
Frontiers in Education 01 frontiersin.org

An analysis of the effects of
learner-centered software
education and required support
strategies
Seongjin Ahn 1 and Kyungsun Oh 2*
1 Computer Education, Sungkyunkwan University, Seoul, Republic of Korea, 2 Sang-Huh College,
Konkuk University, Seoul, Republic of Korea

Introduction: This study investigates support strategies to enhance basic
software education as a liberal arts course at Konkuk University, South Korea, by
integrating design thinking and computational thinking to mitigate the cognitive
load of programming.

Methods: A study with 190 students utilized a learner-centered approach,
incorporating design thinking and computational problem-solving, and
evaluated its effectiveness through pre-and post-tests and structural equation
modeling.

Results: The intervention successfully reduced the cognitive load associated
with programming tasks and led to positive changes in computational thinking
factors. Our analysis also revealed that cognitive load negatively impacted
all computational thinking factors and that improvements in computational
thinking factors were sustained into subsequent stages of the learning process.

Conclusion: The findings suggest that as differences in student learning
capabilities become more pronounced, a variety of tailored learning strategies
must be employed. Software education should incorporate computational
thinking factors such as problem decomposition, abstraction, and algorithmic
procedures to lower cognitive load. Additionally, it is crucial to foster immersion
in learning by implementing attention, relevance, confidence, and achievement
strategies.

KEYWORDS

computational thinking, motivation theory, cognitive load theory, programming
education, design thinking, CT-CPS

1 Introduction

Software (SW) and artificial intelligence (AI)-based digital technologies have great
influence in the digital transformation era. Moreover, as the 4th Industrial Revolution advances
and digital transformation accelerates, computational thinking (CT) is rapidly becoming
essential to value creation. CT helps students explore innovative solutions in a variety of fields
by developing problem-solving and logical thinking skills (Denning and Tedre, 2019; Gong
et al., 2020). Consequently, developed countries are providing SW education from a universal
perspective to prepare students for the demands of a digital society (Korea Education and
Research Information Service (KERIS), 2019). For instance, the government of South Korea

OPEN ACCESS

EDITED BY

Natanael Karjanto,
Sungkyunkwan University, Republic of Korea

REVIEWED BY

Abadi Abadi,
Surabaya State University, Indonesia
Thian Khoon Tan,
University of Nottingham Malaysia, Malaysia
Daniel Sinambela,
New York University Abu Dhabi,
United Arab Emirates
Ratna Lindawati Lubis,
Telkom University, Indonesia
Edi Cahyono,
Halu Oleo University, Indonesia
Rijanto Purbojo,
University of Pelita Harapan, Indonesia

*CORRESPONDENCE

Kyungsun Oh
 skyal@konkuk.ac.kr

RECEIVED 18 May 2024
ACCEPTED 05 September 2024
PUBLISHED 17 September 2024

CITATION

Ahn S and Oh K (2024) An analysis of the
effects of learner-centered software
education and required support strategies.
Front. Educ. 9:1434700.
doi: 10.3389/feduc.2024.1434700

COPYRIGHT

© 2024 Ahn and Oh. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research
PUBLISHED 17 September 2024
DOI 10.3389/feduc.2024.1434700

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2024.1434700&domain=pdf&date_stamp=2024-09-17
https://www.frontiersin.org/articles/10.3389/feduc.2024.1434700/full
https://www.frontiersin.org/articles/10.3389/feduc.2024.1434700/full
https://www.frontiersin.org/articles/10.3389/feduc.2024.1434700/full
https://www.frontiersin.org/articles/10.3389/feduc.2024.1434700/full
mailto:skyal@konkuk.ac.kr
https://doi.org/10.3389/feduc.2024.1434700
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2024.1434700

Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 02 frontiersin.org

(Korea) has mandated the inclusion of SW education in primary and
secondary schools (National Assembly Research Service, 2019). As of
September 2022, 44 universities had been selected as SW-centric,
motivating more universities to require all students to take relevant
SW courses (Hong et al., 2019).

SW education aims to strengthen problem-solving skills through
CT (Hsu et al., 2018). Furthermore, programming as an educational
tool can help develop CT competencies effectively (Lye and Koh,
2014). However, learning motivation and interest can vary depending
on the level of the cognitive load (i.e., difficulty in programming),
creating difficulties in developing CT (Berssanette and de Francisco,
2021; Kim et al., 2011).

To overcome such difficulties, studies have verified the
effectiveness of learner-centered SW education methods (Berssanette
and de Francisco, 2021; Lee, 2018). To reduce the cognitive burden of
learners, Kim et al. (2011) argued that “learners should specify their
ideas rather than focusing on existing programming problems, and
problem-solving tasks that can be implemented through computers
should be suggested.” Moreover, Kim and Lee (2020) presented the
necessity for instructional strategies that allow learners to become
familiar with communication with computers and think about
programming education.

Existing studies recognize the importance of CT and SW
education, but studies analyzing the effects of high cognitive load
associated with programming tasks are largely lacking. This study
aims to identify how cognitive load affects learners and to develop
pedagogical strategies that increase learning motivation and the
effectiveness of software engineering education. To this end, this study
presents solutions to the problems identified in previous studies by
focusing on a learner-centered approach and integrating CT into
problem-solving tasks.

2 Theoretical background

2.1 Cognitive load

Cognitive load, a concept introduced in the 1980s by John Sweller,
has received a lot of attention in the last few years. It is based on the
idea that our working memory (the part of our memory that processes
what we are currently doing) can only deal with a limited amount of
information at a time (Sweller, 1988).

Consequently, cognitive load is acquired information that cannot
be moved to long-term memory and can be lost or overloaded in the
working memory (Sweller, 1994, 2023). Cognitive load can be divided
into “intrinsic cognitive load,” “extrinsic cognitive load,” and “germane
cognitive load.” Intrinsic cognitive load is the load resulting from the
complexity and difficulty of a task itself. Extrinsic cognitive load is the
load caused by external factors, such as learning methods and data
presentation methods, and “germane cognitive load” is the load due
to the mental effort involved in learning. This cognitive load is directly
related to task difficulty and has a significant impact on learner
learning (Seufert, 2018, 2020; Seufert et al., 2024).

Researchers stated that the cognitive load generated in the
learning process of programming has a negative effect. Mason et al.
(2015) stated that some of the programming environments are
complex, and the cognitive resource overload can have a negative
effect on the attention and learning of the learners. In addition,

Çakiroğlu et al. (2018) evaluated students’ performance in
programming tasks and found that academic performance may
deteriorate as the cognitive load increases in complex tasks.

