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Introduction: This study investigates support strategies to enhance basic 
software education as a liberal arts course at Konkuk University, South Korea, by 
integrating design thinking and computational thinking to mitigate the cognitive 
load of programming.

Methods: A study with 190 students utilized a learner-centered approach, 
incorporating design thinking and computational problem-solving, and 
evaluated its effectiveness through pre-and post-tests and structural equation 
modeling.

Results: The intervention successfully reduced the cognitive load associated 
with programming tasks and led to positive changes in computational thinking 
factors. Our analysis also revealed that cognitive load negatively impacted 
all computational thinking factors and that improvements in computational 
thinking factors were sustained into subsequent stages of the learning process.

Conclusion: The findings suggest that as differences in student learning 
capabilities become more pronounced, a variety of tailored learning strategies 
must be  employed. Software education should incorporate computational 
thinking factors such as problem decomposition, abstraction, and algorithmic 
procedures to lower cognitive load. Additionally, it is crucial to foster immersion 
in learning by implementing attention, relevance, confidence, and achievement 
strategies.
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1 Introduction

Software (SW) and artificial intelligence (AI)-based digital technologies have great 
influence in the digital transformation era. Moreover, as the 4th Industrial Revolution advances 
and digital transformation accelerates, computational thinking (CT) is rapidly becoming 
essential to value creation. CT helps students explore innovative solutions in a variety of fields 
by developing problem-solving and logical thinking skills (Denning and Tedre, 2019; Gong 
et al., 2020). Consequently, developed countries are providing SW education from a universal 
perspective to prepare students for the demands of a digital society (Korea Education and 
Research Information Service (KERIS), 2019). For instance, the government of South Korea 
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(Korea) has mandated the inclusion of SW education in primary and 
secondary schools (National Assembly Research Service, 2019). As of 
September 2022, 44 universities had been selected as SW-centric, 
motivating more universities to require all students to take relevant 
SW courses (Hong et al., 2019).

SW education aims to strengthen problem-solving skills through 
CT (Hsu et al., 2018). Furthermore, programming as an educational 
tool can help develop CT competencies effectively (Lye and Koh, 
2014). However, learning motivation and interest can vary depending 
on the level of the cognitive load (i.e., difficulty in programming), 
creating difficulties in developing CT (Berssanette and de Francisco, 
2021; Kim et al., 2011).

To overcome such difficulties, studies have verified the 
effectiveness of learner-centered SW education methods (Berssanette 
and de Francisco, 2021; Lee, 2018). To reduce the cognitive burden of 
learners, Kim et al. (2011) argued that “learners should specify their 
ideas rather than focusing on existing programming problems, and 
problem-solving tasks that can be implemented through computers 
should be suggested.” Moreover, Kim and Lee (2020) presented the 
necessity for instructional strategies that allow learners to become 
familiar with communication with computers and think about 
programming education.

Existing studies recognize the importance of CT and SW 
education, but studies analyzing the effects of high cognitive load 
associated with programming tasks are largely lacking. This study 
aims to identify how cognitive load affects learners and to develop 
pedagogical strategies that increase learning motivation and the 
effectiveness of software engineering education. To this end, this study 
presents solutions to the problems identified in previous studies by 
focusing on a learner-centered approach and integrating CT into 
problem-solving tasks.

2 Theoretical background

2.1 Cognitive load

Cognitive load, a concept introduced in the 1980s by John Sweller, 
has received a lot of attention in the last few years. It is based on the 
idea that our working memory (the part of our memory that processes 
what we are currently doing) can only deal with a limited amount of 
information at a time (Sweller, 1988).

Consequently, cognitive load is acquired information that cannot 
be moved to long-term memory and can be lost or overloaded in the 
working memory (Sweller, 1994, 2023). Cognitive load can be divided 
into “intrinsic cognitive load,” “extrinsic cognitive load,” and “germane 
cognitive load.” Intrinsic cognitive load is the load resulting from the 
complexity and difficulty of a task itself. Extrinsic cognitive load is the 
load caused by external factors, such as learning methods and data 
presentation methods, and “germane cognitive load” is the load due 
to the mental effort involved in learning. This cognitive load is directly 
related to task difficulty and has a significant impact on learner 
learning (Seufert, 2018, 2020; Seufert et al., 2024).

Researchers stated that the cognitive load generated in the 
learning process of programming has a negative effect. Mason et al. 
(2015) stated that some of the programming environments are 
complex, and the cognitive resource overload can have a negative 
effect on the attention and learning of the learners. In addition, 

Çakiroğlu et  al. (2018) evaluated students’ performance in 
programming tasks and found that academic performance may 
deteriorate as the cognitive load increases in complex tasks.

