirement levels, the development and validation of

11 See https://js.langchain.com/docs/modules/chains/ for an overview of

available chains.

teaching, learning, and assessment design is facilitated. In this

regard, the taxonomy of the cognitive domain by Anderson and

Krathwohl (2001) was selected, due to its wide applicability across

diverse domains, robust theoretical foundation, and endorsement

by the German Rectors’ Conference (Gröblinghoff, 2015). This

taxonomy provides a structured framework that can seamlessly

be integrated within the context of Constructive Alignment to

precisely describe ILOs, which in turn, enables the systematic

development of course content derived from ILOs and design

of appropriate, as well as ILO and course-content matching

assessment items.

One of the taxonomy’s features involves the precise allocation

of each item to a particular ILO, facilitating a precise assessment

of the level of requirements in terms of cognitive processes and

knowledge needed to address the item. This allocation ensures that

the item’s requirement level offers direct insights into the individual

achievement of the corresponding ILO. Requirement levels are

two-dimensional for Anderson and Krathwohl (2001), consisting

of a process dimension and knowledge dimension. The process

dimension delineates six specific cognitive processes required for

learners to address an item or problem, while the knowledge

dimension, consisting of four knowledge types, delineates the

different types of needed knowledge respectively. Thus, 24 different

requirement levels can be utilized to describe assessment items.

Listing 3 Adapted description of the factual knowledge type, providing

guidance to the LLM in item construction [translated from German,

building upon (Anderson and Krathwohl, 2001)]

Through i t ems o f t h i s d imens ion l e v e l ,

s t u d e n t s a r e e xp e c t e d to demons t r a t e

t h e i r unde r s t and ing o f t h e b a s i c s

r e q u i r e d to engage wi th a s p e c i a l i s e d

d i s c i p l i n e ( e . g . , Mathemat ic s ) or s o l v e

s p e c i f i c prob lems .

You shou ld choose one o f t h e

f o l l ow i n g c a t e g o r i e s :

1 . Knowledge o f d i s c i p l i n a r y t e rm ino l o g y

Examples : D i s c i p l i n e− s p e c i f i c

v o c a bu l a r y ( d e f i n i t i o n s , t e rms ) ,

ma thema t i c a l symbol s ( l o g i c a l

connec to r s , summation and

i n t e g r a l symbols ,

ma thema t i c a l c o n s t a n t s

such a s e and p i .

2 . Knowledge o f components and s p e c i f i c

d e t a i l s .

Examples : Impor t an t or s t a nd a rd example s

( e . g . , t h e s equence 1 / n , g eome t r i c s e r i e s

w i th l i m i t behav iour , p r o p e r t i e s o f s i n e ,

c o s i n e , e x p o n e n t i a l f un c t i on , s t a nd a rd

normal d i s t r i b u t i o n , d e t e rm inan t ) .

To instruct the LLM effectively through a taxonomical

description of ILOs, the necessity for tailoring the taxonomy levels

to the domain-specific processes and knowledge of mathematics
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became evident. This involved formulating specific cognitive

processes and knowledge types as item construction guidelines to

ensure the generation of items aligned with a particular taxonomy

level, like visible for the factual knowledge type with Listing 3.

The transformation process involved a consulted mathematics

expert, who transposed the abstract description for the process

and knowledge dimensions, along with examples outlined by

the German Rectors’ Conference (Gröblinghoff, 2015), to the

field of mathematics. Subsequently, an expert in educational

sciences transferred the transposed descriptions into construction

instructions for LLMs, while validating their integrity and accuracy

in comparison to the original description by Anderson and

Krathwohl.