For novice programmers, managing cognitive load is critical.
High cognitive load can interfere with the learning process, making it
difficult for students to understand and retain new programming
concepts. Garner (2002) highlighted the need to carefully manage
cognitive load for effective learning outcomes in software education.
To reduce cognitive load Paas et al. (2003) suggested teaching methods
that minimize extraneous cognitive load, allowing learners to focus
on intrinsic and relevant cognitive load. Cognitive load can be reduced
by simplifying complex information and limiting the amount of
information learners have to process at once (Liu, 2024; Skulmowski
and Xu, 2022).

Taken together, these studies suggest that it is important to
provide appropriate teaching strategies to reduce cognitive load, such
as segmenting complex information or providing step-by-step
demonstrations of problem-solving, as cognitive load can have a
significant impact on learning outcomes in SW education.

2.2 CT-based problem-solving model and
SW education

CT is a problem-solving process in which a complex problem is
broken down into smaller ones through computing systems for more
efficient implementation, following which, solutions can be found via
logical inference and abstraction (Wing, 2006, 2008). The International
Society for Technology in Education (ISTE) and the Computer
Science Teachers Association (CSTA) defined nine core concepts and
abilities (Barr and Stephenson, 2011) to apply CT to education and
developed operational definitions based on them (International
Society for Technology in Education (ISTE) and Computer Science
Teachers Association (CSTA), 2011a, 2011b). Refer to
Supplementary Table 1 for information on the core concepts and
operational definitions of CT.

Various teaching models have been proposed to improve problem-
solving skills based on CT. One of these is the CT-based Creative
Problem-Solving (CT-CPS) model (Jeon and Kim, 2017). CPS is a
systematic and step-by-step approach to promoting creative problem-
solving. It focuses on effectively solving complex problems by
combining creative and critical thinking (Osborn, 1953; Treffinger
et al., 2023). This cutting-edge approach has been used to effectively
address complicated problems across various disciplines. Jeon and
Kim (2017) argued that the “CT-CPS model proceeds through the
stages of problem recognition and definition, idea concept, design,
and implementation and evaluation.” In the problem recognition and
definition stage, learners find and define problems through CT-based
data collection, analysis, and representation. In the idea concept stage,
learners brainstorm ideas to solve problems, utilizing CT abstraction.
The design stage involves learners structuring selected ideas to
be solved by SW. In the final stage, implementation and evaluation,
designed ideas are coded, executed, and evaluated, utilizing CT
automation and simulation.

Noh (2023) found that incorporating a CT-based problem-
solving model into university SW education enhanced students’
CT. Similarly, Kim et al. (2021) demonstrated that CT-based SW
education significantly improved middle school students’

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 03 frontiersin.org

computational thinking and creative problem-solving abilities.
Likewise, Jeon and Kim (2017) reported that such an educational
model effectively boosted elementary students’ creative problem-
solving and positive psychological attributes. Lastly, Bai et al. (2021)
concluded that CT is crucial for facilitating creative problem-solving
in SW education.

Thus, studies of SW classes designed with a CT-based problem-
solving model have proven that applying such a model to SW
education improves learners’ creative problem-solving skills, learning
efficacy, and CT competence. These studies emphasize the need for
instructional design that incorporates real problem-solving, not just
programming exercises.

2.3 Design thinking and SW education

Design thinking (DT) is a creative problem-solving method by
which learners identify and solve real-life problems using empathy
(Lawson, 1980; Rowe, 1987). In their meta-analysis, Lee and Lee
(2020) discovered that the cognitive and social domains had the
greatest effects on learning performances utilizing DT. In particular,
the cognitive domain related to “knowing” encompasses “cognitive
competency (academic achievement),” “creative problem-solving
skills,” and “thinking capability”; among these, thinking capability and
creative problem-solving skills had the greatest impact. Furthermore,
the social domain related to interactions with others and included
“communication skills,” “ability to empathize,” “interpersonal
problem-solving ability,” “collaboration capabilities,” and “sociality”;
among these, ability to empathize, interpersonal problem-solving
ability, and sociality had the greatest impact.

Shin et al. (2019) proved the positive effects of DT, such as how its
application in SW education enabled learners to identify problems
from a new perspective and explore and specify ideas creatively.
Subsequently, Kelly and Zero (2021) presented a model for solving
complex design problems by integrating DT and CT and showed that
design thinking can effectively use CT for problem formulation and
problem-solving. Similarly, Oh and Jang (2022) revealed that
DT-based SW education positively affects CT in university liberal arts
classes. Finally, Jun (2017) proved that DT-based SW classes increase
students’ CT and real-life problem-solving skills, positively affecting
their confidence.

The integration of DT and CT presents a multifaceted approach
to enhancing problem-solving skills and cognitive development in
educational settings. The literature reviewed in this section suggests
that this integrated methodology can significantly improve problem-
solving skills, foster creativity, and encourage collaboration. However,
to fully realize this potential, systematic instructional design is needed
to create an environment where students can solve the complex
problems of modern society.

3 General objective and research
questions

In this study, CT-CPS and DT models are integrated to design a
teaching plan, apply it to one of the SW basic required liberal arts
courses (course name: “Computational Thinking1”) at Konkuk
University in the second semester of 2023, and then analyze learners’
difficulties and cognitive load to suggest improvement measures.

The aim is to answer the following research questions:

 1 Does undergraduate SW education using DT-and CT-based
problem-solving models have a positive effect on learners?

 2 Does undergraduate SW education using DT-and CT-based
problem-solving models affect cognitive load
(programming difficulty)?

 3 What kind of difficulties do learners face in undergraduate SW
education using DT-and CT-based problem-solving models?

 4 How does cognitive load (programming difficulty) affect CT
factors in undergraduate SW education using DT-and
CT-based problem-solving models?

4 Methods

4.1 Research participants

This study focused on 190 non-science and non-engineering majors
who had taken basic SW liberal arts courses for the first time at a four-year
university in a metropolitan area in Korea. This study was approved by the
Konkuk University Institutional Review Board (approval number
7001355-202307-HR-670). Before starting the study, consent was obtained
for “Collection and Use of Personal Information” from all participants.
Among the participants, 83 were male (43.7%) and 107 were female
(56.3%); in terms of student population (Table 1), 105 were enrolled in
first-year (55.3%) and 85 in second-year or higher (43.7.2%). Furthermore,
most students (78.9%) had not previously acquired SW education.

4.2 Study design and procedures

4.2.1 D-CT-CPS class model
Since the basic SW liberal arts course “Computational Thinking”

aimed to improve CT and is a required subject, it was assumed that

1 ‘The Computational Thinking course is part of a comprehensive

undergraduate SW curriculum designed to improve students’ analytical and

problem-solving skills. This means that undergraduate SW education covers

a wide range of topics, and computational thinking is one of the essential

components of this comprehensive curriculum.

TABLE 1 Detailed information on non-science and non-engineering majors.

