
Frontiers in Education 01 frontiersin.org

The influence of mind mapping
on computational thinking skills
and self-efficacy in students’
learning of graphical
programming
Rong Guo 1*, Yan Zheng 2 and Haifei Miao 1

1 Department of Education, Shaanxi Normal University, Xi'an, China, 2 Xi'an Wuhuan Middle School,
Xi'an, China

Computational thinking is regarded as an essential skill for students in the 21st
century, and programming is one of the means to cultivate it. This study introduces
mind mapping into graphical programming to visualize the cognitive process of
computational thinking, aiming to enhance students’ computational thinking skills.
After a semester of teaching experiments, independent-sample t-tests and paired-
sample t-tests were conducted on the data, revealing significant improvements
in both computational thinking skills and self-efficacy among the students in the
experimental group. Further analysis of the data showed significant enhancements
in their algorithmic thinking and modeling, as well as pattern recognition and
evaluation sub-skills, while abstraction and decomposition sub-skills did not show
significant improvement. Additionally, the experimental group demonstrated
significant improvements to varying degrees in five dimensions of computational
thinking self-efficacy: creativity, algorithmic thinking, collaboration skills, critical
thinking, and problem-solving abilities.

KEYWORDS

mind mapping, computational thinking skills, self-efficacy, computational thinking,
t-test

1 Introduction

The development of digital technology has created many new job opportunities while also
posing a certain impact on the traditional employment structure, requiring enterprises to have
more talents with digital technology and knowledge. As the digital society transforms the way
people work and live, it also sets new requirements for citizens’ digital literacy (Silva et al., 2021).
Consequently, in today’s era of rapid information technology development, understanding the
fundamental principles of computer science is no longer solely the domain of programmers and
computer scientists. Applying computer science to solve problems has become an essential skill
for everyone, which also embodies the essence of computational thinking (Yang and Lin, 2024).
Computational thinking is defined as a way of thinking that utilizes computer science concepts
to solve problems, design systems, and understand human behavior (Wing, 2006). It is a
fundamental skill essential for successful learners in the 21st century.

Against this backdrop, countries worldwide have recognized the importance of fostering
computational thinking and have introduced policies to advance its education. Scholars are
actively exploring strategies to enhance students’ computational thinking skills and have
proposed that programming is an ideal tool for nurturing computational thinking (Hsu
et al., 2018). This is because programming provides avenues for applying computational

OPEN ACCESS

EDITED BY

Pedro Tadeu,
CI&DEI-ESECD-IPG, Portugal

REVIEWED BY

Natanael Karjanto,
Sungkyunkwan University, Republic of Korea
Fina Fakhriyah,
University of Muria Kudus, Indonesia
Cathy Ringstaff,
WestEd, United States

*CORRESPONDENCE

Rong Guo
 119272478@qq.com

RECEIVED 12 August 2024
ACCEPTED 25 November 2024
PUBLISHED 10 December 2024

CITATION

Guo R, Zheng Y and Miao H (2024) The
influence of mind mapping on computational
thinking skills and self-efficacy in students’
learning of graphical programming.
Front. Educ. 9:1479729.
doi: 10.3389/feduc.2024.1479729

COPYRIGHT

© 2024 Guo, Zheng and Miao. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 10 December 2024
DOI 10.3389/feduc.2024.1479729

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2024.1479729&domain=pdf&date_stamp=2024-12-10
https://www.frontiersin.org/articles/10.3389/feduc.2024.1479729/full
https://www.frontiersin.org/articles/10.3389/feduc.2024.1479729/full
https://www.frontiersin.org/articles/10.3389/feduc.2024.1479729/full
https://www.frontiersin.org/articles/10.3389/feduc.2024.1479729/full
https://www.frontiersin.org/articles/10.3389/feduc.2024.1479729/full
mailto:119272478@qq.com
https://doi.org/10.3389/feduc.2024.1479729
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2024.1479729

Guo et al. 10.3389/feduc.2024.1479729

Frontiers in Education 02 frontiersin.org

concepts and practices while also supporting the development of
cognitive abilities related to computational thinking (Basogain
Olabe et al., 2017). Research has found that visual programming can
significantly boost students’ computational thinking skills (Aksit
and Wiebe, 2020). However, for younger students, programming
poses certain challenges due to difficulties in comprehending
abstract and generalizing concepts, as well as the prerequisite
knowledge of basic concepts, syntax, and commands (Mladenović
et al., 2021).

In response, scholars point out that learners’ prior knowledge is a
crucial factor influencing programming learning, as students often
lack a programming background and related knowledge, leading to
difficulties in grasping programming concepts and practical
operations (Demir, 2022). Establishing a systematic mindset to
comprehend programming concepts and principles is key to learning
programming (Cui and Ng, 2021). In programming, the process of
using computational thinking to solve problems is a systematic
thought process involving a series of cognitive steps such as analyzing
problems, decomposing them, extracting essences, selecting
algorithms, and implementing programming. Therefore, through
systematic thinking training, students’ computational thinking and
programming abilities can be effectively enhanced.

However, in current programming education, the teaching
organization often proceeds directly from problem identification and
understanding to code implementation, with the research focus on the
realization of projects/works/functions (e.g., Atmatzidou and
Demetriadis, 2016; Sullivan et al., 2017). There is a lack of developing
students’ process-oriented thinking in problem-solving, i.e., a lack of
a thinking training process. The existing teaching places emphasis on
the debugging phase of programming, with less emphasis on the most
essential thinking processes in computational thinking, such as
abstraction and decomposition. Furthermore, students’ thinking is
implicit in their programming works, making it difficult for teachers
to identify issues. As a result, some scholars suggest that when
teaching programming, in addition to using block-based
programming with graphical interfaces, it is also crucial to help
students articulate their programming logic to arrange appropriate
programming blocks (Barr and Stephenson, 2011). We need tools to
assist students in training their thinking, expressing their ideas, and
visualizing their implicit thinking.

Research has shown that visual representations of thinking can
help students express the relationships between complex ideas,
showcasing internal cognitive structures in a visual form, which aids
in recalling key components (Davies, 2011). Thus, organizing thoughts
and supplementing ideas through relevant graphics (e.g., flowcharts,
mind maps, graphic organizers) can significantly enhance students’
learning outcomes (Batdi, 2015; Shi et al., 2023; Stokhof et al., 2020;
Zhao et al., 2022). Scholars have empirically confirmed that using
mind maps in teaching can positively impact students’ academic
performance, attitudes, conceptual learning, and critical thinking.
Similarly, in research related to computational thinking, the use of
mind maps has been proven to significantly improve primary school
students’ computational thinking skills. However, there is a lack of
empirical research on the impact of mind maps on middle school
students’ computational thinking skills and self-efficacy in graphical
programming. Therefore, this study aims to explore the effects of mind
maps on middle school students’ computational thinking skills and
self-efficacy in graphical programming.