3 Evaluation of item generation
quality

In this study, we investigate into the performance of

a specifically prompted LLM in generating mathematical e-

assessment items (refer to Section 2.1). The focus lies on the

capabilities to generate appropriate, correct and complete items

and corresponding sample solutions according to subject-specific

concepts, cognitive processes, and knowledge required by students

in accordance with constructive alignment (Biggs, 1996; Biggs and

Tang, 2007). Through systematic variation of parameters, our goal

is to gain insights into the strengths and limitations of the LLM’s

mathematical item generation capabilities. Generated items were

evaluated by three domain experts independently, who’s results are

used as a qualitative benchmark.

We initially outline our methodology in Section 3.1, followed

by an exposition of the study’s execution and the analytical method

employed. The findings are presented in Section 3.2, while the

study’s constraints are discussed in Section 4.2.

3.1 Methodology and evaluation criteria

The study aims to evaluate e-assessment items, including

sample solutions, generated by LLMs in terms of appropriateness,

correctness and completeness, as well as alignment with the

specified generation parameters—subject-specific concept,

cognitive process, and knowledge to be utilized (refer to Section

2.1).

As the used taxonomy - the taxonomy of the cognitive domain

by Anderson and Krathwohl (2001)—consists of 24 levels (four

knowledge levels by six process levels), 24 items are generated

per selected concept. To reliably measure for level accuracy and

recall, 10 concepts from a higher education mathematics course12

were selected, yielding 240 items to be evaluated (refer to Section

2.1). The concept selection process consisted of examining the

generated knowledge texts (refer to Section 2.1) for surface-level

errors and excluding concepts lacking proper source information.

This precaution aimed to prevent the measurement of fabricated or

hallucinated information (Zhang et al., 2024; Martino et al., 2023)

12 Called Mathematics for Computer Scientists I - Fundamentals, Linear

Algebra, Analysis, and Di�erential Calculus (translated from German).

that could be erroneous or inaccurate, thus producing low-quality

items. ILOs were not incorporated when generating the 240 items,

as they would have introduced a bias in generating items for specific

taxonomical levels and circumscribed the variety of possible results

for a selected concept. In order to provide more general results on

item generation, inclusion of ideal invidual knowledge, which is

an optional feature for item generation (see Section 5.1), was not

selected for creating the 240 items.

Three mathematics experts evaluated all 240 generated items to

avoid measuring for the opinion of a single rater. These domain

experts were guided by a manual (see Section 5.1) to appropriately

categorize and rate the generated items regarding the generation-

parameters and qualitative measures. The manual outlined the

study’s objectives, used scales, interpretation guidelines, the

taxonomy used, and included selected domain-specific example

items and their ratings, which were not part of the questionnaire.

The manual, as well as the bespoke questionnaire, comprising

240 items with seven questions per item, were reviewed by

a mathematics expert, two computer-science experts and two

educational sciences experts to ensure its quality. Questions were

tailored to focus on specific item aspects, as existing and reviewed

questionnaires were deemed too detailed for efficiently assessing

240 items based on high-level aspects within a practical timeframe.

Consequently, we chose create a bespoke questionnaire and to have

it evaluated by domain experts.

For the cognitive process and knowledge dimensions of an

item, a selection component was provided to select the most

appropriate level of the dimension. The remaining qualitative

measures—appropriateness to the mathematical concept,

completeness and correctness of the task, and completeness

and correctness of the sample solution—were captured by a

five-point Likert scale (Likert, 1932), allowing the raters to

indicate tendencies, albeit potentially leading to central ratings. An

additional comment section allows expressing thoughts per item

individually.

3.1.1 Sample and large language models
The questionnaire was taken by three mathematical higher

education experts independently. The three experts consisted of the

teaching professor and his two associates, which are particularly

well-suited due to their mathematical education (diploma, Ph.D.,

or professorship in mathematics) and their teaching experience

through teaching several mathematics courses for several years.

These experts underwent advanced training in competence

assessment, possess expertise in creating suitable mathematical

problems, and demonstrate a profound understanding of the

study’s concepts.