Classification Total Year SW education experience

First-year Second-year and higher Yes No

Male 83 (43.7%) 42 (22.1%) 41 (21.6%) 23 (12.1%) 60 (31.6%)

Female 107 (56.3%) 63 (33.2%) 44 (23.1%) 17 (8.9%) 90 (47.4%)

Total 190 (100%) 105 (55.3%) 85 (43.7%) 40 (21.1%) 150 (78.9%)

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 04 frontiersin.org

instructional design considering learners’ motivation and immersion
was necessary. Therefore, a class model was designed by applying a
CT-CPS model (Jeon and Kim, 2017) and DT (Lawson, 1980; Rowe,
1987) to identify problems in the learner’s situational context and
solve them creatively. Supplementary Figure 1 presents the design of
the class model.

The first step was “problem recognition and definition,” which
involves recognizing problems through data and defining problems
through analysis and expression. As problems should be discovered
and defined in the first step, C1 of the CT-CPS model was applied
along with D1 and D2 of the DT model. The second step was
“problem analysis and design,” decomposing into solvable
questions, finding key factors, structuring and expression problems,
and designing the algorithm to execute it on a computer. In the
second step, as ideas should be explored and algorithms designed
after producing prototypes, we applied D3 and D4 of the DT model
and C2 and C3 of the CT-CPS model. The third step was
“implementation and evaluation” and the stage of implementing via
coding and evaluating through execution based on the algorithm
designed by the learner. As ideas should be realized and evaluated
in the third step, we applied D5 of the DT model and C4 of the
CT-CPS model.

4.2.2 Class design
Table 2 presents the course details. From Weeks 2 to 4, the first

stage of problem-solving, “problem recognition and definition,”
was conducted by utilizing “data collection (DC), data analysis, or
representation (DA)” among CT factors. From Weeks 5 to 7, by
utilizing “problem decomposition (D), abstraction (A), and
algorithm procedures (AL)” among CT factors, the second stage
of problem-solving, “problem analysis and design,” was performed.

From Weeks 9 to 14, the students learned Python to realize their
ideas. From Weeks 15 to 16, by utilizing “automation (A) and
simulation (S)” among CT factors, the third phase,
“implementation and evaluation,” was conducted.

4.2.3 Teaching methods and tools
In this class, a theoretical lecture on concepts was conducted

first, and then the students learned the suggested class content
through small-activity tasks. After completing all tasks, problem-
solving processes were applied step-by-step per week. The phased
learning method for the problem-solving process is presented in
Table 3.

The step-by-step learning results are shown in
Supplementary Figure 2. In the first step, a wide range of topics was
set, and data were collected through open data, Google Trends, and
Naver Data Lab to recognize problems, which were analyzed with
Excel to identify problems and determine causes. In Week 4, in the

TABLE 2 Details and methods of basic SW education with application of the D-CT-CPS model per week.

Week Content Activity

1 Introduction to the course Pre-survey

2 Data collection Topic setting

Creation and collection of lists necessary for data collection

3 Data analysis and representation Analysis and representation of collected data

4 Problem definition Problem definition via data collection and analysis

5 Problem decomposition Idea search using Duncker Diagram

Specification of functions

6 Abstraction Prototype production using Kakao Oven

7 Algorithm Algorithm design using Flowgorithm

8 Midterm exam Submission of interim report

9 Python use environment and usage

Variables and input/output

Coding with Python

10 Operator

11 Strings and lists

12 Conditional expressions and selection statements

13 ~ 14 Repetition statement

15 Function

16 Final exam Implementing and evaluation of one’s ideas

Post-survey

TABLE 3 Teaching methods and tools per stage of problem-solving.

Step 1 Step 2 Step 3

Weeks 2–4 5–7 9–16

Steps Problem recognition

and definition

Problem analysis

and design

Implementation

and evaluation

CT factors DA DC DA AL AS

Tools to

be used

during class

Open data and

trends

Excel

5WHYS technique

Duncker Diagram

Kakao Oven

Flowgorithm

Collaboratory

(Colab)

Python

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 05 frontiersin.org

class, students defined essential problems using the 5WHYS2
technique used in the “problem definition” step of DT.

In the second step, ideas were explored and selected using the
Duncker Diagram in the problem-solving technique. After
subdividing the functions to specify the selected ideas, a prototype
(screen flow) was produced with Kakao Oven, and an algorithm was
designed (logical flow) with Flowgorithm.

In the third step, students implemented their ideas using an
algorithm designed in Python and executed the program for evaluation.
Python classes were conducted in a Colab environment so that code
could be written and shared anytime and anywhere. As many students

2 The 5WHYS method is an iterative interrogative technique pioneered at

Toyota Motor Corporation in the 1930s to explore the cause-and-effect

relationships underlying a specific problem. By working back the cause of one

effect to another up to five times, designers can expose root causes and explore

effective solutions (Card, 2017).

were experiencing this type of programming education for the first time,
a Python grammar class was conducted from Weeks 9 to 14. From Weeks
15 to 16, they implemented their ideas through the evaluation programs.

4.3 Research tools

Four items on demographic data and 26 items on CT were
assessed. Demographic data-related items consisted of “course retake,”
“gender,” “grade,” and “difficulty in programming.” The CT items were
amended and added in line with learners’ levels by extracting the
items developed by Jung (2022), Lee and Lee (2020), and the Lee et al.
(2016) (see Supplementary Table 2). A 5-point Likert scale
(1 = strongly disagree to 5 = strongly agree) was used for the survey
responses. The suggested 26 items (Supplementary Table 2) were
reviewed by three experts (two professors of computer science and one
professor of computer education), followed by reliability and validity
tests, whose results are reported in Table 4. Cronbach’s alpha was used
for internal consistency, and the KMO and Bartlett tests were used to
verify the model’s effectiveness. A principal component analysis was
also performed, and factor loadings were estimated using the Bartlett
method. As a result of the two-factor analysis, two items were removed
from the initial 26 items, and the extracted 24 items were divided into
three factors. The KMO value was 0.932, and significance level of the
Bartlett value was 0.000, verifying the appropriateness of the test tools.

Using the test tool, a survey was conducted not only for pre-and
post-assessment but also at each stage, and the learner was asked to
write a reflection journal at each stage. Paired-sample t-tests and path
analysis were performed using SPSS 25.0 and AMOS 20.0. In addition,
the content of the reflection journal was analyzed in Python. Regarding
the detailed data analysis method, frequencies and percentages were
calculated to identify the sociodemographic features of the research
targets. Second, we conducted paired-sample t-tests to examine the
effectiveness of SW education using the D-CT-CPS model. Third,
Pearson’s correlation analysis was performed to identify the relationship
between CT factors by the Stage of Problem-Solving after Education and
the Cognitive Load of Programming. Fourth, the difficulties experienced
by learners for each CT factor were visualized and analyzed using word
clouds. Fifth, a path analysis was performed to determine the path
between CT factors by the Stage of Problem-Solving after Education and
the Cognitive Load of Programming. Model fitness was verified, and
direct and indirect effects among the variables were confirmed. The
significance of indirect effects was verified using bootstrapping.