2 Literature review

2.1 Definition of computational thinking

Different scholars have defined computational thinking from
various perspectives. Papert was the first to propose the concept of
computational thinking, which he saw as a process of using
computational representations to articulate important ideas, making
them clearer and more explicit (Atmatzidou and Demetriadis, 2016).
Wing defined computational thinking as “a process of solving
problems, designing systems, and understanding human behavior by
drawing on the concepts fundamental to computer science” (Wing,
2006). Brennan et al. believed that computational thinking
encompasses three dimensions: computational concepts,
computational practices, and computational perspectives (Brennan
and Resnick, 2012). Many other scholars have understood
computational thinking as a cognitive process that integrates multiple
thinking processes (Israel-Fishelson and Hershkovitz, 2022; Selby,
2013), including decomposition (breaking down problems into
smaller, manageable parts), abstraction (identifying and extracting
key information from real-world situations), algorithmic thinking
(solving problems through a series of steps and instructions), pattern
recognition (the ability to identify similarities in problems and
situations), and programming debugging (converting instructions
into computer programs, identifying errors, and debugging for
corrections). In this study, computational thinking is viewed as a
cognitive process, and thus, enhancing computational thinking can
be seen as training and nurturing this series of thinking processes.

Enhancing students’ computational thinking is not about turning
them into programmers, but empowering them to apply the thought
processes of computer science to solve problems. As such, in nurturing
computational thinking, it is crucial to train students’ minds and
equip them with a comprehensive set of thought processes. As
mentioned earlier, a prevailing issue in current computational
thinking education is the overemphasis on programming and
debugging, while neglecting other cognitive processes like
decomposition, abstraction, algorithmic thinking, and pattern
recognition. This one-sided approach hinders students from
developing a systematic computational thinking framework.

Furthermore, when students are coding, their thought processes are
implicitly embedded in their work, making it challenging for teachers
to pinpoint which specific aspect of the cognitive process is problematic
for individual students. Consequently, it becomes difficult to identify
students’ weaknesses across different dimensions. To address these
challenges, we must leverage tools that enhance students’ capabilities in
all dimensions of computational thinking and visualize these thought
processes. By doing so, not only can teachers better understand the
intricacies of each student’s cognitive journey, but they can also tailor
instruction to address specific weaknesses, thereby fostering a more
holistic and effective development of computational thinking skills.

2.2 Tools for cultivating computational
thinking

While there are numerous tools available for fostering
computational thinking, given the advantages of programming in this
regard, our focus lies primarily on programming-related tools.

https://doi.org/10.3389/feduc.2024.1479729
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guo et al. 10.3389/feduc.2024.1479729

Frontiers in Education 03 frontiersin.org

Programming learning tools focused on computational thinking
primarily encompass graphical programming (such as Scratch, APP
Inventor), text-based programming (such as Python, C), open-source
hardware programming (such as Arduino), gaming (such as Penguin
Go), and more. Additionally, mathematical teaching tools like
wxMaxima can be utilized to cultivate students’ problem-solving and
modeling abilities (Karjanto, 2021; Karjanto and Husain, 2021). Among
these, research on graphical programming holds an absolute advantage
(Tikva and Tambouris, 2021). This is due to the “low floor, high ceiling”
nature of graphical programming, which encapsulates code within
blocks, allowing students to create programs simply by dragging and
dropping these blocks. Consequently, graphical programming does not
require extensive knowledge of programming syntax rules, enabling
students to complete a project in mere minutes. This ease of use and
brevity make it highly accessible for students. By eliminating the need
for strict syntax and foundational programming prerequisites, students
can devote more energy to honing their thinking skills. This type of tool
is particularly well-suited for primary and secondary school students
looking to enhance their computational thinking abilities.

Existing research has demonstrated that utilizing graphical
programming tools can significantly enhance students’ computational
thinking skills. Graphical programming exerts a notable influence on
students’ computational concepts, practices, and perspectives.
Specifically, it has been shown to be highly effective in mastering
computational concepts such as sequence, loop, condition, and event
that are integral to computational thinking (Meerbaum-Salant et al.,
2010; Sevillano García and Sáez López, 2016; Giordano and Maiorana,
2014). Furthermore, graphical programming significantly promotes
computational practices related to computational thinking, including
abstraction and debugging (Statter and Armoni, 2017; Webb and
Rosson, 2013). Tsai, C. Y. conducted a quasi-experimental study,
where the experimental group used graphical programming tools
while the control group received traditional instruction. The results
revealed that the experimental group had a better understanding of
programming concepts compared to the control group (Tsai, 2019).
Additionally, numerous studies have confirmed the positive impact of
graphical programming on computational thinking from perspectives
such as creative thinking, critical thinking, and problem-solving
abilities (Ma et al., 2021).

It can be seen that existing research on computational thinking
primarily unfolds from two perspectives. The first perspective explores
students’ learning outcomes in terms of creative thinking, critical
thinking, algorithmic thinking, and other dimensions. The second
perspective examines the learning outcomes of computational thinking
based on the three dimensions proposed by Brennan and others. In the
empirical research conducted so far, there has been little examination
of the cultivation effects of different tools from the angle of the
cognitive processes involved in computational thinking. Therefore, this
study analyzes the cultivation effects of various tools and strategies by
focusing on the cognitive processes associated with computational
thinking, such as abstraction, decomposition, algorithmic thinking,
pattern recognition, and programming debugging.

2.3 Mind mapping

Mind mapping is defined as “a visual, nonlinear representation of
ideas and their relationships” (Biktimirov and Nilson, 2003). It is a

method invented by Buzan to concretize and visualize divergent
thinking, enabling the visualization and expression of the cognitive
structures within the brain (Buzan, 2006). Mind mapping employs
shapes, images, and keywords to represent the relationships between
conceptual ideas (Rostron, 2002). This approach aids in knowledge
retention, organization, nurturing creative thinking, and assisting
students in describing the relationships between complex ideas. When
students can express complex thought relationships graphically, they
are more likely to comprehend those relationships, further analyze
their components, and facilitate deeper learning. Thus, processing or
supplementing ideas through mind mapping can enhance students’
learning outcomes. Research indicates that taking notes using mind
mapping positively impacts students’ conceptual learning and their
attitudes towards courses (Al-Jarf, 2009).