From an item generation perspective, both GPT-3.5 and GPT-

4 by OpenAI were incorporated when generating the 240 items

to be evaluated. Specifically, GPT-3.5-Turbo (0613) was used to

produce the required knowledge text for the selected concept, used

for all 24 related items, due to its ability to produce sufficient

knowledge texts. GPT-4 (0613, non-turbo) was used to generate

all 240 items, guided by the various parameters and the developed

template-prompt (refer to Section 2), as it demonstrated superior

item quality with fewer inaccuracies compared to GPT-3.5. Both

LLMs offer the functionality to adhere to a specified response
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format (now alled JSON mode13) and were selected based on their

extensive evaluation and adoption within academia (Haverkamp,

2023; Chang et al., 2024; Sok and Heng, 2024), along with their

provision as an Application Programming Interface to address the

absence of suitable LLM infrastructure.

3.1.2 Execution
The questionnaire was prepared as Google Spreadsheet

documents, allowing to rate items in rater chosen batches. Each

rater received an individual and unique document to maintain

their independence, along with a detailed manual (refer to Section

3.1). Prior to rating, all raters were instructed to read the manual

thoroughly and to address any uncertainties by asking questions

for clarification, where questions and answers were shared among

all raters.

After training completion, the raters were allotted a period of

21 days to evaluate all 240 items. Two raters successfully completed

the evaluation within this time frame. However, one rater was

unable to assess all aspects of the 240 items within the given

timeframe, leading to a reduction in the questionnaire scope to

focus solely on the cognitive process and knowledge dimensions.

Consequently, there were three raters for the evaluation of all 240

items in relation to cognitive processes and knowledge, and two

raters for the qualitative aspects of the items.

3.1.3 Analytical method
The questionnaire results were examined in terms of two main

dimensions: (1) alignment of process and knowledge dimensions,

and (2) qualitative evaluation of the generated items.

ItemForge, and in general, an item generator, can be treated as

a prediction engine in the context of predicting items. A common

analytical method for predicted values involves calculating a

confusion matrix and a fitting F-Measure to assess precision and

recall of the prediction engine (1) (Kelleher et al., 2020). Due to the

non-numerical and discrete nature of the two dimensions under

consideration, an averaging approach for differing values from

multiple raters is not feasible. When values from multiple raters

vary, a discrete range is established based on the specified levels by

each rater and the prediction engine is referred to as appropriate

if its parameters are inside this range and deviating, if outside the

range.

The five qualitative aspects (2), namely concept appropriateness

(ca), task completeness (tcm), task correctness (tcr), solution

completeness (scm), and solution correctness (scr), are evaluated

through statistical analysis. These aspects are represented using

box plots, as these provide a visual summary of the distribution

of data for each qualitative aspect while displaying key statistical

measures such as medians, standard deviations, quartiles, and

outliers (DuToit et al., 2012). By providing five box plots side by

side, it is possible to compare the distributions of the different

aspects simultaneously, aiding to understand how these vary and

whether any consistent patterns or differences arise.

13 LLM JSON response mode documentation by OpenAI: https://platform.

openai.com/docs/guides/text-generation/json-mode.

FIGURE 2

Manual item-process classification in contrast to targeted levels of

the cognitive process dimension as a confusion matrix.

FIGURE 3

Manual item-knowledge classification in contrast to targeted levels

of the knowledge dimension as a confusion matrix.

3.2 Findings and analysis

The alignment of encountered cognitive processes and

knowledge in contrast to the targeted ones are analysed using

confusion matrices for each dimension separately. Human ratings

serve as the reference point for evaluating the fit of item generation

parameters, used by ItemForge. The confusion matrices are

illustrated in Figures 2, 3.