For novice programmers, managing cognitive load is critical. 
High cognitive load can interfere with the learning process, making it 
difficult for students to understand and retain new programming 
concepts. Garner (2002) highlighted the need to carefully manage 
cognitive load for effective learning outcomes in software education. 
To reduce cognitive load Paas et al. (2003) suggested teaching methods 
that minimize extraneous cognitive load, allowing learners to focus 
on intrinsic and relevant cognitive load. Cognitive load can be reduced 
by simplifying complex information and limiting the amount of 
information learners have to process at once (Liu, 2024; Skulmowski 
and Xu, 2022).

Taken together, these studies suggest that it is important to 
provide appropriate teaching strategies to reduce cognitive load, such 
as segmenting complex information or providing step-by-step 
demonstrations of problem-solving, as cognitive load can have a 
significant impact on learning outcomes in SW education.

2.2 CT-based problem-solving model and 
SW education

CT is a problem-solving process in which a complex problem is 
broken down into smaller ones through computing systems for more 
efficient implementation, following which, solutions can be found via 
logical inference and abstraction (Wing, 2006, 2008). The International 
Society for Technology in Education (ISTE) and the Computer 
Science Teachers Association (CSTA) defined nine core concepts and 
abilities (Barr and Stephenson, 2011) to apply CT to education and 
developed operational definitions based on them (International 
Society for Technology in Education (ISTE) and Computer Science 
Teachers Association (CSTA), 2011a, 2011b). Refer to 
Supplementary Table  1 for information on the core concepts and 
operational definitions of CT.

Various teaching models have been proposed to improve problem-
solving skills based on CT. One of these is the CT-based Creative 
Problem-Solving (CT-CPS) model (Jeon and Kim, 2017). CPS is a 
systematic and step-by-step approach to promoting creative problem-
solving. It focuses on effectively solving complex problems by 
combining creative and critical thinking (Osborn, 1953; Treffinger 
et al., 2023). This cutting-edge approach has been used to effectively 
address complicated problems across various disciplines. Jeon and 
Kim (2017) argued that the “CT-CPS model proceeds through the 
stages of problem recognition and definition, idea concept, design, 
and implementation and evaluation.” In the problem recognition and 
definition stage, learners find and define problems through CT-based 
data collection, analysis, and representation. In the idea concept stage, 
learners brainstorm ideas to solve problems, utilizing CT abstraction. 
The design stage involves learners structuring selected ideas to 
be solved by SW. In the final stage, implementation and evaluation, 
designed ideas are coded, executed, and evaluated, utilizing CT 
automation and simulation.

Noh (2023) found that incorporating a CT-based problem-
solving model into university SW education enhanced students’ 
CT. Similarly, Kim et al. (2021) demonstrated that CT-based SW 
education significantly improved middle school students’ 
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computational thinking and creative problem-solving abilities. 
Likewise, Jeon and Kim (2017) reported that such an educational 
model effectively boosted elementary students’ creative problem-
solving and positive psychological attributes. Lastly, Bai et al. (2021) 
concluded that CT is crucial for facilitating creative problem-solving 
in SW education.

Thus, studies of SW classes designed with a CT-based problem-
solving model have proven that applying such a model to SW 
education improves learners’ creative problem-solving skills, learning 
efficacy, and CT competence. These studies emphasize the need for 
instructional design that incorporates real problem-solving, not just 
programming exercises.

2.3 Design thinking and SW education

Design thinking (DT) is a creative problem-solving method by 
which learners identify and solve real-life problems using empathy 
(Lawson, 1980; Rowe, 1987). In their meta-analysis, Lee and Lee 
(2020) discovered that the cognitive and social domains had the 
greatest effects on learning performances utilizing DT. In particular, 
the cognitive domain related to “knowing” encompasses “cognitive 
competency (academic achievement),” “creative problem-solving 
skills,” and “thinking capability”; among these, thinking capability and 
creative problem-solving skills had the greatest impact. Furthermore, 
the social domain related to interactions with others and included 
“communication skills,” “ability to empathize,” “interpersonal 
problem-solving ability,” “collaboration capabilities,” and “sociality”; 
among these, ability to empathize, interpersonal problem-solving 
ability, and sociality had the greatest impact.

Shin et al. (2019) proved the positive effects of DT, such as how its 
application in SW education enabled learners to identify problems 
from a new perspective and explore and specify ideas creatively. 
Subsequently, Kelly and Zero (2021) presented a model for solving 
complex design problems by integrating DT and CT and showed that 
design thinking can effectively use CT for problem formulation and 
problem-solving. Similarly, Oh and Jang (2022) revealed that 
DT-based SW education positively affects CT in university liberal arts 
classes. Finally, Jun (2017) proved that DT-based SW classes increase 
students’ CT and real-life problem-solving skills, positively affecting 
their confidence.