Recent studies have shown that incorporating mind mapping into
graphical programming significantly improves students’ creative
thinking, critical thinking, and algorithmic thinking, thereby
enhancing computational thinking skills among primary school
students. Some research has also confirmed the impact of mind
mapping on the computational thinking of university students.
However, there is a lack of empirical studies investigating the role of
mind mapping in graphical programming among middle school
students, as well as its effects on computational thinking skills and
self-efficacy (Sari et al., 2021).

2.4 Self-efficacy

Bandura defines self-efficacy as an individual’s belief in their
ability to master or accomplish a task, which influences the choices
they make, the effort they exert, and their perseverance in the face of
difficulties when completing tasks (Bandura and Wessels, 1997).
Research indicates that students with high self-efficacy perceive
difficulties as challenges that arise during task completion, thereby
affecting their level of effort in various contexts (Gandhi and Varma,
2010). Bandura emphasizes the existence and significance of domain-
specific self-efficacy. Consequently, analyzing programming self-
efficacy is crucial in fostering computational thinking through
graphical programming. Programming is a complex and challenging
process, and programming self-efficacy emerges as a pivotal variable
in the learning journey when tackling problems through
programming. Studies reveal that negative attitudes and low self-
efficacy in programming training can act as barriers to learning
(Hongwarittorrn and Krairit, 2010), whereas higher programming
self-efficacy ensures success in programming endeavors (Yağcı, 2016).
Hence, in utilizing programming to cultivate computational thinking
among students, our primary focus should be on exploring strategies
to enhance their programming self-efficacy.

Studies have confirmed that the application of mind mapping
strategies in flipped classrooms significantly enhances academic
performance and self-efficacy among second-year university students
(Zheng et al., 2020). Helen Semilarski and colleagues utilized mind
maps and concept maps to support students in integrating
interdisciplinary learning, and their findings revealed that the
employment of such visualization strategies notably boosted students’
self-efficacy in the domains of life and earth sciences, as well as in the
utilization of models and systems (Semilarski et al., 2022). Based on
these findings, we hypothesize that the use of mind mapping strategies

https://doi.org/10.3389/feduc.2024.1479729
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guo et al. 10.3389/feduc.2024.1479729

Frontiers in Education 04 frontiersin.org

in the cultivation of computational thinking can elevate students’
programming self-efficacy. Currently, there is a lack of empirical
evidence demonstrating the impact of mind mapping on students’
self-efficacy specifically within the context of computational thinking
development. Therefore, in this study, we conduct an experiment to
investigate whether mind mapping can enhance students’ domain-
specific self-efficacy in the process of fostering computational thinking.

2.5 Research objectives and questions

This study primarily explores the impact of different strategies on
students’ computational thinking from the perspective of its cognitive
processes, including abstraction, decomposition, pattern recognition,
algorithmic thinking, programming debugging, and so forth.
Additionally, existing research has confirmed that the use of mind maps
in programming can enhance computational thinking skills among
primary school students and university students. However, there have
been few experimental studies examining the influence of mind maps
on middle school students’ computational thinking skills and their self-
efficacy in computational thinking. Therefore, this study aims to
investigate the impact of mind maps on middle school students’
computational thinking skills and self-efficacy in the context of graphical
programming. The following questions are posed to guide the research:

Question 1: Can mind mapping enhance middle school
students’ computational thinking skills from the perspective of its
cognitive processes (dimensions of abstraction, decomposition,
pattern recognition, algorithmic thinking, and
programming debugging)?

Question 2: Can mind mapping improve middle school
students’ self-efficacy in computational thinking?

3 Method

3.1 Research hypotheses

Based on the above discussion, the following research hypotheses
are formulated for this study:

 a When using mind mapping for programming learning, students’
computational thinking skills will show more significant
improvement, with effects observed across all dimensions of the
cognitive processes of computational thinking (including
abstraction, decomposition, pattern recognition, algorithmic
thinking, and programming debugging).

 b When using mind mapping for programming learning,
students’ self-efficacy in computational thinking will
experience a more significant enhancement.

3.2 Experimental subject

This study was conducted in the spring of 2024 at an urbanized
junior high school. The participants were first-year junior high school

students enrolled in the programming club during the semester, with
an average age of 13 years old. The study involved an experimental
group of 20 students and a control group of 17 students. None of the
students in either the experimental or control group had prior
exposure to graphical programming during their primary school years
or before.

Prior to the instructional experiment, a pre-test was administered
to both the experimental and control groups on March 21st, 2024,
using the Computational Thinking Skills and Self-Efficacy
Measurement Scale via an online survey platform. A total of 37
questionnaires were collected for both the computational thinking
skills and attitude sections, all of which were deemed valid, resulting
in a 100% response rate.

After the completion of twelve 1-h sessions, a post-test was
conducted on June 20th, 2024, using the same measurement scales.
Again, 37 questionnaires were collected from both groups for both
sections, all of which were considered valid, maintaining a 100%
response rate.

The collected data were statistically analyzed using SPSS 20.0
software. In the measurement scale for computational thinking
skills, the independent sample t-test revealed a p-value of 0.075,
indicating that there is no significant difference in computational
thinking skills between the experimental group and the control
group. Similarly, in the measurement scale for self-efficacy in
computational thinking, the independent sample t-test showed a
p-value of 0.094, suggesting that there is no significant difference in
self-efficacy in computational thinking between the experimental
group and the control group. Moreover, both the experimental and
control groups completed programming tasks in groups of two to
three students.

3.3 Learning content

As previously mentioned, this study conceptualizes computational
thinking as a cognitive process encompassing five dimensions:
decomposition, abstraction, algorithmic thinking, pattern recognition,
and programming debugging. Therefore, fostering computational
thinking necessitates a focus on these five components. The research
plan leverages mind mapping as a tool to aid students in understanding
and mastering the cognitive processes of computational thinking.

Students first gain an understanding of the project to be completed
in each activity. Subsequently, under the guidance of the teacher, they
engage in discussions to analyze the roles, variables, and contexts of
the project. The outcomes of this decomposition are then presented
using mind maps (as illustrated in Figures 1, 2). This step helps
students break down complex projects, thereby fostering their ability
to decompose problems, a key aspect of computational thinking.

Next, students articulate the functions and roles of the
decomposed parts based on the teacher’s demonstrations. This activity
aims to encourage students to abstract phenomena, stripping away
non-essential details to grasp the essence of the problem, thereby
nurturing their ability to abstract. Students are then prompted to
analyze which building blocks or modules should be used to
implement the different roles and functions. The process of recalling
and imagining suitable building blocks fosters algorithmic thinking
and pattern recognition skills. Finally, students work in groups to
write code and complete the project.

https://doi.org/10.3389/feduc.2024.1479729
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guo et al. 10.3389/feduc.2024.1479729

Frontiers in Education 05 frontiersin.org

By using mind maps to decompose tasks, students are guided to
think about problems step-by-step, abstract the essence of the
problem, match the problem with specific building blocks or modules,
and ultimately solve the problem. By unfolding the cognitive
processes of computational thinking through mind mapping, this
experimental approach aims to cultivate students’ computational
thinking abilities.