5 Results

5.1 Changes in CT efficacy per step before
and after SW education

Table 5 presents the analysis results of CT changes per step before
and after SW education. Compared with pre-SW education, data
collection and analysis (DCDA) improved the mean by 0.674 after SW
education, and the standard deviation decreased by 0.102. With a
significance probability of p < 0.001 and an effect size (Cohen’s d) of
0.901, basic SW education with the D-CT-CPS model was effective in
“data collection and analysis.” Compared with pre-software education,
problem decomposition, abstraction, and algorithm (DAAL) improved

TABLE 4 Results of reliability and validity tests.

Factors
number

DAAL AS DCDA Cronbach’s
alpha

12 0.812 0.216 0.09 0.948

9 0.804 −0.008 0.233

11 0.791 0.064 0.173

13 0.762 0.161 0.342

16 0.761 0.162 0.271

10 0.753 −0.044 0.278

14 0.747 0.092 0.285

8 0.737 0.051 0.286

17 0.731 0.055 0.307

19 0.727 0.227 0.264

20 0.692 0.149 0.387

18 0.686 0.152 0.298

25 0.1 0.901 0.122 0.942

22 0.082 0.899 0.055

21 0.037 0.882 0.075

24 0.161 0.865 0.1

23 0.126 0.828 0.202

26 0.114 0.819 0.161

2 0.295 0.17 0.787 0.9

1 0.282 0.185 0.75

3 0.338 0.058 0.75

4 0.408 0.121 0.747

5 0.42 0.115 0.661

6 0.403 0.281 0.601

KMO (Kaiser-Meyer-Olkin) 0.932

Bartlett’s test of sphericity Chi-square 3792.116

df 276

Significance probability 0

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 06 frontiersin.org

TABLE 6 Changes in programming difficulty before and after education.

Subdomain M N SD Std Error t p Cohen’s d

Difficulty in

programming

Pre-education 3.8684 190 0.859773 0.062374 8.354 0.000 −0.82387

Post-education 3.1000 190 1.000265 0.072567

the mean by 0.559 after SW education, and the standard deviation
increased by 0.001. With a significance probability of p < 0.001 and an
effect size (Cohen’s d) of 0.752, basic SW education with the D-CT-CPS
model was effective in “problem decomposition, abstraction, and
algorithm.” Compared to pre-SW education, automation and
simulation (AS) improved the mean by 1.246 after SW education, and
the standard deviation increased by 0.10. With a significance
probability of p < 0.001 and an effect size (Cohen’s d) of 1.506, basic SW
education with the D-CT-CPS model was effective for AS.

Basic SW education with the D-CT-CPS model contributed to
higher CT effectiveness [DC (data collection), DA (data analysis), D
(problem decomposition), A (abstraction), AL (algorithm), and A
(automation) and S (simulation)] required for problem-solving stages.
In other words, basic SW education with the D-CT-CPS model
impacted “CT effectiveness.” However, the standard deviation
increased after SW education compared to pre-SW education, except
at the DCDA stage. In particular, at the phase of learning programming
language (i.e., AS), the standard deviation was 0.1 or more, indicating
that the gap between learners widened in this phase compared to
other phases of CT effectiveness.

5.2 Changes in difficulty in programming
before and after SW education

Table 6 indicates that the difficulty in programming decreased the
mean by 0.76 after SW education, compared with pre-SW education,
and the standard deviation increased by 0.140. Thus, basic SW
education with the D-CT-CPS model effectively lowered cognitive
load in programming at a significance probability of p < 0.001 and an
effect size (Cohen’s d) of-0.824. Furthermore, the difference in
programming cognitive load between learners became more severe
after SW education compared to pre-SW education.

5.3 Difficulties experienced by learners by
CT factor

The students had less difficulties in programming, but the gap
between the students widened after basic SW education. Therefore, to

design additional modules for basic SW education, it was necessary to
check the cognitive load that occurred in the CT factors. For this
purpose, the content of the reflection diary was analyzed to see what
kind of difficulties were encountered at each step. Here, words related
to the difficulties encountered at each stage were visualized as word
clouds (Supplementary Figures 4–6).

5.3.1 DCDA
Supplementary Figure 4 shows the different difficulties that

students encountered when carrying out DCDA tasks. These
difficulties mainly included topic selection, data search, the analysis
process, time management, problem-solving, data collection, securing
the necessary resources, the difficulty of the task itself, procedural
problems, collaboration with team members and use of tools.

5.3.2 DAAL
Supplementary Figure 5 shows the students’ difficulties at the

DAAL stage. Students faced many challenges and difficulties in
designing algorithms and creating prototypes, especially in the process
of implementing new concepts, tools, and ideas and communicating
with team members.

5.3.3 AS
Supplementary Figure 6 shows the students’ difficulties at the AS

stage. Overall, students struggled with the grammar of Python, the
complexity and novelty of the concept, and the process and content of
applying programming to the task. This is more complex and difficult
than the CT factors of the previous stage.

5.4 Structural analysis: impact of
programming difficulty on CT factors

To design additional modules for basic SW education, it was
necessary to investigate how the cognitive load of programming
affected the CT factors. To this end, structural equations were used to
analyze how the cognitive load of programming affected the CT
factors. A model in which programming difficulties affected CT was
established based on previous studies (Supplementary Figure 3; Oh
and Ahn, 2015).

TABLE 5 Analysis of differences in CT factors by stage before and after education.

Subdomain M N SD Std Error t p Cohen’s d

DCDA Before 3.0105 190 0.79822 0.05791 −8.602 0.000 0.9008

After 3.6851 190 0.69608 0.0505

DAAL Before 3.0667 190 0.73893 0.05361 −7.013 0.000 0.75241

After 3.6259 190 0.74746 0.05423

AS Before 1.993 190 0.77301 0.05608 −15.04 0.000 1.50584

After 3.2395 190 0.87914 0.06378

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 07 frontiersin.org

5.4.1 Descriptive statistics of and correlations
between research variables

As illustrated in Table 7, because the absolute skewness and kurtosis
values in the path model were less than two, the research variables
satisfied the criteria for a normal distribution. The average of each
variable was 3.1–3.68 on a 5-point Likert scale. The average DCDA was
the highest (M = 3.685), followed by DAAL (M = 3.625) and AS
(M = 3.239). The difficulty in programming was also 3.1 on average,
assuming that students found it difficult on a medium or higher level.