Figure 2 illustrates the outcomes related to the cognitive process

dimension, which is one human selectable generation parameter in

our approach. Noticeable is a strong alignment with the matrix’s

Frontiers in Education 07 frontiersin.org

https://doi.org/10.3389/feduc.2024.1427502
https://platform.openai.com/docs/guides/text-generation/json-mode
https://platform.openai.com/docs/guides/text-generation/json-mode
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Meissner et al. 10.3389/feduc.2024.1427502

major diagonal, indicating a close match between the generated

items and the selected levels by the raters. Each column represents

40 items generated for the respective process level. The levels apply

(32 items, 0.8 Prec., 0.44 Rec.) and evaluate (28 items, 0.7 Prec., 0.8

Rec.) demonstrate the highest conformity (Prec.), with only a small

deviation of 8 and 12 items, respectively, from the expected values.

A possible rationale, in the light of the remaining results, might be,

that mathematical items are often used to carry out techniques or to

evaluate a technique or result. The performance of the LLM in these

levels may be attributed to the existence and usage of such items in

the LLM’s training phase.

The level analyse (27 items, 0.68 Prec., 0.55 Rec.) shows a

similar pattern, with 13 items deviating, mainly in two nearby

levels. Notably is a significant amount of 9 items in the nearby

level apply, as well as a general tendency to categorize items toward

or within the two middle levels (apply and analyse, refer to the

general highlighting of these rows in Figure 2). The origin of this

phenomenon remains ambiguous, as it is uncertain whether it is

due to raters’ inclinations or biases toward these levels, or whether

there is tendency of the LLM to generate items within the levels

apply and analyse. According to our appraisal, it is probable that

the raters got a tendency toward these levels, as raters found

interpretive overlaps in the description of the taxonomy levels,

raising difficulties in clearly classifying items.

The levels understand (24 items, 0.6 Prec., 0.65 Rec.) and

create (24 items, 0.6 Prec., 1.0 Rec.) are mid-performing, where

understand spreads up to three nearby levels and create to three

more distant levels. With a recall value of 1.0 (see Table 1), the

generator seems to create items matching the level create more

reliable than for other levels, except for remember, gaining the

second best recall value of 0.91. Remember (20 items, 0.5 Prec., 0.91

Rec.) is the overall worst performing level, spreading noticeably

over four levels and having the lowest precision of all levels.

Judging from those numbers, the LLM seems to reliably

being able to generate items meeting the lower boundaries of

the levels understand and apply, as well as the upper boundaries

of analyse and evaluate. Even though meeting certain lower and

upper boundaries of specific levels, there remain inconsistencies

toward the middle levels of the dimension. On a macro-level, the

average precision is rated with 0.65 and the average recall as 0.72,

resulting in an overall F1-score of 0.66. These findings demonstrate

a tendency toward correct item generation for the requested process

level, but also a tendency to occasionally generate items in mostly

two nearby levels. In contrast, the low F1-scores per level indicate

that either the LLM is currently not well-equipped for the given

task, needs to be prompted differently or further tuned by the

available hyperparameters of our current approach.

Figure 3 illustrates the outcomes related to the knowledge

dimension, which is the other human selectable generation

parameter in our approach. Similar to the process dimension (see

Figure 2), there is a noticeable strong alignment toward the major

diagonal of the matrix, indicating a close fit between the generated

items and the selected levels by the raters. As 240 items now

account for four levels, each column sums up to 60 items. Thus,

conceptual knowledge (45 items, 0.75 Prec., 0.52 Rec.) is best met,

with the highest precision value. The levels factual knowledge (42

items, 0.7 Prec., 0.78 Rec.) and procedural knowledge (40 items, 0.67

Prec., 0.69 Rec.) show a similar distribution, with 18 to 20 items

missing the correct category by mainly one level. metacognitive

knowledge (38 items, 0.63 Prec., 0.93 Rec.) was missed by 22

items, spread over all three remaining levels with a peak of two

levels away (in conceptual knowledge). Striking is a rater tendency

toward conceptual knowledge (see respective row in Figure 3) and

two overlapping 4x4 squares (factual to conceptual and conceptual

to procedural). The two squares indicate a certain fuzziness in

the considered levels, either on the side of the item generator or

raters. Similar to the row highlighting for the process dimension

(see Figure 2), there exists a visible highlighting of the middle two

rows for the knowledge dimension. According to our appraisal, it

probably got a similar rationale, which is the raters tendency toward

these levels, as raters found interpretive overlaps in the description

of the taxonomy levels factual and conceptual, raising difficulties in

clearly classifying items. Noticeable is a upper boundy for the levels

factual to procedural, which rarely leaks by one item only into the

cognitive level.

