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Given the exponential growth of biochemical data and deep effect of computational 
methods on life sciences, there is a need to rethink undergraduate curricula. A 
project-oriented learning approach based on the Triangular Spatial Relationship 
(TSR) algorithm has been developed. The TSR-based method was designed 
for protein 3D structural comparison, motif discovery and probing molecular 
interactions. The uniqueness of the method benefits students’ learning of big 
data and computational methods. Specifically, students learn (i) how to search 
proteins of interest from the PDB archive, (ii) basic supercomputer skills, (iii) how 
to prepare datasets, (iv) how to perform protein structure and sequence analyses, 
(v) how to interpret the results, visualize protein structures and make graphs. Five 
specific strategies have been developed to achieve students’ highest potentials. 
(i) This lab exercise is designed as a project-oriented learning approach. (ii) The 
skills-first and concept-second approach is used. (iii) Students choose the proteins 
based on their interests. (iv) Students are encouraged to learn from each other 
to promote student–student interactions. (v) Students are required to write a 
report and/or present their studies. To assess students’ performance, we have 
developed an assessment rubric that includes (i) demonstration of supercomputer 
skills in job script preparation, submission and monitoring, (ii) skills in preparation 
of datasets, (iii) data analytical skills, (iv) project report, (v) presentation, and (vi) 
integration of the TSR-based method with other computational methods (e.g., 
molecular 3D structural visualization and protein sequence analysis). This project 
has been introduced in undergraduate biochemistry research and teaching labs 
for 4 years. Most students have learned the basic supercomputer skills as well as 
structure data analysis skills. Students’ feedback is positive and encouraging. It 
can be further developed as a module for an integrated computational chemistry 
lecture course.
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1 Introduction

Big data, computational (bio)chemistry has not only spurred 
exponential growth in the life sciences but also has revolutionized the 
research process. Despite the spotlight on big data and computational 
science in both basic and applied life science fields, training for 
undergraduate students remains limited in the undergraduate 
curriculum at most universities. Protein sequence and structure data 
(Supplementary Figure  1) are becoming rapidly and increasingly 
available. As of November 2024, there are more than 227,000 
structures freely available in the Protein Data Bank (PDB) (Berman 
et al., 2000) that promise to accelerate scientific discoveries in all areas 
of life sciences. Each protein structure solved by experiment is 
expected to require extensive specialized effort. Nearly every stage of 
the structure determination process needs to be refined and optimized 
by specialists in the field of protein structures. To make effective use 
of these experimental data, there is a growing need for more sensitive 
and automated comparison, search, and analysis tools for studying 
protein structures.

The Triangular Spatial Relationship (TSR)-based method was 
developed for comparing molecular 3D structures and probing 
molecular interactions (Kondra et al., 2021; Sarkar et al., 2021; Kondra 
et al., 2022; Sarkar et al., 2022; Sarkar et al., 2023; Milon et al., 2024). 
The input data for the TSR-based method are experimentally 
determined 3D structures from the PDB. A triangle using Cα atoms of 
the amino acids as the vertices is constructed for every combination 
of three amino acids of a protein structure. A TSR key (an integer) is 
computed using the length, angle and vertex labels of each triangle 
using a rule-based label-assignment formula, which ensures the 
assignment of the same key to identical TSRs across different proteins. 
Life sciences are going through a dramatic biotechnological revolution, 
producing huge amounts of data, which is often deposited in public 
databases. Biological or chemical science curricula for undergraduate 
students have hardly been altered to reflect this revolution (Rubinstein 
and Chor, 2014). The TSR-based method along with other 
computational software packages have been brought into the 
undergraduate research classes as well as the teaching lab in the past 
4–5  years. In review of the first paper on the TSR-based method 
(Kondra et al., 2021), Dr. Xu designed a 1-credit hour research course 
offering a project-based learning experience for undergraduate 
students to use the TSR method. Sophomores, juniors or seniors 
majoring in biology or chemistry can take this course. Project-based 
learning introduces real-world problems and captures the students’ 
curiosity, motivating them to recognize and investigate abstract 
concepts and principles. This experience cultivates critical thinking 
skills during the course of their training in order to prepare them for 
their future careers.

Most biochemistry education research literature has been based 
on research in the lecture/classroom setting (Lang and Bodner, 2020). 
In contrast, the focuses of this study are to research students’ ability in 
the laboratory setting to (i) identify the proteins in which they are 
interested from the PDB, (ii) formulate their own questions and (iii) 
answer their own questions after they have learned the skills through 
hands-on training of analyzing big data using the computational tools. 
The learning objectives of the course include (i) introducing students 
to basic supercomputer skills, (ii) preparing students for independent 
data analysis and visualization of biological and chemical data, (iii) 
showing students how skills-based computational techniques can lead 