The relationship between the variables was −0.445 to 0.822, indicating
a significant correlation (p < 0.01). In particular, “difficulty in
programming,” which indicates the cognitive load in AS and programming
related to coding, was negatively correlated with all the CT factors (r
values ranging from −0.445 to 0.822, p < 0.01). Thus, facing less difficulty
in programming can strengthen belief in succeeding in automation and
simulations. Furthermore, “difficulty in programming” negatively
correlated with all CT factors, demonstrating a negative relationship
between cognitive load in programming and CT factors per step.

5.4.2 Model fitness
Based on previous studies, a path model was established to

confirm the relationship between CT factors per step and cognitive
load in programming, and model fitness was measured via maximum
likelihood estimation. The absolute fit index was confirmed by 2X and
RMSEA, and the incremental fit index was confirmed by CFI, TLI,
and NFI.

The goodness-of-fit of the model is measured in Table 8. The study
model’s goodness-of-fit indices were CMIN = 0.655 (df = 1),
NFI = 0.998, TLI = 1.005, CFI = 1.00, and RMSEA = 0.000. If the

acceptance criteria for NFI, TLI, and CFI are greater than 0.90, the fit
is considered high, and if the RMSEA value is less than 0.05, the fit is
also considered high. The RMSEA value of 0.000 is lower than the
ideal threshold, and the NFI, TLI, and CFI values are higher, indicating
that the model fits well.

5.4.3 Effects of cognitive load in programming
and CT factors per step

Table 9 illustrates the results of the significance verification of the
path coefficients. DCDA had the greatest positive impact on DAAL
(β = 0.823, p < 0.001), and DAAL had significantly positive effects on AS
(β = 0.657, p < 0.001). In addition, the difficulty in programming had the
greatest negative impact on DCDA (β = −0.309, p < 0.001) and negatively
affected AS (β = −0.284, p < 0.0001), and DAAL (β = −0.092, p < 0.001),
in this order. In summary, the higher the cognitive load in programming,
the lower the effectiveness of CT (DCDA, AS, and DAAL).

5.4.4 Verification of statistical significance of
mediating effects

The direct, indirect, and total effects of CT elements and cognitive
load on programming by stage are presented in Table 10. Direct,
indirect, and total effects were confirmed using the bootstrapping
method to verify the effects of cognitive load on the programming and
CT factors per step. The cognitive load in programming negatively
affected DCDA, DAAL, and AS; a higher cognitive load resulted in
lower CT effectiveness for each stage. In particular, AS, the
programming stage, had the greatest negative impact, followed by
DAAL and DCDA.

The path (β = −0.341, p < 0.001) of cognitive load in programming
to DAAL via DCDA demonstrated a significant indirect effect. The
path (β = −0.259, p < 0.001) of the cognitive load toward AS via DCDA
and DAAL had a significant indirect impact.

Finally, the confidence interval for the mediating effect was set at
95%, and the bootstrapping method was used to confirm whether the
value of the mediating effect was significant; the results are reported
in Table 11. As the confidence interval range did not include zero and
the significance probability was p = 0.01, the mediating effect of the CT
factor per step was significant.

6 Conclusions and recommendations

The 21st century demands the ability to create new value based on
CT and problem-solving skills. Learners must be able to effectively

TABLE 7 Correlations between CT factors per step and cognitive load in
programming after SW education.

CT
factors

Difficulty in
programming

DCDA DAAL AS

Difficulty in

programming

1 −0.445** −0.465** −0.583**

DCDA −0.445** 1

DAAL −0.465** 0.822** 1

AS −0.583** 0.624** 0.709** 1

Average 3.10 3.685 3.625 3.23

Standard

deviation

1.00 0.696 0.747 0.879

Skewness −0.010 −0.009 −0.265 −0.244

Kurtosis −0.624 0.170 0.170 0.034

**p < 0.01 (two-tailed).

TABLE 8 Fit indices of research model.

Model’s
goodness-
of-fit

x2 df NFI TLI CFI RMSEA
(90%
CI)

Research model 0.655

(p = 0.418)

1 0.998 1.005 1.000 0.000

Acceptance

criterion

p > 0.05 – Higher

than

0.9

Higher

than

0.9

Higher

than

0.9

Lower

than 0.05

TABLE 9 Research model path coefficients.

Path coefficients β B S.E. C.R. p

DCDA ← Difficulty in

programming

−0.445 −0.309 0.045 −6.825 ***

DAAL ← Difficulty in

programming

−0.124 −0.092 0.034 −2.721 0.007

DAAL ← DCDA 0.767 0.823 0.049 16.894 ***

AS ← Difficulty in

programming

−0.324 −0.284 0.047 −6.109 ***

AS ← DAAL 0.558 0.657 0.062 10.542 ***

***p < 0.001 (two-tailed).

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 08 frontiersin.org

solve practical problems. To support this, it is necessary to actively
develop various learning models that cultivate knowledge and self-
efficacy and integrate them into software (SW) education. However,
there is a lack of research on the theoretical foundations and empirical
verification needed to propose specific support strategies.

By analyzing the effectiveness and cognitive load of basic SW
education using the D-CT-CPS model, this study attempted to suggest
improvements and future directions for SW education and
instructional strategies. As a result, it was found that the instructional
model that combined DT and computing thinking had a positive
effect on improving learning outcomes. When the learner’s perceived
difficulty of programming is reduced, learning motivation increases;
otherwise, cognitive load may accumulate. Therefore, different
learning methods and learner-centered learning methods are needed
to increase learning motivation.

6.1 Analysis of the effect of basic SW
education with the D-CT-CPS model

First, basic SW education using the D-CT-CPS model had static
effects on DCDA, DAAL, and AS. Learners play a leading role in
problem-solving. In this sense, SW education that reconstructs
knowledge is effective, encouraging learners to feel interested and
participate in education.

Second, basic SW education with the D-CT-CPS model was
confirmed to influence lower cognitive loads in programming. The
education did not start as a programming class but helped students
approach and logically solve practical problems in a step-by-step
manner. It can be assumed that such an approach served as a thinking

process that helped learners become familiar with communication
with computers, thus lowering their cognitive load after SW education
compared to pre-SW education.

Third, basic SW education with the D-CT-CPS model generally
demonstrated positive effects, but the gap between learners widened
rather than narrowed. Thus, basic SW education with the application
of a learner-centered model may be insufficient to resolve the
learning gap.

6.2 Implications of basic SW education
with the D-CT-CPS model

Personal interest refers to the level of learners’ interest in the class
content. If learners are highly interested in the content, they use
diverse perception strategies that affect their willingness to continue
learning. Therefore, as tasks enabling learners to construct knowledge
by themselves can increase their interest, providing more such tasks
in SW liberal arts education for non-science and non-engineering
majors is necessary.