In terms of the knowledge dimension, the LLM seems to

perform better than for the process dimension, as higher precision

(overall Prec.: 0.69) and recall (overall Rec.: 0.73) values were

achieved (see Table 2). conceptual performs worst from a F1-score

perspective, due to low recall values. conceptual also performs

best from a precision perspective, indicating its possible use in

automatisms, followed by factual. metacognitive shows the highest

recall value of 0.93, indicating that if an item was generated as

metacognitive, it is probably also rates as such.

In terms of qualitative aspects (see Figure 4), most items

apply to the chosen concept quite well, with a median value of

4.5 (out of 5), no lower quantile and a upper quantile of 0.5,

indicating a tendency toward a perfect match. There are a few

outliers ranging down to 2.5, still indicating a tendency to matching

concepts. Task completeness and task correctness are rated equally

(median 4.5, tendency to complete tasks, outliers down to 1.0). On

close inspection, a few tasks seem to show problems in terms of

completeness, as most needed values are given to solve the task,

but there seem to exist better suited values according to the rater

opinions. Just a few tasks lack the necessary information or are

incorrect in itself, yielding a strong tendency toward correct and

complete task generation.

Solution completeness performs slightly worse, having also a

median value of 4.5, but gaining a lower quantile of 0.5 and an

additional lower whisker up to 2.5. According to the rater opinions,

solutions contain all to most relevant information, with a tendency

to hinting about the correct solution instead of fully providing it.

Solution correctness performs worst of all qualitative aspects, with

a median of 4.0, upper and lower quartiles of size 1 and a lower

whisker ranging to as low as 1. Thus, solutions are still probably

correct, but might come with some inaccuracies or drawbacks.

Because of the lower whisker, solutions must be checked properly

for their correctness or hinted as beeing possibly incorrect, to

not lead learners to false information. As the system described in

Section 2 was not tuned for correct and complete solutions, the

quality of the provided solutions is already impressive. Possibly

incorrect solutions might even trigger students to think about

their answer twice, producing a positive side-aspect if hinted

appropriately.
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Table 1 Precision, recall, F1-score and support for the cognitive process dimension.

Remember Understand Apply Analyse Evaluate Create

Precision 0.5 0.6 0.8 0.68 0.7 0.6

Recall 0.91 0.65 0.44 0.55 0.8 1.0

F1-score 0.65 0.62 0.57 0.61 0.75 0.75

Support 22 37 73 49 35 24

Table 2 Precision, recall, F1-score and support for the knowledge dimension.

Factual Conceptual Procedural Metacognitive

Precision 0.70 0.75 0.67 0.63

Recall 0.78 0.52 0.69 0.93

F1-score 0.74 0.61 0.68 0.75

Support 54 87 58 41

FIGURE 4

Qualitative aspects of the generated items, visualizing concept

appropriateness (ca), task completeness (tcm), task correctness (tcr),

solution completeness (scm), and solution correctness (scr) using

box plots on a 5 point Likart-Scale for which 5.0 corresponds to

good, 1.0 to poor.

3.3 Mathematical expert feedback

According to the feedback from the three mathematics experts

(see Section 3.1.1), the linguistic quality of both the generated

tasks and the solutions is consistently very high. The targeted

concepts are always addressed by the generated items, often done

in connection with related concepts, for which the focus sometimes

changes to the related one instead of the actually targeted one. It

may thus be helpful to specify (sub-)concepts more precisely in

future iterations. The task formulations occasionally suggest the

existence of certain mathematical prerequisites which, however,

are not fulfilled, and learners may not always be aware that when

incorrect assumptions are made, the actual task becomes irrelevant,

as they might expect the task to be properly designed.