to biological or chemical discoveries, concomitantly emphasizing the 
importance of interdisciplinary training as well as integration of 
experimental and computational approaches in the future, (iv) 
stimulating student interests, encouraging creative ideas and training 
them to manage their time in order to accomplish specific and 
planned tasks. The strategies for achieving the learning objectives can 
be  summarized as follows: (i) This lab exercise or undergraduate 
research experience is designed as a project-oriented learning 
approach. Traditionally, instructor-focused lecturing in STEM 
classrooms is effective. In contrast, the project-oriented learning lays 
the foundation for students to become the driving force for their own 
learning. Studies show that active learning benefits students’ education 
(Nguyen et al., 2021). (ii) The skills-first and concept-second approach 
is used. Skill learning through hands-on training often facilitates 
longer knowledge retention longer. (iii) Students are encouraged to 
develop their interests and take charge of the project through allowing 
them to choose the proteins based on their interests. (iv) Students are 
encouraged to learn from each other to promote student–student 
interactions. (v) Students are required to write a report and/or present 
their work. This provides students an opportunity for recognizing 
biological and/or chemical theories by drawing conclusions from their 
own results. In order for the instructors, whose research and teaching 
expertise is not strictly computational, to be able to use this method, 
we intend to provide the necessary technical details. Most details will 
be  included in the Supplementary figures and files. Some of the 
Supplementary files also follow the styles and standards of the tutorial 
articles (Fox and Ouellette, 2013) where theoretical context as well as 
the type of questions and how to answer them are provided. It is 
expected that this study may be  of value to others teaching 
traditional biochemistry.

A few hands-on computational experiences on concepts such as 
3D molecular structures, stereochemistry and data analyses have 
achieved positive impacts on students’ learning (Esselman and Hill, 
2016; Winfield et al., 2019; Esselman and Hill, 2019; Wright et al., 
2019; Rodríguez-Becerra et al., 2020). Computational approaches are 
not the mere use of software tools, but the integration of computational 
algorithms and mathematical formulas to experimental design. If only 
use of software package, students may employ computational tools as 
“black boxes” without a deep understanding of the computational 
concepts and underlying assumptions (Rubinstein and Chor, 2014; 
May, 2004). Section 2 focuses on the use of software packages while 
Section 3 is to achieve in-depth understanding of 3D structural 
relationships. In fact, employers are looking for well-rounded 
graduates who not only understand the practical aspects of 
computational biochemistry, but also understand the concepts (Holien 
et al., 2023).

2 The specific computational skills 
that students have learned

Students in the undergraduate research course first go 
through a hands-on tutorial using their own laptops following 
along with the instructor going through the steps of protein 3D 
structure analysis for a case that has been published. Students 
then, either individually or in groups, choose their own protein 
structure to investigate. By doing this they develop the following 
computational skills.
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2.1 Students have learned how to search 
proteins of interest from the PDB archive

The search can be carried out through key words or an input of a 
protein amino acid sequence.1 Students can learn this step quickly 
without difficulty.

2.2 Students have learned how to connect 
their own computer to supercomputers for 
job submission and for file transfer 
between their own computers and 
supercomputers

The example we present is for a windows computer. Students 
need to download two software packages: WinSCP and Putty.2 
WinSCP allows students to connect their own computers to the 
supercomputers and to transfer files between the local computers 
and supercomputers. Putty allows students to submit a job to the 
supercomputers and monitor their jobs. Most college students use 
Mac Book computers in school. For a Mac Book user, we have also 
prepared detailed instructions.

2.3 Students have learned how to prepare 
datasets, submit and monitor jobs

Biochemistry has transformed from insular entities into 
interdisciplinary sciences, which in turn demand cross-disciplinary 
training for future work force in modern sciences. Despite its 
importance, computational (bio)chemistry still has a somewhat 
limited presence in undergraduate curricula (Qin, 2009; Lehtola and 
Karttunen, 2022). The TSR-based software package for this study can 
be  downloaded from GitHub.3 The detailed instructions for 
downloading this software package can be  found in 
Supplementary File 1. The package contains six Python codes. The first 
code (Code #1) is to download the input structural files from the 
PDB. The second code (Code #2) is to generate key and triplet files for 
each of the downloaded PDB files using the key generation 
mathematic formula (Kondra et al., 2021). The third code (Kondra 
et al., 2021) (Code #3) is to perform pairwise structural comparisons 
using Generalized Jaccard coefficient method and hierarchical 
clustering. The fourth code (Code #4) is to show clustering results. The 
fifth code (Code #5) is to calculate the common substructures through 
computing the numbers of commonly shared TSR keys. The sixth 
code (Code #6) is to calculate the unique substructures exclusively 
belonging to a certain (sub)type of proteins. We  have prepared 
detailed instructions on the input files, output files and procedures of 
running each code (Supplementary File 2).

1 https://www.rcsb.org/docs/search-and-browse/advanced-search/

search-examples

2 https://winscp.net/downloads.php

3 https://github.com/dbxmcf/wu_sizegap.git

2.4 Students have learned how to perform 
protein sequence analyses

Genomics including structural biology are big data science that 
has reshaped all disciplines of life sciences, facilitating an explosion of 
sequence data that can be generated for nearly any organisms (Koboldt 
et al., 2013). Conservative estimates put the volume genomic data 
doubling every 7 months, with zetabase-levels (1021) of sequences and 
associated heterogeneous metadata generated for 1.2 million species 
by the year 2025 (Stephens et al., 2015). The achievements of ‘big data 
science’ require integration of computer skills across several fields 
(Schatz, 2012). In fact, computer skills have become ubiquitous in 
many areas of biological and chemical research (Gallagher et  al., 
2011). In this study, students have learned how to perform multiple 
protein alignment using SnapGene. They have also learned how to 
conduct sequence alignment and phylogenetic analyses using MEGA7 
(Kumar et al., 2016).