Furthermore, the 12 projects selected for the experiment were
designed by the researchers, taking into account the students’
proficiency levels. These projects encompass various program
structures and building blocks in graphical programming, including
“Big Fish Eats Little Fish,” “Guess Idioms from Pictures,” “Flappy Bird,”
“Fruit Crush,” “Whack-a-Mole,” “Tank Battle,” “Pole Climbing Race,”
“Racing Game,” “Monster Hunt,” “Dress-Up Game,” “Jump Game,”
and “Airplane Battle.”

3.4 Experimental procedure

The experimental procedures are illustrated in Figure 3. Both the
experimental group and the control group were taught by the same
instructor, with sessions held once a week, each lasting for an hour,
over a total of 16 weeks. During the first 2 weeks, students were
introduced to the Scratch graphical programming interface and
building blocks, as well as the X-mind mind mapping software. In the
third week, pre-tests were conducted to assess students’ computational
thinking skills and self-efficacy.

From the fourth week to the fifteenth week, the teaching
experiments commenced. For the experimental group, the teaching
process entailed the following steps: the instructor demonstrated case
studies, then the instructor and students jointly analyzed and
decomposed these cases using mind maps, guiding students to
identify key logics and Scratch blocks. Students engaged in discussions
among themselves to refine their mind maps, and subsequently
collaborated to write the program based on the prompts from the
mind maps. Finally, they presented their work and summarized
their learning.

The teaching process for the control group was largely similar to
that of the experimental group, with the notable exception of the
absence of mind mapping. Specifically, the instructor demonstrated
case studies, and then the instructor and students analyzed the cases

together. Students then collaborated to complete the cases, followed
by presentations and summaries.

3.5 Instrument

3.5.1 Computational thinking skills
To assess students’ computational thinking skills, we employed

The Bebras CT Challenge as our measurement tool. The Bebras CT
Challenge is an internationally renowned online competition designed
to promote computer science and computational thinking among
students aged 10 to 19, and it has proven to be highly effective (Boom
et al., 2022; Dagiene and Jevsikova, 2012; Román-González et al.,
2017). This competition categorizes students into six age groups.
Given that the average age of the students in our experiment was 13,
we selected questions from the 12–14 age group. Each age group’s
questions are divided into three levels of difficulty: A-level, B-level,
and C-level, each targeting different sub-skills of computational
thinking. Specifically, A-level comprises 6 questions worth 2 points
each, assessing algorithmic thinking and modeling capabilities; B-level
includes 4 questions worth 4 points each, evaluating pattern
recognition and evaluation skills; and C-level consists of 2 questions
worth 6 points each, measuring abstraction and decomposition
abilities. We first translated the questions into Chinese and then had
two students read through them to analyze any potential linguistic
barriers in comprehension. It was found that the Chinese translations
did not pose any comprehension difficulties for the students.

3.5.2 Computational thinking self-efficacy
To measure students’ self-efficacy in computational thinking,

we utilized the Computational Thinking Scale adapted by Korkmaz
and Bai (2019). The original Computational Thinking Self-Efficacy
Scale developed by Korkmaz and colleagues has gained widespread
application globally. For this study, we employed the Chinese version
of the CTS, which has been extensively used in China and recognized
for its effectiveness in measuring self-efficacy in computational
thinking. The Computational Thinking Self-Efficacy Scale employs a
Likert five-point scale ranging from 1 = Strongly Disagree to
5 = Strongly Agree. It assesses five dimensions of computational
thinking: creativity, algorithmic thinking, collaboration ability, critical
thinking, and problem-solving ability, with a total of 22 items.

FIGURE 1

Mind map illustrating the cognitive processes of computational thinking.

https://doi.org/10.3389/feduc.2024.1479729
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guo et al. 10.3389/feduc.2024.1479729

Frontiers in Education 06 frontiersin.org

4 Results

4.1 Analyzing the impact of mind mapping
on computational thinking skills

Regarding the first research question, we first conducted
independent sample t-tests on the pre-test and post-test data from the
experimental and control classes to determine whether there were any
differences in computational thinking skills between the two classes
before the teaching experiment began and whether there were any
differences after the teaching experiment was implemented. The
results are presented in Tables 1, 2. Subsequently, we performed paired
sample t-tests on the pre-test and post-test data of both the
experimental and control classes separately to verify the effectiveness
of the teaching experiment’s intervention. The results of these analyses
are shown in Tables 3, 4.

Before the experiment, through conducting an independent
sample t-test on the pre-test data, we can conclude (as shown in
Table 1) that the levels of computational thinking skills between the
experimental class and the control class were essentially the same, with
no significant difference (p = 0.075 > 0.05). After a semester of
instruction, we performed paired sample t-tests on the pre-test and
post-test data of both groups. The data indicated (as shown in
Tables 3, 4) that within the experimental class, there was a significant
difference before and after the experiment (p < 0.001), indicating an
extremely significant improvement in computational thinking skills
as a result of the teaching experiment. Similarly, within the control
class, there was also a significant difference (p = 0.002), suggesting a
notable enhancement in computational thinking skills following the
teaching experiment, albeit to a lesser extent compared to the
experimental group.

When conducting an independent sample t-test on the post-test
data, the results (as shown in Table 2) indicated an extremely
significant difference (p < 0.001) between the experimental class and
the control class, suggesting that the experimental class outperformed
the control class in computational thinking skills. We further analyzed
the differences across the three dimensions of computational thinking
and found that the experimental group significantly surpassed the
control group in two dimensions: algorithmic thinking and modeling
capabilities (p = 0.046), as well as measurement, pattern recognition,

and evaluation abilities (p = 0.004). However, there was no significant
difference in the dimension of abstraction and decomposition
(p = 0.059).

4.2 Analyzing the impact of mind mapping
on self-efficacy in computational thinking

Addressing the second research question, we employed the
Computational Thinking Scale to conduct both independent sample
t-tests and paired sample t-tests to detect whether there were
significant differences between the experimental group and the
control group before and after the experiment. Prior to the
experiment, we conducted a pre-test on both the experimental and
control groups. The results of the independent sample t-test (as
shown in Table 5) indicated that the experimental group and the
control group were essentially the same in terms of self-efficacy in
computational thinking, with no significant difference (p = 0.094).
After the teaching experiment, paired sample t-tests were performed
separately on the experimental and control groups to analyze the
changes in both groups. The data revealed (as shown in Table 6) that
there was a significant difference in the experimental class before and
after the experiment (p < 0.001), indicating a remarkable
enhancement in the attitudes toward computational thinking among
the experimental group through the teaching experiment. In
contrast, no significant difference was found in the control class
(p = 0.092). Although the average score of self-efficacy in
computational thinking among the control group increased slightly
compared to the pre-test, this improvement did not reach statistical
significance (Table 7).