When creating tasks of for higher levels of the process

dimension, numerous subtasks are often presented, rendering

these tasks unnecessarily complex. As an expert, one might prefer

formulating shorter, more targeted tasks instead. In contrast, the

highest process level - create - can often be met with simple

answers, and it would occasionally be sensible to impose additional

requirements to truly achieve the desired high process level.

The generated solutions, on the other hand, exhibit a noticeably

lower mathematical quality compared to the generated tasks

themselves. Frequently, while the actual mathematical reasoning

was sound, there were significant computational errors that

detracted from the overall impression. Based on the experience of

the mathematics experts, these errors resemble those commonly

made by beginners with insufficient mathematical background

knowledge or unfocused students.

4 Discussion

In addition to our own research and findings, relevant

literature is examined and deliberated in Section 4.1, and the

methodological and interpretive constraints of our study are

addressed in Section 4.2.

4.1 Related work

Previous research about automated generation of mathematical

assessments, problems, or tasks and related sample solutions

denotes a common methodological foundation through the use

of structured approaches to systematically generate these. Ahmed

et al. (2013) presented a method involving forward solution

search for solution generation and backward generation of exercise

problems in natural deduction, considering all potential inference

rule applications over small propositions. Through their approach,

they were able to find new problems to given solutions, usable in

exercises. A similar pattern was used by Singh et al. in algebraic

problem generation, where proof problems are identified. By

syntactically generalizing proof problems into abstract queries

and automatically exploring the problem space, problems-

solution combinations became generatable. This approach enables
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educators to design exam-oriented exercise tasks and enables

learners to create personalized exercise problems derived from

learning-materials (Singh et al., 2012). Not related to mathematics,

but to structured item generation, Faizan and Lohmann (2018)

presented an approach to derive multiple-choice questions from

slide-extracted keywords and semantic querying of a pre-designed

knowledge-base to create varied questions and appropriate

answer options. Xu et al. introduced an approach in elementary

mathematics education for problem generation, comprised of two

phases: initial formulation of abstract mathematical problems via

a template-driven approach, followed by a rule-based generation

of exercises, distractors, and visual aids using a multi-language

adaptive pipeline. This method ensures the creation of relevant

and solvable problems customized for primary school learners

and resulted in significant time savings for educators (Xu et al.,

2021) in creating items. All these approaches share varying

sets of restrictions, based on: topic restrictions to comply with

methodological requirements, necessitating predefined formal

abstractions up to whole knowledge-bases, and adherence to

pattern- and rule-based frameworks, becoming increasingly

complex for advanced mathematical concepts.

Even though the presented approaches are limited as outlined

above, their application among learner-adaptive assessment and

exercise systems, particularly within structured domains such

as mathematics, became popular. Such systems allow tailoring

items to a learner’s skill level and to generate item instances

on-demand and as needed (Tvarožek et al., 2008). A recent

study revealed that learner-adaptive systems, utilizing AI and

providing adaptive exercises and assessments, haven been found

to significantly improve on the learning-performance (Das et al.,

2023).

Recent advancements in AI resulted in LLMs, which rapidly

became widespread and often applied among educators, but also

learners. Application among learners was partly acknowledged

as a serious threat to academic integrity, leading to research

on AI-generated content detection (Orenstrakh et al., 2023). On

the other hand, LLMs may be utilized to create educational

content and personalize learning resources, possibly enhancing

student engagement and interaction (Kasneci et al., 2023). In

the field of mathematics, LLMs are predominantly applied

for problem-solving activities, as seen with several recent

investigations (He-Yueya et al., 2023; Imani et al., 2023),

rather than for the creation of (personalized) educational

materials, including assessments and exercises. The study at

hand specifically targets the latter aspect and seeks to address

found limitations from the structured methodologies mentioned

earlier.