2.5 Students have learned how to visualize 
protein structures

One of the most important skills for a biochemist is to be able to 
visualize a protein, find a ligand binding site, and show 3D interactions 
with the coordinated amino acid residues (Abdinejad et al., 2021). It 
is important to educate students how to benefit from the up-to-date 
scientific data and software (Pine and Paina, 2020). Students have 
learned hierarchical cluster analysis (Ackerman and Ben-David, 2016) 
and reduced protein 3D structure dimensions using the 
Multidimensional Scaling (MDS) method (Kruskal and Wish, 1978). 
Students have prepared structural images using the Visual Molecular 
Dynamics (VMD) package (Humphrey et al., 1996).

2.6 Students have learned how to make 
graphs

Students have learned how to make different types of graphs using 
OriginPro and have learned how to make Venn diagram using Venn 
Diagram Plotter.4

3 Tutorial: a case study using caspases 
as an example for showing the 
capacities and applications of the 
TSR-based algorithm in 
undergraduate education

One student group chose to investigate caspases for their project 
and we use that student-led study as an example for demonstrating 
what students can learn from using the TSR-based computational 
software package and other computational tools.

4 https://pnnl-comp-mass-spec.github.io/Venn-Diagram-Plotter/
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3.1 Preparation of the caspase dataset

The name caspase is an abbreviation of cysteine-dependent, 
aspartate-specific peptidase, because caspases have a dominant 
specificity for protein substrates (P4P3P2P1) that contain a highly 
conserved aspartate at the P1 position (the cleavage site) (Thornberry, 
1997; Nicholson, 1999; Chéreau et al., 2003) and a preferable glutamate 
at the P3 position (Nicholson, 1999). Functionally, the caspases are 
major regulators of apoptotic cell death pathways, proliferation and 
inflammation, which play vital roles in the life and death of animal 
cells (McLuskey and Mottram, 2015). Caspases were classified as 
either inflammatory (caspases 1, 4 and 5) or apoptotic caspases, with 
the latter being further organized into initiator (caspases 2, 8, 9 and 
10) and effector (caspases 3, 6 and 7) caspases (Pop and Salvesen, 
2009). The students initially prepared a small caspase dataset and 
expanded the small dataset to a large caspase dataset. The students 
hierarchically arranged the small dataset based on their functional 
classification (Supplementary Figure 2).

3.2 Illustration of caspase structural 
relationship using a hierarchical cluster 
analysis

Hierarchical cluster analysis is a popular machine learning 
method for big data research aiming to establish a hierarchy of clusters 
(Petushkova et  al., 2014). The result shows one large cluster for 
caspases 4, 6, 7, 8 and 9, and three small clusters for caspases 1, 2 and 
3. Caspases 3, 6 and 7 are effectors. Caspases 6 and 7 are grouped 
together while caspases 3 are separated from caspases 6 and 7. A 
similar situation is observed for initiators (caspases 2, 8 and 9). 
Inflammation caspases 1 and 4 are not grouped together 
(Supplementary Figure 2A). The MDS analysis of caspase structures 
agrees with the hierarchical cluster analysis (Supplementary Figure 2B). 
The structural clusters of the caspases do not perfectly agree with their 
functional classifications (Supplementary Figures 2A, 3). One of the 
reasons is due to the difference in size of the caspases. Caspases 4, 6, 
7, 8 and 9 are larger than caspases 1, 2 and 3 (Supplementary Figure 2A). 
Their corresponding amino acid sequence analysis using MEGA does 
not perfectly match with their functional classifications 
(Supplementary Figures  3, 4) as well as structural clusters 
(Supplementary Figures 2A, 4). Students were asked to suggest how to 
improve the method for addressing the mismatches between 
structures and functions as well as sequences and functions. However, 
students were not required to implement their hypotheses.

As stated earlier, the caspase dataset was hierarchically arranged 
(Figure 1A). The root, family, subfamily and leaf node of the caspase 
hierarchical organization are shown in Figure 1B. At the root of the 
caspase dataset, the numbers of distinct and total TSR keys were 
calculated by without and with counting the key occurrence 
frequencies, respectively (Figure 1C). The distinct TSR keys represent 
unique smallest substructures (triangles) of the caspase dataset and 
the total TSR keys represent all the smallest substructures. A triangle 
constituted by three Cα atoms is considered as the smallest 
substructure in this study. At the family level, the numbers of specific 
and Common TSR keys were calculated. The specific TSR keys 
represent the substructures that are exclusively found in the family of 
either inflammation caspases or initiators (Figure 1D). The Common 