Second, basic SW education with the D-CT-CPS model can
positively affect learners through systematic DT, enabling them to
solve problems with computers. Therefore, the instructional design
must reflect a systematic thinking process in which learners
communicate with computers.

Third, basic SW education with the D-CT-CPS model cannot
increase CT effectiveness or decrease the cognitive load in
programming. Therefore, it is necessary to provide relevant materials
and activities to gain familiarity with the knowledge necessary to
understand class content before class and sufficient content for
practice after class to activate an advanced organization.

6.3 Results of the analysis of the
relationship between cognitive load and
CT factors for adopting SW education

Negative effects on the thinking of DCDA, DAAL, and AS were
confirmed. Specifically, the difficulty in programming had the greatest
impact on DCDA, followed by AS and DAAL, indicating that the
cognitive load in programming affects all CT factors.

The cognitive load in programming, which affected the “problem
recognition and definition” stage, affected the AS factor, which is at

TABLE 10 Direct, indirect, and total effects of CT factors per step and cognitive load on programming.

Mediating effects Total effect Direct effect Indirect effect

DCDA Difficulty in programming −0.445 −0.455 –

DCDA – – –

DAAL – – –

DAAL Difficulty in programming −0.465 −0.124 −0.341

DCDA 0.767 0.767 –

DAAL – – –

AS Difficulty in programming −0.583 −0.324 −0.259

DCDA 0.428 – 0.428

DAAL 0.558 0.558 –

TABLE 11 Results verifying the mediating effect based on bootstrapping
techniques.

Verification of the
significance of mediating

effects

Lower
limit

Upper
limit

p

DAAL ← Difficulty in

programming

−0.566 −0.328 0.010

AS ← Difficulty in

programming

−0.656 −0.351

AS ← DCDA 0.506 0.690

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 09 frontiersin.org

the stage of “implementation and evaluation,” via the DCDA factor
and DAAL. Thus, the cognitive load in programming did not simply
affect the implementation with coding but also affected the first stage
of the problem-solving process and then the next steps, including CT
effectiveness per step.

6.4 Support strategies for adopting basic
SW education

First, the AS is the most relevant CT factor for programming. The
“problem analysis and design” phase is helpful and directly influenced
AS. As the difficulty in programming exerted the least influence in this
phase, instructors should design learning materials while maximizing
the DAAL procedures. Furthermore, because DCDA had the largest
impact on programming difficulty, learners were likely to experience
more difficulty in the process of problem recognition and definition
in the initial stages. Therefore, in basic SW education, instructors
should proceed with classes to implement programming using the
DAAL stage rather than approaching problem recognition
and definition.

Second, strategies should be developed to increase learners’
immersion to achieve higher CT effectiveness and lower cognitive
load in programming. Learners who experience immersion during
learning are confident and satisfied with their learning. To this end,
classes should be designed to facilitate motivation (Keller, 2000). One
method is to use flipped learning, which can positively affect learners’
immersion and reduce cognitive load (Karjanto and Acelajado,
2022). For instance, classes can be designed with strategies that
capture attention, such as presenting major-related problems that
intrigue learners or encouraging them to participate directly in
activities. Since learners can focus more on the content related to
their interests, instructors should provide learning materials with
problems familiar to them. Furthermore, even if the study topic is
related to the learner’s interests or majors, instructors should prepare
the topics and provide tasks according to the learner’s level of
understanding. Finally, instructors should present practical problems
to which learners can satisfactorily apply the learning content and
provide positive feedback on the problem-solving process.
Additionally, learning and exam contents must be consistent.
However, learners from Confucian cultures often have quiet, passive,
and receptive learning styles, and they may resist active participation;
therefore, strategies to overcome this when applying flipped learning
are needed (Karjanto and Simon, 2019; Karjanto, 2021). At the
beginning of the semester, the benefits and expectations of active
participation should be explained to the students; they must
be informed that being active and sometimes noisy in class is part of
the learning process. Activity assignments should also be presented
in a culturally and linguistically appropriate manner to ensure that
students are comfortable and experience effective learning. Finally,
adopting an absolute assessment approach that motivates learners
from within is essential.

Third, in basic software education, students can use Intelligent
Teaching Systems (ITSs) and Generative AI to provide personalized
learning experiences, real-time support, and adaptive feedback. ITSs
can be used to create personalized learning environments. These
systems reduce cognitive load and increase engagement by adjusting
the difficulty of tasks based on individual student performance. ITSs

provide scaffolding support for complex programming concepts,
which can gradually increase task complexity as learners’ skills
improve. In addition, text-based generative AI can provide real-time
support and feedback to learners. These AI-based tools can
significantly enhance the learning experience by answering students’
questions, providing hints, and guiding the problem-solving process,
and can help enable individualized learning (Guo et al., 2021).

In conclusion, the positive effect of basic SW education with the
D-CT-CPS model was identified, and improvements were derived.
Instructional strategies for sustainably implementing basic SW
education were also proposed. However, the basic SW liberal arts
education in this study only targeted non-science and non-engineering
majors at one university. Therefore, future studies should include
learners of all majors who opt for basic SW education at various
universities in other regions. Furthermore, the effectiveness of the
suggested instructional strategies for SW education after their
application in the field should be verified, and measures should
be suggested to improve its quality.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Ethics statement

The studies involving humans were approved by the Konkuk
University Institutional Review Board. The studies were conducted in
accordance with the local legislation and institutional requirements.
The participants provided their written informed consent to
participate in this study.

Author contributions

SA: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Resources, Software, Supervision,
Validation, Visualization, Writing – original draft. KO:
Conceptualization, Data curation, Formal analysis, Investigation,
Methodology, Project administration, Resources, Software,
Supervision, Validation, Visualization, Writing – original draft,
Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 10 frontiersin.org

The handling editor NK declared a shared affiliation with the
author SA at the time of review.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/feduc.2024.1434700/
full#supplementary-material

References
Bai, H., Wang, X., and Zhao, L. (2021). Effects of the problem-oriented learning model

on middle school students’ computational thinking skills in a Python course. Front.
Psychol. 12:771221. doi: 10.3389/fpsyg.2021.771221

Barr, V., and Stephenson, C. (2011). Bringing computational thinking to K-12: what
is involved and what is the role of the computer science education community? ACM
Inroads 2, 48–54. doi: 10.1145/1929887.1929905

Berssanette, J. H., and de Francisco, A. C. (2021). Active learning in the context of the
teaching/learning of computer programming. A systematic review. J. Inf. Technol. Educ.
Res. 20, 201–220. doi: 10.28945/4767

Card, A. J. (2017). The problem with “5 whys”. BMJ Qual. Saf. 26, 671–677. doi:
10.1136/bmjqs-2016-005849

Çakiroğlu, Ü., Suiçmez, S. S., Kurtoğlu, Y. B., Sari, A., Yildiz, S., and Öztürk, M. (2018).
Exploring perceived cognitive load in learning programming via scratch. Res. Learn.
Technol. 26, 1–19. doi: 10.25304/rlt.v26.1888

International Society for Technology in Education (ISTE) and Computer Science
Teachers Association (CSTA). (2011a). Computational thinking teacher resources (2nd
ed.). Available at: https://cdn.iste.org/www-root/2020-10/ISTE_CT_Teacher_
Resources_2ed.pdf (Accessed April 05, 2024).