4.2 Limitations

Out of the 240 items assessed across seven key aspects, only two

human experts evaluated all aspects for each item, while three raters

assessed the process and knowledge dimensions. Despite their

expertise, discrepancies in opinion on the generated items were

evident among the raters. The assessment by two, up to three raters

does not definitively determine the quality of item generation, but

rather indicates trends and offers some level of reliability based on

their expertise. However, the task of rating 240 items requires a

significant time commitment of 20 to 50 hours per rater, posing a

challenge in recruiting an adequate number of raters.

The methodology outlined in Section 2.1 enables the

configuration of multiple hyperparameters to refine the

information retrieval and generation procedures. These parameters

were employed with either their default settings or settings found

to work, but not with thoroughly evaluated setting combinations,

which is why adjusting these settings could potentially enhance, but

also lower the outcomes under investigation. Due to the absence

of a baseline for comparison (which was initially created with this

study), a systematic and scientifically rigorous tuning process was

not feasible.

In terms of evaluation techniques, various techniques were

explored, resulting in slightly varied confusion matrices. A mid-

strict approach was selected, by focusing on whether the generated

item matches any of the rater judged levels. An alternative and

more relaxed technique involves interpolating taxonomy levels

among raters, leading to slightly improved performance metrics

(Precision, Recall, F1-score), yet may pose challenges when raters

largely differ in their opinions. Conversely, a stricter strategy entails

focusing solely on the highest level rating, resulting in notably

worse outcomes by disregarding the possibility that raters could be

wrong.

Reasoning of the confusion matrices and of the small number

of three raters, we can only highlight our appraisal on whether a

finding is related to insufficient skills of the LLM, rater tendencies,

or methodological shortcomings. The evaluations in Section 3.2

primarily address rater tendencies over LLM skills, as raters

encountered challenges in categorizing items due to interpretative

complexities of the taxonomy and their historical emphasis on

apply, analyse, and evaluate tasks. Methodological shortcomings

also emerge as a plausible explanation, with educators facing

challenges in implementing Anderson and Krathwohl’s taxonomy

and, according to our knowledge, often resorting to simpler

alternatives, such as the CELG taxonomy recommended by the Free

University of Berlin14.

The LLMs GPT-3.5-turbo (0613) and GPT-4 (0613) were

employed (see Section 3.1.1), which are proprietary models

available for a currently undefined, but limited period.

Consequently, the study’s exact reproducibility is constrained

within a narrow timeframe. Given the primary objective of

this study to validate the LLMs’ ability for competency-based

e-assessment item generation from a qualitative standpoint, the

utilization of proprietary models is not deemed a drawback. For

broader and reproducible findings, the study must be replicated

using diverse open models to ensure future result reproducibility.

To facilitate this process, we have made our rater statements,

manuals, item sets, and outcomes accessible online in a reusable

format (refer to Section 5.1).

14 The Free University of Berlin recommends the CELG taxonomy,

providing four process and three knowledge levels: https://wikis.fu-berlin.

de/display/eexamathome/Lernzieltaxonomien.
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5 Conclusion and future directions

In conclusion, this study has shown the viability of LLMs as

building blocks in constructing mathematical assessment items,

that closely align with domain concepts and largely adhere to

predefined taxonomy levels based on Anderson and Krathwohl

(2001). The assessment items were evaluated by experts in higher

mathematical education, encompassing 240 unique items spanning

the entire taxonomy and selected domain concepts. The results

yielded encouraging findings, highlighting the linguistic precision,

overall correctness and completeness of the items tasks, and

alignment with the intended taxonomy levels. However, the degree

of alignment presents opportunities for progressive refinement, e.g.

by enhancing the preciseness of taxonomy level alignment through

algorithm and prompt fine-tuning. Sample solutions, generated

alongside the items, warrant an additional layer of expert or crowd

verification to ensure their completeness and validity.