TSR keys represent the substructures shared by inflammation caspases 
and initiators (Figure 1E). Similar to the family level, the numbers of 
specific (Figure 1F) and Common (Figure 1G) TSR keys were calculated 
for the caspase subfamily level. At the leaf node level, the numbers of 
specific TSR keys representing unique substructures were calculated 
for each type of caspases (Figure 1H). The distinct and total common 
TSR keys represent the substructures that can be  found in every 
structure at the level of family, subfamily or leaf node (Figure 1I). The 
numbers of common TSR keys decreases or remain the same from the 
root to the family level and then to the subfamily level (Figure 1I). 
Both common and Common TSR keys represent common 
substructures. However, the common TSR keys represent common 
substructures that can be found in every structure while the Common 
TSR keys represent common substructures that are shared by two or 
more families (apoptotic and inflammation), subfamilies (initiator, 
effector and inflammation) or types (caspases 1, 2, 3, 4, 6, 7, 8, and 9) 
and may not be present in every structure of each (sub)family or 
each type.

3.3 Search of a specific substructure 
against protein structure datasets

Basic Local Alignment Search Tool (BLAST) is a commonly used 
search program where searching of similar sequences can 
be accomplished for an input nucleic acid or polypeptide sequence 
(Altschul et al., 1990; Altschul et al., 1997). However, the counterpart 
of BLAST 1D sequence search for an input 3D substructure has not 
been developed. The unique representation of a protein 3D structure 
by TSR keys allows for BLAST 3D structure searches. Caspase 
inhibitors have been designed and synthesized as a potential 
therapeutic agent for the treatment of various diseases (Dhani et al., 
2021). A specific caspase 3 inhibitor (Becker et al., 2004) was chosen 
as an example of 3D substructure search. Elevated levels of caspase 3 
activity were also described in brains of Alzheimer’s disease patients 
(D’Amelio et al., 2012) and its inhibition was able to restore synaptic 
transmission and memory deficiency in Alzheimer’s disease transgenic 
mice (D'Amelio et al., 2011). The five representative residues that are 
close to the caspase 3 inhibitor (0ZZ) are identified (Figure 2A). Those 
five residues are conserved in the selected different types of caspases 
(Supplementary Figure  5). There are 10 distinct TSR keys 
corresponding to these five residues. Such 10 keys represent the 
specific substructure for part of the caspase 3 inhibitor binding site. 
The result by searching 12 datasets demonstrates that these 10 TSR 
keys are exclusively belonging to caspase 3 with the inhibitor 0ZZ 
(PDB: 1RHQ) (Figure 2B).

4 Educational outcomes

To assess the students’ performances, we have developed a 
rubric (Supplementary File 3) that includes six criteria: (i) basic 
supercomputer skills, (ii) skills in preparation of datasets, (iii) data 
analytical skills, (iv) students’ report, (v) students’ presentation 
and (vi) the ability to integrate two or more different 
computational software packages. Students are encouraged to 
achieve discoveries, to gain teaching and communication 
experiences by training other students or performing group 
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studies. However, these are not used to score their performances. 
The outcomes of the project-oriented learning were summarized 
in Figure  3. From the spring of 2021 to the fall of 2023, 44 
undergraduate students selected the proteins based on their 
interests and studied protein structures using the TSR-based 
method. After completing undergraduate research class (CHEM 
362) for one semester, all 44 students can independently prepare 
protein datasets by searching for proteins of interest from the 
PDB, correctly and independently submit and monitor jobs, 
transfer files between local computers and supercomputers, and 
independently perform cluster analysis, interpret clustering results 
analyze results and draw the conclusions based on the data and 
results (Figure 3). All the students gave a 10-min presentation at 
the end. Students have created a learning environment where 
students help to train students. Besides the TSR-based method for 

protein structure analysis,5 protein sequence analysis software, 
e.g., MEGA, SnapGene, and visualization software package, e.g., 
VMD, have been introduced to the students. 15–25% of the 
students can independently perform 3D visualization (~25%), 
sequence analysis (~20%), or both (~15%) (Figure 3). The detailed 
assessment rubric basic supercomputer skills, preparation of 
dataset structural analysis, report, presentation, structural 
visualization and sequence analyses were developed 
(Supplementary File 3). Students’ feedback for this exercise can 
be found in Supplementary File 4.

5 The source code is available for academic users on GitHub https://github.

com/WuXu26/Protein-3D-TSR.