Further analysis was conducted to examine the differences
between the two groups across various dimensions. Based on the
results of the independent sample t-test (as shown in Table 8), it can
be observed that there was an extremely significant difference
(p < 0.001) between the experimental class and the control class after
the implementation of the teaching experiment. Specifically,
significant differences of varying degrees were found in five
dimensions: creativity, algorithmic thinking, collaboration ability,
critical thinking, and problem-solving.

5 Discussion

Programming serves as an ideal tool for enhancing students’
computational thinking, and through specific strategic support in this
process, students can attain a higher level of proficiency (Hooshyar,
2022; Rodríguez-Martínez et al., 2020; Zhang et al., 2023).
Furthermore, each step in the cognitive process of computational
thinking has a crucial impact on problem-solving abilities, making it
significant to leverage tools to advance students’ cognitive processes
related to computational thinking. Thus, it is necessary to explore
supportive strategies for fostering the cognitive processes of
computational thinking.

In this study, mind mapping was employed as a supportive
strategy and a cultivation tool for the cognitive processes of
computational thinking, to investigate its impact on computational
thinking skills and self-efficacy. After a 12-week experiment, post-test
data revealed that both the experimental group and the control group

FIGURE 2

Students using mind maps to train their thinking process.

https://doi.org/10.3389/feduc.2024.1479729
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guo et al. 10.3389/feduc.2024.1479729

Frontiers in Education 07 frontiersin.org

showed improvements in computational abilities, but the effect was
more pronounced in the experimental group. The control group
utilized graphical programming tools to cultivate students’
computational thinking, demonstrating that visual programming can
significantly enhance students’ computational thinking skills. This
finding corroborates existing research, reinforcing the positive
influence of programming tools on computational thinking through

FIGURE 3

Experimental procedure.

TABLE 1 Measurement of computational thinking skills in experimental
group and control group (Bebras) pre-test comparison (df = 35).

f Experimental
group

(n = 20)

Control
group

(n = 17)

t p

M ± SD M ± SD

Computational

thinking skills

(Bebras)

0.396 21.3 ± 1.718 16.9 ± 1.601 1.833 0.075

TABLE 2 Measurement of computational thinking skills in experimental
group and control group (Bebras) post-test comparison (df = 35).

The
Bebras CT
challenge

Group N M SD t p

Total scores
EG 20 32.550 1.2967

3.997
0.000

CG 17 24.676 1.4963

Algorithmic

thinking and

modeling

capabilities

EG 20 9.60 0.450

2.070 0.046
CG 17

8.24 0.481

Pattern

recognition and

evaluation skills

EG 20 13.40 0.727

3.047 0.004
CG 17

9.88 0.915

Abstraction and

decomposition

abilities

EG 20 6.90 0.788

1.949 0.059
CG 17

4.94 0.572

https://doi.org/10.3389/feduc.2024.1479729
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guo et al. 10.3389/feduc.2024.1479729

Frontiers in Education 08 frontiersin.org

data. Below is a discussion on the research questions based on the
study’s findings.

Research Question 1: Can mind mapping enhance middle school
students’ computational thinking skills from the perspective of the
cognitive processes of computational thinking (dimensions of
abstraction, decomposition, pattern recognition, algorithmic thinking,
and programming debugging)? The results indicate that the
experimental group supported by mind mapping exhibited more
significant improvements in computational thinking skills. Further
analysis reveals that, compared to the control group, students showed
notable differences in the dimensions of algorithms and modeling, as
well as pattern recognition and evaluation. However, there were no
significant differences in the dimensions of abstraction
and decomposition.

As mentioned earlier, during the teaching process, students in
both the experimental and control groups were led by teachers to
analyze and decompose cases, with the teachers’ explanations
predominating. However, in the experimental group, after presenting
the decomposed results using mind maps, students continued to use
mind maps to analyze the specific steps for implementing each small
problem. This process was crucial for enhancing their algorithmic
modeling skills. Additionally, during this process, students also
associated the specific code blocks they used with previously learned
cases, serving as a form of recall and cognitive reinforcement,
ultimately improving their pattern recognition abilities. Upon further
analysis of the experimental process, it was observed that after
presenting cases, teachers led students to decompose the cases and
analyze the problems together. Therefore, no significant differences
were observed in the dimensions of decomposition and abstraction.
In the future, an attempt could be made to allow students to use mind
maps independently to decompose cases and analyze problems,
thereby fostering their abilities in decomposition and abstraction. The
experiment confirmed previous research findings (Basu et al., 2017;
Ismail et al., 2010) that mind mapping has a positive impact on the
computational thinking skills of university students and primary
school students. Simultaneously, this study extended this discovery to
middle school students.

Research Question 2: Can mind mapping enhance middle school
students’ self-efficacy in computational thinking? We have obtained a
positive answer to this question. The data indicated that the
experimental group showed significant improvements across all five
dimensions of computational thinking self-efficacy. This result aligns
with previous research (Malycha and Maier, 2017; Rahmidani, 2019),
suggesting that mind mapping positively impacts students’ creativity,
critical thinking, algorithmic thinking, problem-solving skills, and
collaboration abilities. In the context of this experiment, when students
used mind maps to analyze project-based tasks, they generated diverse
ideas and multiple solutions to the same problem. This process
effectively promoted their creative thinking, algorithmic thinking, and

TABLE 3 Comparison of pre and post tests of the computational thinking
skills measurement scale in the experimental group (n = 20, df = 19).

Pre-test Post-test t p

M ± SD M ± SD

The Bebras

CT challenge

21.3 ± 1.718 32.5 ± 1.297 −6.577 0.000

TABLE 4 Comparison of pre and post tests of the computational thinking
skills measurement scale in the control group (n = 17, df = 16).

Pre-test Post-test t p

M ± SD M ± SD

The Bebras

CT challenge

16.94 ± 1.601 24.68 ± 1.496 −3.737 0.002

TABLE 5 Comparison of pre-test scores on the computational thinking
self-efficacy scale (CTS) between the experimental group and the control
group (df = 35).

f EG
(n = 20)

CG
(n = 17) t p

M ± SD M ± SD

CT self-

efficacy
2.720 72.00±1.814 66.12±3.040 1.720 0.094

TABLE 6 Comparison of post-test scores on the computational thinking
self-efficacy scale (CTS) between the experimental group and the control
(df = 35).