An interesting insight from this study is the identification

of the Apply and Conceptual Knowledge taxonomy levels, having

the highest generation precision of all levels (0.8 and 0.75).

Automated item generation within those levels seems viable and

holds promise regarding direct and possibly ad-hoc application. For

levels beyond these, the study points for an integrated approach

where the developed tool and thus utilized LLMs serve as an

assistive technology rather than a standalone solution. Even though

the precision for the remaining taxonomy levels is lower, falsely

generated items distribute closely to their targeted levels and

mostly cluster around the center of the corresponding dimension.

Consequently, the generated items typically establish a strong

foundation, serving as either realized concepts or useful starting

points that streamline the laborious process of item development.

In summary, the presented approach opens a route to

significantly lessen the burden of creating assessment items,

enabling educators to reallocate their time to more personalized

and impactful teaching and mentoring activities. Still, continuous

educator involvement with LLM-generated content remains crucial

to preserve the nuances of higher-level cognitive tasks and to

ensure the created items’ suitability and validity. Our research

offers a basis for an informed debate on AI’s role in education

and deepens understanding of leveraging LLMs for creation of

high-quality, tailored educational materials. We demonstrated that

LLMs hold promise for augmenting the educational experience

but underscore the need for a balance between automation

and the irreplaceable depth of human expertise. Thus, our

findings can serve as a point of reference in enabling a founded

discourse on collaborative educational resource development,

guiding institutions in integrating LLMs into their pedagogical

processes, while adhering to academic standards and enriching the

educational journey for both educators and students.

5.1 Refinement and future work

Building upon our methodology and insights, we can pinpoint

four key directions for future research, each with the potential to

amplify the utility and precision of LLMs in educational content

creation, specifically assessment item creation.

Firstly, an in-depth investigation into optimizing algorithm

hyperparameters, LLM prompting, and splitting methods of source

material for information retrieval could be a promising next step.

By adjusting these parameters and prompts, it may be feasible to

improve the accuracy and relevance of both the knowledge text

and item generation processes, thus enhancing the quality of the

assessment items generated.

Secondly, the exploration of advanced techniques for

improving the generation of sample solutions, such as the

integration of computer algebra systems, shows potential for

further investigation. This approach holds promise in automating

and enhancing the correctness and completeness of sample

solutions for mathematical tasks, ensuring alignment with the

corresponding task.

Expanding the tool’s scope to include closed-ended item

creation would enhance its versatility, offering educators a wider

range of assessment options for formative and summative purposes.

These might be complemented by researching the adaptability

and transferability of the approach and tool to different domains,

providing valuable insights into its performance and flexibility.

This cross-disciplinary approach would offer insights into the

broader applicability of LLMs in education and the potential need

for domain-specific adaptations.

Lastly, in the rapidly advancing landscape of LLMs, it is crucial

to assess the performance of diverse LLMs, encompassing

proprietary and open-source alternatives. A comparative

evaluation of various LLMs can elucidate their strengths and

limitations, guiding educators and developers toward the most

effective models for item generation.

As we continue to advance the role of AI in educational

settings, the focal points highlighted for future work illustrate

a commitment to enhance the symbiosis between technology

and pedagogy. By pursuing these areas of research, we can

refine AI-based tools to not only adhere to educational

standards, but to also enrich the educational journey for

educators and learners alike. Continuous improvement and

evaluation of these tools are crucial, emphasizing the quality

of educational content and the potential for AI to enhance

teaching and learning. The future of AI-supported education

relies on the interaction between the innovative capabilities

of LLMs and the valuable insights of educators, promoting

constructive collaboration and mutual enhancement in this

evolving landscape.

Data availability statement

ItemForge is distributed as Open-Source Software, with
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