The integration of DT and CT presents a multifaceted approach 
to enhancing problem-solving skills and cognitive development in 
educational settings. The literature reviewed in this section suggests 
that this integrated methodology can significantly improve problem-
solving skills, foster creativity, and encourage collaboration. However, 
to fully realize this potential, systematic instructional design is needed 
to create an environment where students can solve the complex 
problems of modern society.

3 General objective and research 
questions

In this study, CT-CPS and DT models are integrated to design a 
teaching plan, apply it to one of the SW basic required liberal arts 
courses (course name: “Computational Thinking1”) at Konkuk 
University in the second semester of 2023, and then analyze learners’ 
difficulties and cognitive load to suggest improvement measures.

The aim is to answer the following research questions:

 1 Does undergraduate SW education using DT-and CT-based 
problem-solving models have a positive effect on learners?

 2 Does undergraduate SW education using DT-and CT-based 
problem-solving models affect cognitive load 
(programming difficulty)?

 3 What kind of difficulties do learners face in undergraduate SW 
education using DT-and CT-based problem-solving models?

 4 How does cognitive load (programming difficulty) affect CT 
factors in undergraduate SW education using DT-and 
CT-based problem-solving models?

4 Methods

4.1 Research participants

This study focused on 190 non-science and non-engineering majors 
who had taken basic SW liberal arts courses for the first time at a four-year 
university in a metropolitan area in Korea. This study was approved by the 
Konkuk University Institutional Review Board (approval number 
7001355-202307-HR-670). Before starting the study, consent was obtained 
for “Collection and Use of Personal Information” from all participants. 
Among the participants, 83 were male (43.7%) and 107 were female 
(56.3%); in terms of student population (Table 1), 105 were enrolled in 
first-year (55.3%) and 85 in second-year or higher (43.7.2%). Furthermore, 
most students (78.9%) had not previously acquired SW education.

4.2 Study design and procedures

4.2.1 D-CT-CPS class model
Since the basic SW liberal arts course “Computational Thinking” 

aimed to improve CT and is a required subject, it was assumed that 

1 ‘The Computational Thinking course is part of a comprehensive 

undergraduate SW curriculum designed to improve students’ analytical and 

problem-solving skills. This means that undergraduate SW education covers 

a wide range of topics, and computational thinking is one of the essential 

components of this comprehensive curriculum.

TABLE 1 Detailed information on non-science and non-engineering majors.

Classification Total Year SW education experience

First-year Second-year and higher Yes No

Male 83 (43.7%) 42 (22.1%) 41 (21.6%) 23 (12.1%) 60 (31.6%)

Female 107 (56.3%) 63 (33.2%) 44 (23.1%) 17 (8.9%) 90 (47.4%)

Total 190 (100%) 105 (55.3%) 85 (43.7%) 40 (21.1%) 150 (78.9%)
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instructional design considering learners’ motivation and immersion 
was necessary. Therefore, a class model was designed by applying a 
CT-CPS model (Jeon and Kim, 2017) and DT (Lawson, 1980; Rowe, 
1987) to identify problems in the learner’s situational context and 
solve them creatively. Supplementary Figure 1 presents the design of 
the class model.

The first step was “problem recognition and definition,” which 
involves recognizing problems through data and defining problems 
through analysis and expression. As problems should be discovered 
and defined in the first step, C1 of the CT-CPS model was applied 
along with D1 and D2 of the DT model. The second step was 
“problem analysis and design,” decomposing into solvable 
questions, finding key factors, structuring and expression problems, 
and designing the algorithm to execute it on a computer. In the 
second step, as ideas should be explored and algorithms designed 
after producing prototypes, we applied D3 and D4 of the DT model 
and C2 and C3 of the CT-CPS model. The third step was 
“implementation and evaluation” and the stage of implementing via 
coding and evaluating through execution based on the algorithm 
designed by the learner. As ideas should be realized and evaluated 
in the third step, we applied D5 of the DT model and C4 of the 
CT-CPS model.

4.2.2 Class design
Table 2 presents the course details. From Weeks 2 to 4, the first 

stage of problem-solving, “problem recognition and definition,” 
was conducted by utilizing “data collection (DC), data analysis, or 
representation (DA)” among CT factors. From Weeks 5 to 7, by 
utilizing “problem decomposition (D), abstraction (A), and 
algorithm procedures (AL)” among CT factors, the second stage 
of problem-solving, “problem analysis and design,” was performed. 

From Weeks 9 to 14, the students learned Python to realize their 
ideas. From Weeks 15 to 16, by utilizing “automation (A) and 
simulation (S)” among CT factors, the third phase, 
“implementation and evaluation,” was conducted.

4.2.3 Teaching methods and tools
In this class, a theoretical lecture on concepts was conducted 

first, and then the students learned the suggested class content 
through small-activity tasks. After completing all tasks, problem-
solving processes were applied step-by-step per week. The phased 
learning method for the problem-solving process is presented in 
Table 3.