FIGURE 1

Different types of TSR keys were used to interpret the hierarchical structural relationships of the caspases. (A) The small caspase dataset was 
hierarchically arranged. The different colors illustrate the levels of the hierarchical arrangement. Black, green, blue and red colors represent the root, 
the level 1, the level 2 and the leaf node; (B) The functional classifications of the caspases at the levels of the root, family, subfamily and leaf node; 
(C) Distinct and total TSR keys of the dataset (the root) were calculated and are present. The number of the caspases in the dataset, the average values 
and SDs are labeled; (D) The specific TSR keys of the caspases at the family level were calculated and are present. The average values and the numbers 
of apoptotic and inflammatory caspase families are labeled; (E) The Venn diagram shows the numbers of the TSR keys exclusively belonging to each of 
the groups of apoptotic and inflammatory caspases and the intersection between the two groups. The percentage of the intersection is shown; (F) The 
specific TSR keys of the caspases at the subfamily level were calculated and are present. The average values and the numbers of inflammatory, initiator 
and effector caspases are labeled; (G) The Venn diagram shows the numbers of the TSR keys exclusively belonging to each of the groups of 
inflammatory, initiator and effector caspases and the intersection among the three groups. The percentage of such the intersection is shown; (H) The 
specific TSR keys of each type of caspases were calculated and are present. The caspases and the average values are labeled; (I) Distinct and total 
common TSR keys were calculated for the root, families and subfamilies of the caspases. The average values and SDs are labeled. The color arrows 
represent the levels of the hierarchical arrangement.
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5 Discussion

The traditional way of teaching strategy is that teachers give a 
lecture, students take notes and are tested on the information. 
Research has highlighted the importance of practical skills (White 
et al., 2013). A specific project-oriented learning strategy has been 
developed for undergraduate biochemistry research or teaching 
labs. The results from a previous study showed that project-based 
learning, compared with the traditional teaching model, 
significantly improved students’ learning outcomes (Zhang and Ma, 
2023). The studies also demonstrated that the course-based 
undergraduate research experiences improve students’ hands-on 
abilities (He et  al., 2024). As stated earlier, the skills first and 
concepts second approach is used. First, students will learn 
computational skills. Second, they will prepare their own protein 
datasets based on their interests. Third, they will analyze the 

proteins of interest using the computational skills they have learned. 
Finally, the basic principles for the computational method will 
be  introduced to the students after they have generated and 
analyzed their own data. Students will have an opportunity to 
prepare as many protein datasets as possible for broadening their 
knowledge as well as an opportunity to deepen the study toward a 
mechanistic understanding of a subject. On the teachers’ side, 
instructors will have an opportunity to cultivate students’ interest 
in science and teach creative thinking skills. This project-oriented 
learning module complements the traditional teaching approach. 
When it was used in a research lab, both presentations and formal 
reports are required. When it was used in a teaching lab, only 
formal reports were required. Students can be roughly classified 
into two groups: the primary objective of one group is to pass the 
course and the primary objective of the other group is to learn 
research-oriented skills and research thinking. Specific strategies 
have been developed to motivate both groups to achieve their 

FIGURE 2

The capacity of key search function using the caspase 3 inhibitor binding site as an example. (A) The substructure of caspase 3 inhibitor 0ZZ. The five 
residues that closely interact with 0ZZ are labeled. The PDB is 1RHQ; (B) The key search result against the 12 protein structure datasets ranging from 
123 to 9,274 structures. NR, neurotransmitter receptors; GBP, glutamate binding protein; GR, glutamate receptor.
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highest potentials. The data structure of the TSR-based method is a 
vector of integers that are well-suited for incorporating an artificial 
intelligence component in the undergraduate curriculum. This 
project could also be integrated with a computational chemistry 

lecture course. The limitation of this lab exercise is that an effective 
study of ≥50 protein structures requires teachers and students to 
have access to supercomputer clusters. If <50 protein structures, 
especially <20 protein structures, will be  studied, the updated 

FIGURE 3

Summary of the outcomes when the project-oriented learning strategy has been introduced in the undergraduate research classes. The x axis shows 
the categories that students were assessed and the y axis the percentages of the students who have achieved “satisfaction.” “satisfaction” means that 
students can independently accomplish a task without help or with a minimal help from the instructor.

FIGURE 4

What were researched, the course objectives, knowledge delivery strategies and evaluation plans are summarized. The relationships between objective, 
strategy and evaluation are illustrated.
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version of the TSR-based method can be  executed on personal 
computers. In summary, the course objectives, knowledge delivery 
strategies and evaluation plans are illustrated in Figure 4. A lab 
exercise procedure has been developed for the users of Windows 
and MacBook computers to use the TSR-based method 
(Supplementary File 2). Additional educational outcomes can 
be  found in Supplementary File 5. We  observed a higher class-
attendance and a higher performance in Biochemistry I (CHEM 
317) and II (CHEM 417) lecture courses for the students who 
conducted this lab exercise than the students who did not do this 
lab exercise. We conclude that the students who have performed 
better in biochemistry lecture courses want to gain undergraduate 
research experiences (Supplementary File 5).

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found in the article/Supplementary material.

Author contributions

CR: Data curation, Formal analysis, Investigation, 
Methodology, Validation, Visualization, Writing – original draft, 
Writing – review & editing. SM: Data curation, Formal analysis, 
Investigation, Methodology, Validation, Visualization, Writing – 
original draft, Writing  – review & editing. JG: Data curation, 
Formal analysis, Investigation, Methodology, Validation, 
Visualization, Writing  – original draft, Writing  – review & 
editing, Conceptualization. SD: Data curation, Formal analysis, 
Investigation, Methodology, Validation, Visualization, Writing – 
original draft, Writing – review & editing. TM: Methodology, 
Visualization, Writing  – original draft, Writing  – review & 
editing, Resources, Software. FC: Software, Writing – original 
draft, Writing – review & editing. WX: Writing – original draft, 
Writing – review & editing, Conceptualization, Data curation, 
Formal analysis, Funding acquisition, Investigation, 
Methodology, Project administration, Resources, Supervision, 
Validation, Visualization.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This study is 
supported by NIH NIGMS (1R15GM144944-01).