CT self-
efficacy

Group N M SD t p

Total scores
EG 20 88.90 2.650

4.932 0.000
CG 17 72.71 1.714

Creativity
EG 20 16.45 0.605

2.807 0.008
CG 17 14.00 0.624

Algorithmic

thinking

EG 20 15.65 0.678
3.337 0.002

CG 17 12.12 0.826

Collaboration

ability

EG 20 26.00 0.827
4.079 0.000

CG 17 20.59 1.061

Critical

thinking

EG 20 15.60 0.705
2.056 0.047

CG 17 13.47 0.758

Problem-

solving

EG 20 15.20 0.863
2.415

0.021

CG 17 12.53 0.637

TABLE 7 Comparison of pre-test and post-test scores on the
computational thinking self-efficacy scale (CTS) for the experimental
group (n = 20, df = 19).

Pre-test Post-test t p

M ± SD M ± SD

CT self-

efficacy

72.0 ± 1.814 88.9 ± 2.649 −6.577 0.000

TABLE 8 Comparison of pre-test and post-test scores on the
computational thinking self-efficacy scale (CTS) for the control group
(n = 17, df = 16).

Pre-test Post-test t p

M ± SD M ± SD

CT self-

efficacy

66.1 ± 3.040 72.71 ± 1.714 −1.791 0.092

https://doi.org/10.3389/feduc.2024.1479729
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guo et al. 10.3389/feduc.2024.1479729

Frontiers in Education 09 frontiersin.org

collaboration skills. Furthermore, the variety of approaches to solving
the same problem necessitated analysis, discussion, and selection
among students, which contributed to the development of their critical
thinking. In contrast, in the control group, individual ideas were
implicit within the programming modules, hindering students from
analyzing the differences between various methods. Consequently,
using mind maps to discuss algorithms and visualizing thinking
facilitated student communication and discussion, ultimately
enhancing their computational thinking self-efficacy.

This finding corroborates previous research, demonstrating that
mind mapping can significantly enhance students’ self-efficacy in
flipped classrooms and interdisciplinary teaching. The current study
extends these results by showing that mind mapping can also improve
students’ computational thinking self-efficacy in the context of
graphical programming. Furthermore, research indicates that low self-
efficacy is a significant barrier in programming learning, whereas
students with high self-efficacy tend to perform better in
programming. This explanation sheds light on why the experimental
group students demonstrated superior computational thinking skills
compared to the control group. By fostering a sense of accomplishment
and confidence through the use of mind maps, students in the
experimental group likely felt more empowered to tackle programming
challenges, leading to their improved performance.

6 Conclusion and limitations

This study explored the strategy of utilizing mind maps to enhance
middle school students’ computational thinking skills and self-efficacy
in graphical programming. By visualizing the cognitive processes of
computational thinking through mind maps, the teaching experiment
conducted over a semester revealed that this strategy significantly
improved students’ computational thinking skills, particularly in the
dimensions of algorithmic modeling and pattern recognition and
evaluation. Regarding computational thinking self-efficacy, students
demonstrated notable enhancements across five dimensions: creativity,
algorithmic thinking, critical thinking, collaboration skills, and problem-
solving abilities. This research holds significant theoretical and practical
implications. Theoretically, this study validates the role of mind mapping
as an instructional strategy in fostering computational thinking in
programming education. By experimentally verifying the positive impact
of mind mapping on computational thinking self-efficacy, it expands
upon previous research on mind mapping. Practically, this experiment
was conducted in an authentic teaching environment, making it feasible
for frontline teachers to adopt and implement the strategy in their own
classrooms. This finding offers a practical tool for educators to enhance
students’ computational thinking skills and self-efficacy, ultimately
leading to improved learning outcomes in programming education.

There are several limitations to this study that warrant
consideration. Firstly, the sample was drawn from urban schools in
western China, where students had no prior exposure to graphical
programming before middle school. Future research could expand to
economically developed provinces in central and eastern China to
increase the diversity of the sample. Secondly, the sample students were
voluntarily enrolled in the graphical programming club, indicating a
high likelihood of their interest in computer-related activities.

Additionally, the majority of the participants were male, and the study
did not account for gender factors. Future research should broaden the
scope of participants and consider multiple factors such as interest and
gender. Thirdly, different forms of mind mapping, such as digital
creation versus hand-drawn, can influence student learning. However,
this study only utilized digital mind mapping. Further research could
explore the effects of various mind mapping methods on students’
learning outcomes. Lastly, the study found no significant difference in
the decomposition and abstraction dimensions of computational
thinking. Further investigation is needed to explore potential reasons
for this outcome and refine the experimental design. Addressing these
limitations in future research will contribute to a more comprehensive
understanding of the effectiveness of mind mapping in enhancing
computational thinking skills and self-efficacy among students.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author/s.

Ethics statement

Ethical approval was not required for the study involving human
samples in accordance with the local legislation and institutional
requirements. Written informed consent for participation in this study
was provided by the participants’ legal guardians/next of kin. Ethical
approval was not required for the study involving animals in
accordance with the local legislation and institutional requirements.
Written informed consent was obtained from the individual(s), and
minor(s)’ legal guardian/next of kin, for the publication of any
potentially identifiable images or data included in this article.

Author contributions

RG: Writing – original draft, Writing – review & editing. YZ:
Writing – original draft, Data curation. HM: Writing – original draft.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

https://doi.org/10.3389/feduc.2024.1479729
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guo et al. 10.3389/feduc.2024.1479729

Frontiers in Education 10 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by
the publisher.

References
Aksit, O., and Wiebe, E. N. (2020). Exploring force and motion concepts in middle

grades using computational modeling: a classroom intervention study. J. Sci. Educ.
Technol. 29, 65–82. doi: 10.1007/s10956-019-09800-z

Al-Jarf, R. (2009). Enhancing freshman students’ writing skills with a mind-mapping
software. In Conference proceedings of eLearning and Software for Education (eLSE)
(Vol. 5, No. 01, pp. 375–382). Available at: https://ssrn.com/abstract=3901075

Atmatzidou, S., and Demetriadis, S. (2016). Advancing students’ computational
thinking skills through educational robotics: a study on age and gender relevant
differences. Robot. Auton. Syst. 75, 661–670. doi: 10.1016/j.robot.2015.10.008

Bandura, A., and Wessels, S. (1997). Self-efficacy. Cambridge: Cambridge University
Press, 4–6.