The step-by-step learning results are shown in 
Supplementary Figure 2. In the first step, a wide range of topics was 
set, and data were collected through open data, Google Trends, and 
Naver Data Lab to recognize problems, which were analyzed with 
Excel to identify problems and determine causes. In Week 4, in the 

TABLE 2 Details and methods of basic SW education with application of the D-CT-CPS model per week.

Week Content Activity

1 Introduction to the course Pre-survey

2 Data collection Topic setting

Creation and collection of lists necessary for data collection

3 Data analysis and representation Analysis and representation of collected data

4 Problem definition Problem definition via data collection and analysis

5 Problem decomposition Idea search using Duncker Diagram

Specification of functions

6 Abstraction Prototype production using Kakao Oven

7 Algorithm Algorithm design using Flowgorithm

8 Midterm exam Submission of interim report

9 Python use environment and usage

Variables and input/output

Coding with Python

10 Operator

11 Strings and lists

12 Conditional expressions and selection statements

13 ~ 14 Repetition statement

15 Function

16 Final exam Implementing and evaluation of one’s ideas

Post-survey

TABLE 3 Teaching methods and tools per stage of problem-solving.

Step 1 Step 2 Step 3

Weeks 2–4 5–7 9–16

Steps Problem recognition 

and definition

Problem analysis 

and design

Implementation 

and evaluation

CT factors DA DC DA AL AS

Tools to 

be used 

during class

Open data and 

trends

Excel

5WHYS technique

Duncker Diagram

Kakao Oven

Flowgorithm

Collaboratory 

(Colab)

Python

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 05 frontiersin.org

class, students defined essential problems using the 5WHYS2 
technique used in the “problem definition” step of DT.

In the second step, ideas were explored and selected using the 
Duncker Diagram in the problem-solving technique. After 
subdividing the functions to specify the selected ideas, a prototype 
(screen flow) was produced with Kakao Oven, and an algorithm was 
designed (logical flow) with Flowgorithm.

In the third step, students implemented their ideas using an 
algorithm designed in Python and executed the program for evaluation. 
Python classes were conducted in a Colab environment so that code 
could be written and shared anytime and anywhere. As many students 

2 The 5WHYS method is an iterative interrogative technique pioneered at 

Toyota Motor Corporation in the 1930s to explore the cause-and-effect 

relationships underlying a specific problem. By working back the cause of one 

effect to another up to five times, designers can expose root causes and explore 

effective solutions (Card, 2017).

were experiencing this type of programming education for the first time, 
a Python grammar class was conducted from Weeks 9 to 14. From Weeks 
15 to 16, they implemented their ideas through the evaluation programs.

4.3 Research tools

Four items on demographic data and 26 items on CT were 
assessed. Demographic data-related items consisted of “course retake,” 
“gender,” “grade,” and “difficulty in programming.” The CT items were 
amended and added in line with learners’ levels by extracting the 
items developed by Jung (2022), Lee and Lee (2020), and the Lee et al. 
(2016) (see Supplementary Table  2). A 5-point Likert scale 
(1 = strongly disagree to 5 = strongly agree) was used for the survey 
responses. The suggested 26 items (Supplementary Table  2) were 
reviewed by three experts (two professors of computer science and one 
professor of computer education), followed by reliability and validity 
tests, whose results are reported in Table 4. Cronbach’s alpha was used 
for internal consistency, and the KMO and Bartlett tests were used to 
verify the model’s effectiveness. A principal component analysis was 
also performed, and factor loadings were estimated using the Bartlett 
method. As a result of the two-factor analysis, two items were removed 
from the initial 26 items, and the extracted 24 items were divided into 
three factors. The KMO value was 0.932, and significance level of the 
Bartlett value was 0.000, verifying the appropriateness of the test tools.

Using the test tool, a survey was conducted not only for pre-and 
post-assessment but also at each stage, and the learner was asked to 
write a reflection journal at each stage. Paired-sample t-tests and path 
analysis were performed using SPSS 25.0 and AMOS 20.0. In addition, 
the content of the reflection journal was analyzed in Python. Regarding 
the detailed data analysis method, frequencies and percentages were 
calculated to identify the sociodemographic features of the research 
targets. Second, we conducted paired-sample t-tests to examine the 
effectiveness of SW education using the D-CT-CPS model. Third, 
Pearson’s correlation analysis was performed to identify the relationship 
between CT factors by the Stage of Problem-Solving after Education and 
the Cognitive Load of Programming. Fourth, the difficulties experienced 
by learners for each CT factor were visualized and analyzed using word 
clouds. Fifth, a path analysis was performed to determine the path 
between CT factors by the Stage of Problem-Solving after Education and 
the Cognitive Load of Programming. Model fitness was verified, and 
direct and indirect effects among the variables were confirmed. The 
significance of indirect effects was verified using bootstrapping.