International Society for Technology in Education (ISTE) and Computer Science
Teachers Association (CSTA). (2011b). Oper. Definition comp. Thinking K–12 Educ. 63.
Available at: https://cdn.iste.org/www-root/Computational_Thinking_Operational_
Definition_ISTE.pdf?_ga=2.87525528.1664931949.1640578823-1552887751.1631256395-
 (Accessed December 25, 2024).

Denning, P., and Tedre, M. (2019). Thinking like a computer. Am. Scientist 107.

Garner, R. (2002). Problem-based learning in higher education: untold stories.
London, United Kingdom: The Society for Research Into Higher Education.

Gong, D., Yang, H. H., and Cai, J. (2020). Exploring the key influencing factors on
college students’ computational thinking skills through flipped-classroom instruction.
Int. J. Educ. Technol. High. Educ. 17:19. doi: 10.1186/s41239-020-00196-0

Guo, L., Wang, D., Gu, F., Li, Y., Wang, Y., and Zhou, R. (2021). Evolution and trends
in intelligent tutoring systems research: a multidisciplinary and scientometric view. Asia
Pacific Educ. Rev. 22, 441–461. doi: 10.1007/s12564-021-09697-7

Hong, S., Seo, J., Goo, E., Shin, S., Oh, H., and Lee, T. (2019). Exploratory study on the
model of the software educational effectiveness for non-major undergraduate students.
J. Korean Assoc. Inf. Educ. 23, 427–440. doi: 10.14352/jkaie.2019.23.5.427

Hsu, T. C., Chang, S. C., and Hung, Y. T. (2018). How to learn and how to teach
computational thinking: suggestions based on a review of the literature. Comput. Educ.
126, 296–310. doi: 10.1016/j.compedu.2018.07.004

Jeon, Y., and Kim, T. (2017). The analysis of cognitive and affective effects on the CT-
CPS instructional model for the software education class in middle school. J. Korean
Assoc. Comput. Educ. 20, 47–57. doi: 10.32431/kace.2017.20.4.005

Jun, S.-J. (2017). The effect of design-oriented model (NDIS) based on computational
thinking in SW education. J. Korean Assoc. Comput. Educ. 20, 13–21.

Jung, I. (2022). Analysis of the effectiveness of problem-based learning (CT-PBL) based
on computational thinking on the subject of climate change in integrated science [master’s
thesis]. Chung-cheong bukdo: Korea National University of Education.

Karjanto, N. (2021). Active participation and student journal in Confucian heritage culture
mathematics classrooms. Adv. Comput. Sci. Res. 96, 89–91. doi: 10.2991/acsr.k.220202.018

Karjanto, N., and Acelajado, M. J. (2022). Sustainable learning, cognitive gains, and
improved attitudes in college algebra flipped classrooms. Sustain. For. 14:12500. doi:
10.3390/su141912500

Karjanto, N., and Simon, L. (2019). English-medium instruction Calculus in
Confucian-heritage culture: flipping the class or overriding the culture? Stud. Educ. Eval.
63, 122–135. doi: 10.1016/j.stueduc.2019.07.002

Keller, J. (2000). How to integrate learner motivation planning into lesson planning:
the ARCS model approach. Santiago, Cuba: VII Semanario, 1–13.

Kelly, J., and Zero, C. (2021). Design thinking and computational thinking: a dual
process model for addressing design problems. Des. Sci. 7:e8. doi: 10.1017/dsj.2021.7

Kim, D., and Lee, T. W. (2020). Review of cognitive difficulties of students to learn
computer programming. Proc. Korean Soc. Comput. Inf. Conf. 28, 225–228.

Kim, M., Lee, S., and Kim, T. (2021). The effect of software education including
data literacy on computational thinking and the creative problem-solving ability of
middle school students. Korean J. Teach. Educ. 37, 167–184. doi: 10.14333/
KJTE.2020.37.1.08

Kim, S., Han, S., and Kim, H. (2011). Analysis of programming processes through
novices’ thinking aloud in computational literacy education. J. Korean Assoc. Comput.
Educ 14, 13–21.

Korea Education and Research Information Service (KERIS). (2019). Report on
empirical data analysis of overseas software education operation status. Daegu, South
Korea: Korea Education and Research Information Service (KERIS).

Lawson, B. (1980). How designers think: the design process demystified. Burlington:
Elsevier.

Lee, A. (2018). Domestic research trends analysis of software education. KAFEIAM
24, 277–301. doi: 10.15833/KAFEIAM.24.2.277

Lee, H., Lee, H., and Seong, J.-S., Chung, S.-W., Kim, S.-H., Kim, S.-H, et al. (2016). A study
on surveying the actual conditions and evaluating the effectiveness of SW education in
elementary and secondary schools. Korea Foundation for the advancement of science &
creativity. Available at: https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=TR
KO201600014678&dbt=TRKO&rn= (Accessed April 05, 2024).

Lee, H., and Lee, J. (2020). Effects of design thinking on students’ learning outcomes:
a meta-analysis. Korean Assoc. Learner-Centered Curric. Instr. 20, 877–902. doi:
10.22251/jlcci.2020.20.19.877

Liu, D. (2024). The effects of segmentation on cognitive load, vocabulary learning and
retention, and reading comprehension in a multimedia learning environment. BMC
Psychol. 12:4. doi: 10.1186/s40359-023-01489-5

Lye, S. Y., and Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: what is next for k-12? Comput. Hum. Behav. 41, 51–61.
doi: 10.1016/j.chb.2014.09.012

Mason, R., Cooper, G., and Wilks, B. (2015). Using cognitive load theory to select an
environment for teaching mobile apps development, in Proceedings of the 17th Australasian
computing education conference, Sydney, Australia, Australian Comput. Soc., 47–56

National Assembly Research Service. (2019). Operation status of software education in
elementary and middle schools, and recommendation. Available at: https://www.nars.go.kr/
report/view.do?cmsCode=CM0156&brdSeq=26770 (Accessed April 05, 2024).

Noh, J. (2023). Analysis of the effectiveness of liberal SW education focused on
developing computational thinking and creative problem-solving ability. J. Ind. Converg.
21, 123–135. doi: 10.22678/JIC.2023.21.1.123

Oh, K.-S., and Ahn, S.-J. (2015). A study on the relationship between difficulty in learning
to program and computational thinking. J. Korean Assoc. Comput. Educ 18, 55–62.