Acknowledgments

Most of this research was conducted with high-performance 
computational resources provided by the Louisiana Optical Network 
Infrastructure (http://www.loni.org). Here we want to appreciate the 
LONI support team, especially Jianxiong Li, and Oleg Starovoytov. 
WX acknowledges Dr. Kathleen D. Knierim (Physical Chemist) for 
fruitful discussion on this project.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/feduc.2024.1455173/
full#supplementary-material

References
Abdinejad, M., Talaie, B., Qorbani, H. S., and Dalili, S. (2021). Student perceptions 

using augmented reality and 3D visualization technologies in chemistry education. J. 
Sci. Educ. Technol. 30, 87–96. doi: 10.1007/s10956-020-09880-2

Ackerman, M., and Ben-David, S. (2016). A characterization of linkage-based 
hierarchical clustering. J. Mach. Learn. Res. 17, 8182–8198. Available at: https://dl.acm.
org/doi/abs/10.5555/2946645.3053512

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local 
alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. 
(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs. Nucleic Acids Res. 25, 3389–3402. doi: 10.1093/nar/25.17.3389

Becker, J. W., Rotonda, J., Soisson, S. M., Aspiotis, R., Bayly, C., Francoeur, S., et al. 
(2004). Reducing the peptidyl features of caspase-3 inhibitors: a structural analysis. J. 
Med. Chem. 47, 2466–2474. doi: 10.1021/jm0305523

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. 
(2000). The protein data bank. Nucleic Acids Res. 28, 235–242. doi: 10.1093/
nar/28.1.235

Chéreau, D., Kodandapani, L., Tomaselli, K. J., Spada, A. P., and Wu, J. C. (2003). 
Structural and functional analysis of caspase active sites. Biochemistry 42, 4151–4160. 
doi: 10.1021/bi020593l

D’Amelio, M., Sheng, M., and Cecconi, F. (2012). Caspase-3 in the central nervous system: 
beyond apoptosis. Trends Neurosci. 35, 700–709. doi: 10.1016/j.tins.2012.06.004

D'Amelio, M., Cavallucci, V., Middei, S., Marchetti, C., Pacioni, S., Ferri, A., et al. 
(2011). Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's 
disease. Nat. Neurosci. 14, 69–76. doi: 10.1038/nn.2709

Dhani, S., Zhao, Y., and Zhivotovsky, B. (2021). A long way to go: caspase inhibitors 
in clinical use. Cell Death Dis. 12:949. doi: 10.1038/s41419-021-04240-3

Esselman, B. J., and Hill, N. J. (2016). Integration of computational chemistry into the 
undergraduate organic chemistry laboratory curriculum. J. Chem. Educ. 93, 932–936. 
doi: 10.1021/acs.jchemed.5b00815

Esselman, B. J., and Hill, N. J. (2019). Integrating computational chemistry into an 
organic chemistry laboratory curriculum using WebMO, using computational methods 
to teach chemical principles NW, Washington, DC: American Chemical Society, 
139–162.

https://doi.org/10.3389/feduc.2024.1455173
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
http://www.loni.org
https://www.frontiersin.org/articles/10.3389/feduc.2024.1455173/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feduc.2024.1455173/full#supplementary-material
https://doi.org/10.1007/s10956-020-09880-2
https://dl.acm.org/doi/abs/10.5555/2946645.3053512
https://dl.acm.org/doi/abs/10.5555/2946645.3053512
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1021/jm0305523
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1021/bi020593l
https://doi.org/10.1016/j.tins.2012.06.004
https://doi.org/10.1038/nn.2709
https://doi.org/10.1038/s41419-021-04240-3
https://doi.org/10.1021/acs.jchemed.5b00815


Reaux et al. 10.3389/feduc.2024.1455173

Frontiers in Education 09 frontiersin.org

Fox, J. A., and Ouellette, B. F. (2013). Education in computational biology today and 
tomorrow. PLoS Comput. Biol. 9:e1003391. doi: 10.1371/journal.pcbi.1003391

Gallagher, S. R., Coon, W., Donley, K., Scott, A., and Goldberg, D. S. (2011). A first 
attempt to bring computational biology into advanced high school biology classrooms. 
PLoS Comput. Biol. 7:e1002244. doi: 10.1371/journal.pcbi.1002244

He, Y., Li, S., Chen, Z., Liu, B., and Luo, X. (2024). Knowledge-map analysis of 
undergraduate biochemistry teaching research: a bibliometric study from 2012 to 2021. 
J. Chem. Educ. 101, 307–318.