5 Results

5.1 Changes in CT efficacy per step before 
and after SW education

Table 5 presents the analysis results of CT changes per step before 
and after SW education. Compared with pre-SW education, data 
collection and analysis (DCDA) improved the mean by 0.674 after SW 
education, and the standard deviation decreased by 0.102. With a 
significance probability of p < 0.001 and an effect size (Cohen’s d) of 
0.901, basic SW education with the D-CT-CPS model was effective in 
“data collection and analysis.” Compared with pre-software education, 
problem decomposition, abstraction, and algorithm (DAAL) improved 

TABLE 4 Results of reliability and validity tests.

Factors 
number

DAAL AS DCDA Cronbach’s 
alpha

12 0.812 0.216 0.09 0.948

9 0.804 −0.008 0.233

11 0.791 0.064 0.173

13 0.762 0.161 0.342

16 0.761 0.162 0.271

10 0.753 −0.044 0.278

14 0.747 0.092 0.285

8 0.737 0.051 0.286

17 0.731 0.055 0.307

19 0.727 0.227 0.264

20 0.692 0.149 0.387

18 0.686 0.152 0.298

25 0.1 0.901 0.122 0.942

22 0.082 0.899 0.055

21 0.037 0.882 0.075

24 0.161 0.865 0.1

23 0.126 0.828 0.202

26 0.114 0.819 0.161

2 0.295 0.17 0.787 0.9

1 0.282 0.185 0.75

3 0.338 0.058 0.75

4 0.408 0.121 0.747

5 0.42 0.115 0.661

6 0.403 0.281 0.601

KMO (Kaiser-Meyer-Olkin) 0.932

Bartlett’s test of sphericity Chi-square 3792.116

df 276

Significance probability 0
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TABLE 6 Changes in programming difficulty before and after education.

Subdomain M N SD Std Error t p Cohen’s d

Difficulty in 

programming

Pre-education 3.8684 190 0.859773 0.062374 8.354 0.000 −0.82387

Post-education 3.1000 190 1.000265 0.072567

the mean by 0.559 after SW education, and the standard deviation 
increased by 0.001. With a significance probability of p < 0.001 and an 
effect size (Cohen’s d) of 0.752, basic SW education with the D-CT-CPS 
model was effective in “problem decomposition, abstraction, and 
algorithm.” Compared to pre-SW education, automation and 
simulation (AS) improved the mean by 1.246 after SW education, and 
the standard deviation increased by 0.10. With a significance 
probability of p < 0.001 and an effect size (Cohen’s d) of 1.506, basic SW 
education with the D-CT-CPS model was effective for AS.

Basic SW education with the D-CT-CPS model contributed to 
higher CT effectiveness [DC (data collection), DA (data analysis), D 
(problem decomposition), A (abstraction), AL (algorithm), and A 
(automation) and S (simulation)] required for problem-solving stages. 
In other words, basic SW education with the D-CT-CPS model 
impacted “CT effectiveness.” However, the standard deviation 
increased after SW education compared to pre-SW education, except 
at the DCDA stage. In particular, at the phase of learning programming 
language (i.e., AS), the standard deviation was 0.1 or more, indicating 
that the gap between learners widened in this phase compared to 
other phases of CT effectiveness.

5.2 Changes in difficulty in programming 
before and after SW education

Table 6 indicates that the difficulty in programming decreased the 
mean by 0.76 after SW education, compared with pre-SW education, 
and the standard deviation increased by 0.140. Thus, basic SW 
education with the D-CT-CPS model effectively lowered cognitive 
load in programming at a significance probability of p < 0.001 and an 
effect size (Cohen’s d) of-0.824. Furthermore, the difference in 
programming cognitive load between learners became more severe 
after SW education compared to pre-SW education.

5.3 Difficulties experienced by learners by 
CT factor

The students had less difficulties in programming, but the gap 
between the students widened after basic SW education. Therefore, to 

design additional modules for basic SW education, it was necessary to 
check the cognitive load that occurred in the CT factors. For this 
purpose, the content of the reflection diary was analyzed to see what 
kind of difficulties were encountered at each step. Here, words related 
to the difficulties encountered at each stage were visualized as word 
clouds (Supplementary Figures 4–6).

5.3.1 DCDA
Supplementary Figure  4 shows the different difficulties that 

students encountered when carrying out DCDA tasks. These 
difficulties mainly included topic selection, data search, the analysis 
process, time management, problem-solving, data collection, securing 
the necessary resources, the difficulty of the task itself, procedural 
problems, collaboration with team members and use of tools.

5.3.2 DAAL
Supplementary Figure 5 shows the students’ difficulties at the 

DAAL stage. Students faced many challenges and difficulties in 
designing algorithms and creating prototypes, especially in the process 
of implementing new concepts, tools, and ideas and communicating 
with team members.