Barr, V., and Stephenson, C. (2011). Bringing computational thinking to K-12: what
is involved and what is the role of the computer science education community? ACM
Inroads 2, 48–54. doi: 10.1145/1929887.1929905

Basogain Olabe, X., Olabe Basogain, M. Á., Olabe Basogain, J. C., and Rico, M. J.
(2017). Computational thinking in pre-university blended learning classrooms

Basu, S., Biswas, G., and Kinnebrew, J. S. (2017). Learner modeling for adaptive
scaffolding in a computational thinking-based science learning environment. User
Model. User-Adap. Inter. 27, 5–53. doi: 10.1007/s11257-017-9187-0

Batdi, V. (2015). A meta-analysis study of mind mapping techniques and traditional
learning methods. Anthropologist 20, 62–68. doi: 10.1080/09720073.2015.11891724

Biktimirov, E. N., and Nilson, L. B. (2003). Mapping your course: designing a graphic
syllabus for introductory finance. J. Educ. Bus. 78, 308–312. doi:
10.1080/08832320309598618

Boom, K. D., Bower, M., Siemon, J., and Arguel, A. (2022). Relationships between
computational thinking and the quality of computer programs. Educ. Inf. Technol. 27,
8289–8310. doi: 10.1007/s10639-022-10921-z

Brennan, K., and Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. In Proceedings of the 2012 annual meeting of
the American educational research association, Vancouver, Canada (Vol. 1, p. 25).

Buzan, T. (2006). Use your head. Pearson Educ. 5:333. doi:
10.1016/0029-1021(72)90055-2

Cui, Z., and Ng, O. L. (2021). The interplay between mathematical and computational
thinking in primary school students’ mathematical problem-solving within a
programming environment. J. Educ. Comput. Res. 59, 988–1012. doi:
10.1177/0735633120979930

Dagiene, V., and Jevsikova, T. (2012). Reasoning on the content of informatics
education for beginners. Soc. Sci. 78, 84–90. doi: 10.5755/j01.ss.78.4.3233

Davies, M. (2011). Concept mapping, mind mapping and argument mapping: what are
the differences and do they matter? High. Educ. 62, 279–301. doi: 10.1007/s10734-010-9387-6

Demir, F. (2022). The effect of different usage of the educational programming
language in programming education on the programming anxiety and achievement.
Educ. Inf. Technol. 27, 4171–4194. doi: 10.1007/s10639-021-10750-6

Gandhi, H., and Varma, M. (2010). Strategic content learning approach to promote
self-regulated learning in mathematics. Proceed. epiSTME 3, 119–124.

Giordano, D., and Maiorana, F. (2014). “Use of cutting edge educational tools for an
initial programming course” in In 2014 IEEE global engineering education conference
(EDUCON). 3–5 April 2014, Military Museum and Cultural Center, (Harbiye, Istanbul,
Turkey: IEEE) 556–563.

Hongwarittorrn, N., and Krairit, D. (2010). Effects of program visualization (jeliot3)
on students' performance and attitudes towards java programming. In The spring 8th
international conference on computing, communication and control technologies
(Vol. 69).

Hooshyar, D. (2022). Effects of technology-enhanced learning approaches on learners
with different prior learning attitudes and knowledge in computational thinking.
Comput. Appl. Eng. Educ. 30, 64–76. doi: 10.1002/cae.22442

Hsu, T. C., Chang, S. C., and Hung, Y. T. (2018). How to learn and how to teach
computational thinking: suggestions based on a review of the literature. Comput. Educ.
126, 296–310. doi: 10.1016/j.compedu.2018.07.004

Ismail, M. N., Ngah, N. A., and Umar, I. N. (2010). The effects of mind mapping with
cooperative learning on programming performance, problem solving skill and
metacognitive knowledge among computer science students. J. Educ. Comput. Res. 42,
35–61. doi: 10.2190/EC.42.1.b

Israel-Fishelson, R., and Hershkovitz, A. (2022). Studying interrelations of
computational thinking and creativity: a scoping review (2011–2020). Comput. Educ.
176:104353. doi: 10.1016/j.compedu.2021.104353

Karjanto, N. (2021). Calculus and digital natives in rendezvous: wxMaxima impact.
Educ. Sci. 11:490. doi: 10.3390/educsci11090490

Karjanto, N., and Husain, H. S. (2021). Not another computer algebra system:
highlighting wxMaxima in calculus. Mathematics 9:1317. doi: 10.3390/math9121317

Korkmaz, Ö., and Bai, X. (2019). Adapting computational thinking scale (CTS) for
chinese high school students and their thinking scale skills level. Participatory Educ. Res.
6, 10–26. doi: 10.17275/per.19.2.6.1

Ma, H., Zhao, M., Wang, H., Wan, X., Cavanaugh, T. W., and Liu, J. (2021). Promoting
pupils’ computational thinking skills and self-efficacy: a problem-solving instructional
approach. Educ. Technol. Res. Dev. 69, 1599–1616. doi: 10.1007/s11423-021-10016-5

Malycha, C. P., and Maier, G. W. (2017). Enhancing creativity on different complexity
levels by eliciting mental models. Psychol. Aesthet. Creat. Arts 11, 187–201. doi: 10.1037/
aca0000080

Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M. (2010). Learning computer
science concepts with scratch. In Proceedings of the Sixth international workshop on
Computing education research (pp. 69–76).

Mladenović, M., Žanko, Ž., and Aglić Čuvić, M. (2021). The impact of using program
visualization techniques on learning basic programming concepts at the K–12 level.
Comput. Appl. Eng. Educ. 29, 145–159. doi: 10.1002/cae.22315

Rahmidani, R. (2019) Improving students’ motivation and learning creativity through
mind mapping learning method. In 2nd Padang International Conference on Education,
Economics, Business and Accounting (PICEEBA-2 2018) (pp. 881–889)

Rodríguez-Martínez, J. A., González-Calero, J. A., and Sáez-López, J. M. (2020).
Computational thinking and mathematics using scratch: an experiment with sixth-grade
students. Interact. Learn. Environ. 28, 316–327. doi: 10.1080/10494820.2019.1612448

Román-González, M., Pérez-González, J. C., and Jiménez-Fernández, C. (2017).
Which cognitive abilities underlie computational thinking? Criterion validity of the
computational thinking test. Comput. Hum. Behav. 72, 678–691. doi: 10.1016/j.
chb.2016.08.047

Rostron, S. S. (2002). Accelerating performance: Powerful new techniques to develop
people. London: Kogan Page Publishers.

Sari, R., Sumarmi, S., Astina, I., Utomo, D., and Ridhwan, R. (2021). Increasing
students critical thinking skills and learning motivation using inquiry mind map. Int. J.
Emerg. Technol. Learn. 16, 4–19. doi: 10.3991/ijet.v16i03.16515

Selby, C. (2013). Computational thinking: the developing definition. University of
Southampton. Available at: https://eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_
soton_eprints.pdf (Accessed January, 2013).