Holien, J. K., Coff, L., Guy, A. J., and Boer, J. C. (2023). Drug discovery in real life: an 
online learning activity for bioinformatics students. J. Chem. Educ. 100, 1053–1057. doi: 
10.1021/acs.jchemed.2c00993

Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. 
J. Mol. Graph. 14, 33–38. doi: 10.1016/0263-7855(96)00018-5

Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K., and Mardis, E. R. (2013). 
The next-generation sequencing revolution and its impact on genomics. Cell 155, 27–38. 
doi: 10.1016/j.cell.2013.09.006

Kondra, S., Chen, F., Chen, Y., Chen, Y., Collette, C. J., and Xu, W. (2022). A study of 
a hierarchical structure of proteins and ligand binding sites of receptors using the 
triangular spatial relationship-based structure comparison method and development of 
a size-filtering feature designed for comparing different sizes of protein structures. 
Proteins 90, 239–257. doi: 10.1002/prot.26215

Kondra, S., Sarkar, T., Raghavan, V., and Xu, W. (2021). Development of a TSR-based 
method for protein 3-D structural comparison with its applications to protein 
classification and motif discovery. Front. Chem. 8:602291. doi: 10.3389/
fchem.2020.602291

Kruskal, J. B., and Wish, M. (1978). Multidimensional scaling. Thousand Oaks, 
California: SAGE Publications, Inc.

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary 
genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. doi: 
10.1093/molbev/msw054

Lang, F. K., and Bodner, G. M. (2020). A review of biochemistry education research. 
J. Chem. Educ. 97, 2091–2103. doi: 10.1021/acs.jchemed.9b01175

Lehtola, S., and Karttunen, A. J. (2022). Free and open source software for 
computational chemistry education. WIREs Comput. Mol. Sci. 12:e1610. doi: 10.1002/
wcms.1610

May, R. M. (2004). Uses and abuses of mathematics in biology. Science 303, 790–793. 
doi: 10.1126/science.1094442

McLuskey, K., and Mottram, J. C. (2015). Comparative structural analysis of the 
caspase family with other clan CD cysteine peptidases. Biochem. J. 466, 219–232. doi: 
10.1042/BJ20141324

Milon, T. I., Wang, Y., Fontenot, R. L., Khajouie, P., Villinger, F., Raghavan, V., et al. 
(2024). Development of a novel representation of drug 3D structures and enhancement 
of the TSR-based method for probing drug and target interactions. Comput. Biol. Chem. 
112:108117. doi: 10.1016/j.compbiolchem.2024.108117

Nguyen, K. A., Borrego, M., Finelli, C. J., DeMonbrun, M., Crockett, C., Tharayil, S., 
et al. (2021). Instructor strategies to aid implementation of active learning: a systematic 
literature review. Int. J. STEM Educ. 8:9. doi: 10.1186/s40594-021-00270-7

Nicholson, D. W. (1999). Caspase structure, proteolytic substrates, and function 
during apoptotic cell death. Cell Death Differ. 6, 1028–1042. doi: 10.1038/sj.
cdd.4400598

Petushkova, N. A., Pyatnitskiy, M. A., Rudenko, V. A., Larina, O. V., Trifonova, O. P., 
Kisrieva, J. S., et al. (2014). Applying of hierarchical clustering to analysis of protein 
patterns in the human cancer-associated liver. PLoS One 9:e103950. doi: 10.1371/
journal.pone.0103950

Pine, P., and Paina, L. I. (2020). Computational methods in chemistry and 
biochemistry education: visualization of proteins. Comput. Sci. Eng. 22, 45–49. doi: 
10.1109/MCSE.2019.2962118

Pop, C., and Salvesen, G. S. (2009). Human caspases: activation, specificity, and 
regulation. J. Biol. Chem. 284, 21777–21781. doi: 10.1074/jbc.R800084200

Qin, H. (2009). Teaching computational thinking through bioinformatics to biology 
students. SIGCSE Bull. 41, 188–191. doi: 10.1145/1539024.1508932

Rodríguez-Becerra, J., Cáceres-Jensen, L., Díaz, T., Druker, S., Bahamonde Padilla, V., 
Pernaa, J., et al. (2020). Developing technological pedagogical science knowledge 
through educational computational chemistry: a case study of pre-service chemistry 
teachers’ perceptions. Chem. Educ. Res. Pract. 21, 638–654. doi: 10.1039/C9RP00273A

Rubinstein, A., and Chor, B. (2014). Computational thinking in life science education. 
PLoS Comput. Biol. 10:e1003897. doi: 10.1371/journal.pcbi.1003897

Sarkar, T., Chen, Y., Wang, Y., Chen, Y., Chen, F., Reaux, C. R., et al. (2023). 
Introducing mirror-image discrimination capability to the TSR-based method for 
capturing stereo geometry and understanding hierarchical structure relationships of 
protein receptor family. Comput. Biol. Chem. 103:107824. doi: 10.1016/j.
compbiolchem.2023.107824

Sarkar, T., Raghavan, V. V., Chen, F., Riley, A., Zhou, S., and Xu, W. (2021). Exploring 
the effectiveness of the TSR-based protein 3-D structural comparison method for 
protein clustering, and structural motif identification and discovery of protein kinases, 
hydrolase, and SARS-CoV-2’s protein via the application of amino acid grouping. 
Comput. Biol. Chem. 92:107479. Available at: https://www.sciencedirect.com/science/
article/abs/pii/S1476927121000463