5.3.3 AS
Supplementary Figure 6 shows the students’ difficulties at the AS 

stage. Overall, students struggled with the grammar of Python, the 
complexity and novelty of the concept, and the process and content of 
applying programming to the task. This is more complex and difficult 
than the CT factors of the previous stage.

5.4 Structural analysis: impact of 
programming difficulty on CT factors

To design additional modules for basic SW education, it was 
necessary to investigate how the cognitive load of programming 
affected the CT factors. To this end, structural equations were used to 
analyze how the cognitive load of programming affected the CT 
factors. A model in which programming difficulties affected CT was 
established based on previous studies (Supplementary Figure 3; Oh 
and Ahn, 2015).

TABLE 5 Analysis of differences in CT factors by stage before and after education.

Subdomain M N SD Std Error t p Cohen’s d

DCDA Before 3.0105 190 0.79822 0.05791 −8.602 0.000 0.9008

After 3.6851 190 0.69608 0.0505

DAAL Before 3.0667 190 0.73893 0.05361 −7.013 0.000 0.75241

After 3.6259 190 0.74746 0.05423

AS Before 1.993 190 0.77301 0.05608 −15.04 0.000 1.50584

After 3.2395 190 0.87914 0.06378
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5.4.1 Descriptive statistics of and correlations 
between research variables

As illustrated in Table 7, because the absolute skewness and kurtosis 
values in the path model were less than two, the research variables 
satisfied the criteria for a normal distribution. The average of each 
variable was 3.1–3.68 on a 5-point Likert scale. The average DCDA was 
the highest (M = 3.685), followed by DAAL (M = 3.625) and AS 
(M = 3.239). The difficulty in programming was also 3.1 on average, 
assuming that students found it difficult on a medium or higher level.

The relationship between the variables was −0.445 to 0.822, indicating 
a significant correlation (p < 0.01). In particular, “difficulty in 
programming,” which indicates the cognitive load in AS and programming 
related to coding, was negatively correlated with all the CT factors (r 
values ranging from −0.445 to 0.822, p < 0.01). Thus, facing less difficulty 
in programming can strengthen belief in succeeding in automation and 
simulations. Furthermore, “difficulty in programming” negatively 
correlated with all CT factors, demonstrating a negative relationship 
between cognitive load in programming and CT factors per step.

5.4.2 Model fitness
Based on previous studies, a path model was established to 

confirm the relationship between CT factors per step and cognitive 
load in programming, and model fitness was measured via maximum 
likelihood estimation. The absolute fit index was confirmed by 2X  and 
RMSEA, and the incremental fit index was confirmed by CFI, TLI, 
and NFI.

The goodness-of-fit of the model is measured in Table 8. The study 
model’s goodness-of-fit indices were CMIN = 0.655 (df = 1), 
NFI = 0.998, TLI = 1.005, CFI = 1.00, and RMSEA = 0.000. If the 

acceptance criteria for NFI, TLI, and CFI are greater than 0.90, the fit 
is considered high, and if the RMSEA value is less than 0.05, the fit is 
also considered high. The RMSEA value of 0.000 is lower than the 
ideal threshold, and the NFI, TLI, and CFI values are higher, indicating 
that the model fits well.

5.4.3 Effects of cognitive load in programming 
and CT factors per step

Table 9 illustrates the results of the significance verification of the 
path coefficients. DCDA had the greatest positive impact on DAAL 
(β = 0.823, p < 0.001), and DAAL had significantly positive effects on AS 
(β = 0.657, p < 0.001). In addition, the difficulty in programming had the 
greatest negative impact on DCDA (β = −0.309, p < 0.001) and negatively 
affected AS (β = −0.284, p < 0.0001), and DAAL (β = −0.092, p < 0.001), 
in this order. In summary, the higher the cognitive load in programming, 
the lower the effectiveness of CT (DCDA, AS, and DAAL).

5.4.4 Verification of statistical significance of 
mediating effects

The direct, indirect, and total effects of CT elements and cognitive 
load on programming by stage are presented in Table  10. Direct, 
indirect, and total effects were confirmed using the bootstrapping 
method to verify the effects of cognitive load on the programming and 
CT factors per step. The cognitive load in programming negatively 
affected DCDA, DAAL, and AS; a higher cognitive load resulted in 
lower CT effectiveness for each stage. In particular, AS, the 
programming stage, had the greatest negative impact, followed by 
DAAL and DCDA.

The path (β = −0.341, p < 0.001) of cognitive load in programming 
to DAAL via DCDA demonstrated a significant indirect effect. The 
path (β = −0.259, p < 0.001) of the cognitive load toward AS via DCDA 
and DAAL had a significant indirect impact.