Oh, K.-S., and Jang, E.-S. (2022). Analysis of the influence of learner’s SW experience
on learning effect in design thinking-based SW basic education. Korean J General Edu.
16, 261–274. doi: 10.46392/kjge.2022.16.5.261

Osborn, A. F. (1953). Applied imagination: principles and procedures of creative
problem-solving. New York: Scribner.

Paas, F., Renkl, A., and Sweller, J. (2003). Cognitive load theory and instructional
design: recent developments. Educ. Psychol. 38, 1–4. doi: 10.1207/S15326985EP3801_1

Rowe, P. (1987). Design thinking. Cambridge, MA: The MIT Press.

Seufert, T. (2018). The interplay between self-regulation in learning and cognitive
load. Educ. Psychol. Rev. 24, 116–129. doi: 10.1016/j.edurev.2018.03.004

Seufert, T. (2020). Building bridges between self-regulation and cognitive load—an
invitation for a broad and differentiated attempt. Educ. Psychol. Rev. 32, 1151–1162. doi:
10.1007/s10648-020-09574-6

Seufert, T., Hamm, V., Vogt, A., and Riemer, V. (2024). The interplay of cognitive load,
learners’ resources, and self-regulation. Educ. Psychol. Rev. 36, 1–30. doi: 10.1007/
s10648-024-09890-1

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/feduc.2024.1434700/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feduc.2024.1434700/full#supplementary-material
https://doi.org/10.3389/fpsyg.2021.771221
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.28945/4767
https://doi.org/10.1136/bmjqs-2016-005849
https://doi.org/10.25304/rlt.v26.1888
https://cdn.iste.org/www-root/2020-10/ISTE_CT_Teacher_Resources_2ed.pdf
https://cdn.iste.org/www-root/2020-10/ISTE_CT_Teacher_Resources_2ed.pdf
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf?_ga=2.87525528.1664931949.1640578823-1552887751.1631256395-
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf?_ga=2.87525528.1664931949.1640578823-1552887751.1631256395-
https://doi.org/10.1186/s41239-020-00196-0
https://doi.org/10.1007/s12564-021-09697-7
https://doi.org/10.14352/jkaie.2019.23.5.427
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.32431/kace.2017.20.4.005
https://doi.org/10.2991/acsr.k.220202.018
https://doi.org/10.3390/su141912500
https://doi.org/10.1016/j.stueduc.2019.07.002
https://doi.org/10.1017/dsj.2021.7
https://doi.org/10.14333/KJTE.2020.37.1.08
https://doi.org/10.14333/KJTE.2020.37.1.08
https://doi.org/10.15833/KAFEIAM.24.2.277
https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=TRKO201600014678&dbt=TRKO&rn=
https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=TRKO201600014678&dbt=TRKO&rn=
https://doi.org/10.22251/jlcci.2020.20.19.877
https://doi.org/10.1186/s40359-023-01489-5
https://doi.org/10.1016/j.chb.2014.09.012
https://www.nars.go.kr/report/view.do?cmsCode=CM0156&brdSeq=26770
https://www.nars.go.kr/report/view.do?cmsCode=CM0156&brdSeq=26770
https://doi.org/10.22678/JIC.2023.21.1.123
https://doi.org/10.46392/kjge.2022.16.5.261
https://doi.org/10.1207/S15326985EP3801_1
https://doi.org/10.1016/j.edurev.2018.03.004
https://doi.org/10.1007/s10648-020-09574-6
https://doi.org/10.1007/s10648-024-09890-1
https://doi.org/10.1007/s10648-024-09890-1

Ahn and Oh 10.3389/feduc.2024.1434700

Frontiers in Education 11 frontiersin.org

Shin, Y., Jung, H., and Suh, E. K. (2019). Effect of coding education program based on
design thinking for non-engineering students. Korean Assoc. Learner-Centered Curric.
Instr. 19, 351–373. doi: 10.22251/jlcci.2019.19.10.351

Skulmowski, A., and Xu, K. M. (2022). Understanding cognitive load in digital and
online learning: a new perspective on extraneous cognitive load. Educ. Psychol. Rev. 34,
171–196. doi: 10.1007/s10648-021-09624-7

Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cogn.
Sci. 12, 257–285. doi: 10.1207/s15516709cog1202_4

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design.
Learn. Instr. 4, 295–312. doi: 10.1016/0959-4752(94)90003-5

Sweller, J. (2023). The development of cognitive load theory: replication crises and
incorporation of other theories can lead to theory expansion. Educ. Psychol. Rev. 35:95.
doi: 10.1007/s10648-023-09817-2

Treffinger, D. J., Isaksen, S. G., and Stead-Dorval, K. B. (2023). Creative problem
solving: an introduction. 4th Edn. New York, NY: Routledge, 1–13 (Original work
published 2006).

Wing, J. M. (2006). Computational thinking. Commun. ACM 49, 33–35. doi:
10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philos.
Trans. A Math. Phys. Eng. Sci. 366, 3717–3725. doi: 10.1098/rsta.2008.0118

https://doi.org/10.3389/feduc.2024.1434700
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://doi.org/10.22251/jlcci.2019.19.10.351
https://doi.org/10.1007/s10648-021-09624-7
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.1016/0959-4752(94)90003-5
https://doi.org/10.1007/s10648-023-09817-2
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1098/rsta.2008.0118

	An analysis of the effects of learner-centered software education and required support strategies
	1 Introduction
	2 Theoretical background
	2.1 Cognitive load
	2.2 CT-based problem-solving model and SW education
	2.3 Design thinking and SW education

	3 General objective and research questions
	4 Methods
	4.1 Research participants
	4.2 Study design and procedures
	4.2.1 D-CT-CPS class model
	4.2.2 Class design
	4.2.3 Teaching methods and tools
	4.3 Research tools

	5 Results
	5.1 Changes in CT efficacy per step before and after SW education
	5.2 Changes in difficulty in programming before and after SW education
	5.3 Difficulties experienced by learners by CT factor
	5.3.1 DCDA
	5.3.2 DAAL
	5.3.3 AS
	5.4 Structural analysis: impact of programming difficulty on CT factors
	5.4.1 Descriptive statistics of and correlations between research variables
	5.4.2 Model fitness
	5.4.3 Effects of cognitive load in programming and CT factors per step
	5.4.4 Verification of statistical significance of mediating effects

	6 Conclusions and recommendations
	6.1 Analysis of the effect of basic SW education with the D-CT-CPS model
	6.2 Implications of basic SW education with the D-CT-CPS model
	6.3 Results of the analysis of the relationship between cognitive load and CT factors for adopting SW education
	6.4 Support strategies for adopting basic SW education

	 References