Sarkar, T., Reaux, C. R., Li, J., Raghavan, V. V., and Xu, W. (2022). The specific 
applications of the TSR-based method in identifying Zn2+ binding sites of proteases and 
ACE/ACE2. Data Brief 45:108629. doi: 10.1016/j.dib.2022.108629

Schatz, M. C. (2012). Computational thinking in the era of big data biology. Genome 
Biol. 13:177. doi: 10.1186/gb-2012-13-11-177

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., et al. 
(2015). Big data: astronomical or genomical? PLoS Biol. 13:e1002195. doi: 10.1371/
journal.pbio.1002195

Thornberry, N. A. (1997). The caspase family of cysteine proteases. Br. Med. Bull. 53, 
478–490. doi: 10.1093/oxfordjournals.bmb.a011625

White, H. B., Benore, M. A., Sumter, T. F., Caldwell, B. D., and Bell, E. (2013). What 
skills should students of undergraduate biochemistry and molecular biology programs 
have upon graduation? Biochem. Mol. Biol. Educ. 41, 297–301. doi: 10.1002/bmb.20729

Winfield, L. L., McCormack, K., and Shaw, T. (2019). Using iSpartan to support a 
student-centered activity on alkane conformations. J. Chem. Educ. 96, 89–92. doi: 
10.1021/acs.jchemed.8b00145

Wright, A. M., Schwartz, R. S., Oaks, J. R., Newman, C. E., and Flanagan, S. P. (2019). 
The why, when, and how of computing in biology classrooms. F1000Res. 8:1854. doi: 
10.12688/f1000research.20873.1

Zhang, L., and Ma, Y. (2023). A study of the impact of project-based learning on 
student learning effects: a meta-analysis study. Front. Psychol. 14:1202728. doi: 10.3389/
fpsyg.2023.1202728

https://doi.org/10.3389/feduc.2024.1455173
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://doi.org/10.1371/journal.pcbi.1003391
https://doi.org/10.1371/journal.pcbi.1002244
https://doi.org/10.1021/acs.jchemed.2c00993
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/j.cell.2013.09.006
https://doi.org/10.1002/prot.26215
https://doi.org/10.3389/fchem.2020.602291
https://doi.org/10.3389/fchem.2020.602291
https://doi.org/10.1093/molbev/msw054
https://doi.org/10.1021/acs.jchemed.9b01175
https://doi.org/10.1002/wcms.1610
https://doi.org/10.1002/wcms.1610
https://doi.org/10.1126/science.1094442
https://doi.org/10.1042/BJ20141324
https://doi.org/10.1016/j.compbiolchem.2024.108117
https://doi.org/10.1186/s40594-021-00270-7
https://doi.org/10.1038/sj.cdd.4400598
https://doi.org/10.1038/sj.cdd.4400598
https://doi.org/10.1371/journal.pone.0103950
https://doi.org/10.1371/journal.pone.0103950
https://doi.org/10.1109/MCSE.2019.2962118
https://doi.org/10.1074/jbc.R800084200
https://doi.org/10.1145/1539024.1508932
https://doi.org/10.1039/C9RP00273A
https://doi.org/10.1371/journal.pcbi.1003897
https://doi.org/10.1016/j.compbiolchem.2023.107824
https://doi.org/10.1016/j.compbiolchem.2023.107824
https://www.sciencedirect.com/science/article/abs/pii/S1476927121000463
https://www.sciencedirect.com/science/article/abs/pii/S1476927121000463
https://doi.org/10.1016/j.dib.2022.108629
https://doi.org/10.1186/gb-2012-13-11-177
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1093/oxfordjournals.bmb.a011625
https://doi.org/10.1002/bmb.20729
https://doi.org/10.1021/acs.jchemed.8b00145
https://doi.org/10.12688/f1000research.20873.1
https://doi.org/10.3389/fpsyg.2023.1202728
https://doi.org/10.3389/fpsyg.2023.1202728

	Design of a TSR-based project learning strategy for biochemistry undergraduate teaching and research labs: a case study
	1 Introduction
	2 The specific computational skills that students have learned
	2.1 Students have learned how to search proteins of interest from the PDB archive
	2.2 Students have learned how to connect their own computer to supercomputers for job submission and for file transfer between their own computers and supercomputers
	2.3 Students have learned how to prepare datasets, submit and monitor jobs
	2.4 Students have learned how to perform protein sequence analyses
	2.5 Students have learned how to visualize protein structures
	2.6 Students have learned how to make graphs

	3 Tutorial: a case study using caspases as an example for showing the capacities and applications of the TSR-based algorithm in undergraduate education
	3.1 Preparation of the caspase dataset
	3.2 Illustration of caspase structural relationship using a hierarchical cluster analysis
	3.3 Search of a specific substructure against protein structure datasets

	4 Educational outcomes
	5 Discussion

	References