Finally, the confidence interval for the mediating effect was set at 
95%, and the bootstrapping method was used to confirm whether the 
value of the mediating effect was significant; the results are reported 
in Table 11. As the confidence interval range did not include zero and 
the significance probability was p = 0.01, the mediating effect of the CT 
factor per step was significant.

6 Conclusions and recommendations

The 21st century demands the ability to create new value based on 
CT and problem-solving skills. Learners must be able to effectively 

TABLE 7 Correlations between CT factors per step and cognitive load in 
programming after SW education.

CT 
factors

Difficulty in 
programming

DCDA DAAL AS

Difficulty in 

programming

1 −0.445** −0.465** −0.583**

DCDA −0.445** 1

DAAL −0.465** 0.822** 1

AS −0.583** 0.624** 0.709** 1

Average 3.10 3.685 3.625 3.23

Standard 

deviation

1.00 0.696 0.747 0.879

Skewness −0.010 −0.009 −0.265 −0.244

Kurtosis −0.624 0.170 0.170 0.034

**p < 0.01 (two-tailed).

TABLE 8 Fit indices of research model.

Model’s 
goodness-
of-fit

x2 df NFI TLI CFI RMSEA 
(90% 
CI)

Research model 0.655 

(p = 0.418)

1 0.998 1.005 1.000 0.000

Acceptance 

criterion

p > 0.05 – Higher 

than 

0.9

Higher 

than 

0.9

Higher 

than 

0.9

Lower 

than 0.05

TABLE 9 Research model path coefficients.

Path coefficients β B S.E. C.R. p

DCDA ← Difficulty in 

programming

−0.445 −0.309 0.045 −6.825 ***

DAAL ← Difficulty in 

programming

−0.124 −0.092 0.034 −2.721 0.007

DAAL ← DCDA 0.767 0.823 0.049 16.894 ***

AS ← Difficulty in 

programming

−0.324 −0.284 0.047 −6.109 ***

AS ← DAAL 0.558 0.657 0.062 10.542 ***

***p < 0.001 (two-tailed).
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solve practical problems. To support this, it is necessary to actively 
develop various learning models that cultivate knowledge and self-
efficacy and integrate them into software (SW) education. However, 
there is a lack of research on the theoretical foundations and empirical 
verification needed to propose specific support strategies.

By analyzing the effectiveness and cognitive load of basic SW 
education using the D-CT-CPS model, this study attempted to suggest 
improvements and future directions for SW education and 
instructional strategies. As a result, it was found that the instructional 
model that combined DT and computing thinking had a positive 
effect on improving learning outcomes. When the learner’s perceived 
difficulty of programming is reduced, learning motivation increases; 
otherwise, cognitive load may accumulate. Therefore, different 
learning methods and learner-centered learning methods are needed 
to increase learning motivation.

6.1 Analysis of the effect of basic SW 
education with the D-CT-CPS model

First, basic SW education using the D-CT-CPS model had static 
effects on DCDA, DAAL, and AS. Learners play a leading role in 
problem-solving. In this sense, SW education that reconstructs 
knowledge is effective, encouraging learners to feel interested and 
participate in education.

Second, basic SW education with the D-CT-CPS model was 
confirmed to influence lower cognitive loads in programming. The 
education did not start as a programming class but helped students 
approach and logically solve practical problems in a step-by-step 
manner. It can be assumed that such an approach served as a thinking 

process that helped learners become familiar with communication 
with computers, thus lowering their cognitive load after SW education 
compared to pre-SW education.

Third, basic SW education with the D-CT-CPS model generally 
demonstrated positive effects, but the gap between learners widened 
rather than narrowed. Thus, basic SW education with the application 
of a learner-centered model may be  insufficient to resolve the 
learning gap.

6.2 Implications of basic SW education 
with the D-CT-CPS model

Personal interest refers to the level of learners’ interest in the class 
content. If learners are highly interested in the content, they use 
diverse perception strategies that affect their willingness to continue 
learning. Therefore, as tasks enabling learners to construct knowledge 
by themselves can increase their interest, providing more such tasks 
in SW liberal arts education for non-science and non-engineering 
majors is necessary.

Second, basic SW education with the D-CT-CPS model can 
positively affect learners through systematic DT, enabling them to 
solve problems with computers. Therefore, the instructional design 
must reflect a systematic thinking process in which learners 
communicate with computers.

Third, basic SW education with the D-CT-CPS model cannot 
increase CT effectiveness or decrease the cognitive load in 
programming. Therefore, it is necessary to provide relevant materials 
and activities to gain familiarity with the knowledge necessary to 
understand class content before class and sufficient content for 
practice after class to activate an advanced organization.

6.3 Results of the analysis of the 
relationship between cognitive load and 
CT factors for adopting SW education

Negative effects on the thinking of DCDA, DAAL, and AS were 
confirmed. Specifically, the difficulty in programming had the greatest 
impact on DCDA, followed by AS and DAAL, indicating that the 
cognitive load in programming affects all CT factors.

The cognitive load in programming, which affected the “problem 
recognition and definition” stage, affected the AS factor, which is at 

TABLE 10 Direct, indirect, and total effects of CT factors per step and cognitive load on programming.

Mediating effects Total effect Direct effect Indirect effect

DCDA Difficulty in programming −0.445 −0.455 –

DCDA – – –

DAAL – – –

DAAL Difficulty in programming −0.465 −0.124 −0.341

DCDA 0.767 0.767 –

DAAL – – –

AS Difficulty in programming −0.583 −0.324 −0.259

DCDA 0.428 – 0.428

DAAL 0.558 0.558 –

TABLE 11 Results verifying the mediating effect based on bootstrapping 
techniques.

Verification of the 
significance of mediating 

effects

Lower 
limit

Upper 
limit

p

DAAL ← Difficulty in 

programming

−0.566 −0.328 0.010

AS ← Difficulty in 

programming

−0.656 −0.351

AS ← DCDA 0.506 0.690
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the stage of “implementation and evaluation,” via the DCDA factor 
and DAAL. Thus, the cognitive load in programming did not simply 
affect the implementation with coding but also affected the first stage 
of the problem-solving process and then the next steps, including CT 
effectiveness per step.

6.4 Support strategies for adopting basic 
SW education

First, the AS is the most relevant CT factor for programming. The 
“problem analysis and design” phase is helpful and directly influenced 
AS. As the difficulty in programming exerted the least influence in this 
phase, instructors should design learning materials while maximizing 
the DAAL procedures. Furthermore, because DCDA had the largest 
impact on programming difficulty, learners were likely to experience 
more difficulty in the process of problem recognition and definition 
in the initial stages. Therefore, in basic SW education, instructors 
should proceed with classes to implement programming using the 
DAAL stage rather than approaching problem recognition 
and definition.

Second, strategies should be  developed to increase learners’ 
immersion to achieve higher CT effectiveness and lower cognitive 
load in programming. Learners who experience immersion during 
learning are confident and satisfied with their learning. To this end, 
classes should be designed to facilitate motivation (Keller, 2000). One 
method is to use flipped learning, which can positively affect learners’ 
immersion and reduce cognitive load (Karjanto and Acelajado, 
2022). For instance, classes can be  designed with strategies that 
capture attention, such as presenting major-related problems that 
intrigue learners or encouraging them to participate directly in 
activities. Since learners can focus more on the content related to 
their interests, instructors should provide learning materials with 
problems familiar to them. Furthermore, even if the study topic is 
related to the learner’s interests or majors, instructors should prepare 
the topics and provide tasks according to the learner’s level of 
understanding. Finally, instructors should present practical problems 
to which learners can satisfactorily apply the learning content and 
provide positive feedback on the problem-solving process. 
Additionally, learning and exam contents must be  consistent. 
However, learners from Confucian cultures often have quiet, passive, 
and receptive learning styles, and they may resist active participation; 
therefore, strategies to overcome this when applying flipped learning 
are needed (Karjanto and Simon, 2019; Karjanto, 2021). At the 
beginning of the semester, the benefits and expectations of active 
participation should be  explained to the students; they must 
be informed that being active and sometimes noisy in class is part of 
the learning process. Activity assignments should also be presented 
in a culturally and linguistically appropriate manner to ensure that 
students are comfortable and experience effective learning. Finally, 
adopting an absolute assessment approach that motivates learners 
from within is essential.

Third, in basic software education, students can use Intelligent 
Teaching Systems (ITSs) and Generative AI to provide personalized 
learning experiences, real-time support, and adaptive feedback. ITSs 
can be  used to create personalized learning environments. These 
systems reduce cognitive load and increase engagement by adjusting 
the difficulty of tasks based on individual student performance. ITSs 

provide scaffolding support for complex programming concepts, 
which can gradually increase task complexity as learners’ skills 
improve. In addition, text-based generative AI can provide real-time 
support and feedback to learners. These AI-based tools can 
significantly enhance the learning experience by answering students’ 
questions, providing hints, and guiding the problem-solving process, 
and can help enable individualized learning (Guo et al., 2021).

In conclusion, the positive effect of basic SW education with the 
D-CT-CPS model was identified, and improvements were derived. 
Instructional strategies for sustainably implementing basic SW 
education were also proposed. However, the basic SW liberal arts 
education in this study only targeted non-science and non-engineering 
majors at one university. Therefore, future studies should include 
learners of all majors who opt for basic SW education at various 
universities in other regions. Furthermore, the effectiveness of the 
suggested instructional strategies for SW education after their 
application in the field should be  verified, and measures should 
be suggested to improve its quality.
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