Semilarski, H., Soobard, R., Holbrook, J., and Rannikmäe, M. (2022). Expanding
disciplinary and interdisciplinary core idea maps by students to promote perceived self-
efficacy in learning science. Int. J. STEM Educ. 9:57. doi: 10.1186/s40594-022-00374-8

Sevillano García, M. L., and Sáez López, J. M. (2016). Sensors, programming and
devices in art education sessions. One case in the context of primary education. Cult.
Educ. 29, 350–384. doi: 10.1080/11356405.2017.1305075

Shi, Y., Yang, H., Dou, Y., and Zeng, Y. (2023). Effects of mind mapping-based
instruction on student cognitive learning outcomes: a meta-analysis. Asia Pac. Educ. Rev.
24, 303–317. doi: 10.1007/s12564-022-09746-9

Silva, R., Fonseca, B., Costa, C., and Martins, F. (2021). Fostering computational
thinking skills: a didactic proposal for elementary school grades. Educ. Sci. 11:518. doi:
10.3390/educsci11090518

Statter, D., and Armoni, M. (2017). Learning abstraction in computer science: a
gender perspective. In Proceedings of the 12th Workshop on Primary and Secondary
Computing Education (5–14).

Stokhof, H., De Vries, B., Bastiaens, T., and Martens, R. (2020). Using mind maps to
make student questioning effective: learning outcomes of a principle-based scenario for
teacher guidance. Res. Sci. Educ. 50, 203–225. doi: 10.1007/s11165-017-9686-3

Sullivan, A. A., Bers, M. U., and Mihm, C. (2017). Imagining, playing, and coding with
KIBO: Using robotics to foster computational thinking in young children. Hong Kong:
Siu-cheung KONG The Education University of Hong Kong, 110.

Tikva, C., and Tambouris, E. (2021). Mapping computational thinking through
programming in K-12 education: a conceptual model based on a systematic literature
review. Comput. Educ. 162:104083. doi: 10.1016/j.compedu.2020.104083

https://doi.org/10.3389/feduc.2024.1479729
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://doi.org/10.1007/s10956-019-09800-z
https://ssrn.com/abstract=3901075
https://doi.org/10.1016/j.robot.2015.10.008
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1007/s11257-017-9187-0
https://doi.org/10.1080/09720073.2015.11891724
https://doi.org/10.1080/08832320309598618
https://doi.org/10.1007/s10639-022-10921-z
https://doi.org/10.1016/0029-1021(72)90055-2
https://doi.org/10.1177/0735633120979930
https://doi.org/10.5755/j01.ss.78.4.3233
https://doi.org/10.1007/s10734-010-9387-6
https://doi.org/10.1007/s10639-021-10750-6
https://doi.org/10.1002/cae.22442
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.2190/EC.42.1.b
https://doi.org/10.1016/j.compedu.2021.104353
https://doi.org/10.3390/educsci11090490
https://doi.org/10.3390/math9121317
https://doi.org/10.17275/per.19.2.6.1
https://doi.org/10.1007/s11423-021-10016-5
https://doi.org/10.1037/aca0000080
https://doi.org/10.1037/aca0000080
https://doi.org/10.1002/cae.22315
https://doi.org/10.1080/10494820.2019.1612448
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.3991/ijet.v16i03.16515
https://eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_soton_eprints.pdf
https://eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_soton_eprints.pdf
https://doi.org/10.1186/s40594-022-00374-8
https://doi.org/10.1080/11356405.2017.1305075
https://doi.org/10.1007/s12564-022-09746-9
https://doi.org/10.3390/educsci11090518
https://doi.org/10.1007/s11165-017-9686-3
https://doi.org/10.1016/j.compedu.2020.104083

Guo et al. 10.3389/feduc.2024.1479729

Frontiers in Education 11 frontiersin.org

Tsai, C. Y. (2019). Improving students' understanding of basic programming concepts
through visual programming language: the role of self-efficacy. Comput. Hum. Behav.
95, 224–232. doi: 10.1016/j.chb.2018.11.038

Webb, H., and Rosson, M. B. (2013). Using scaffolded examples to teach computational
thinking concepts. In Proceeding of the 44th ACM technical symposium on Computer
science education (pp. 95–100).

Wing, J. M. (2006). Computational thinking. Commun. ACM 49, 33–35. doi:
10.1145/1118178.1118215

Yağcı, M. (2016). Effect of attitudes of information technologies (IT) preservice
teachers and computer programming (CP) students toward programming on their
perception regarding their self-sufficiency for programming Bilişim teknolojileri (BT)
öğretmen adaylarının ve bilgisayar programcılığı (BP) öğrencilerinin programlamaya
karşı tutumlarının programlama öz yeterlik algılarına etkisi. J. Human Sci. 13,
1418–1432. doi: 10.14687/ijhs.v13i1.3502

Yang, T. C., and Lin, Z. S. (2024). Enhancing elementary school students'
computational thinking and programming learning with graphic organizers. Comput.
Educ. 209:104962. doi: 10.1016/j.compedu.2023.104962

Zhang, X., Tlili, A., Guo, J., Griffiths, D., Huang, R., Looi, C. K., et al. (2023).
Developing rural Chinese children’s computational thinking through game-based
learning and parental involvement. J. Educ. Res. 116, 17–32. doi:
10.1080/00220671.2023.2167798

Zhao, L., Liu, X., Wang, C., and Su, Y. S. (2022). Effect of different mind mapping
approaches on primary school students’ computational thinking skills during visual
programming learning. Comput. Educ. 181:104445. doi: 10.1016/j.compedu.2022.104445

Zheng, X., Johnson, T. E., and Zhou, C. (2020). A pilot study examining the impact of
collaborative mind mapping strategy in a flipped classroom: learning achievement, self-
efficacy, motivation, and students’ acceptance. Educ. Technol. Res. Dev. 68, 3527–3545.
doi: 10.1007/s11423-020-09868-0

https://doi.org/10.3389/feduc.2024.1479729
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://doi.org/10.1016/j.chb.2018.11.038
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.14687/ijhs.v13i1.3502
https://doi.org/10.1016/j.compedu.2023.104962
https://doi.org/10.1080/00220671.2023.2167798
https://doi.org/10.1016/j.compedu.2022.104445
https://doi.org/10.1007/s11423-020-09868-0

	The influence of mind mapping on computational thinking skills and self-efficacy in students’ learning of graphical programming
	1 Introduction
	2 Literature review
	2.1 Definition of computational thinking
	2.2 Tools for cultivating computational thinking
	2.3 Mind mapping
	2.4 Self-efficacy
	2.5 Research objectives and questions

	3 Method
	3.1 Research hypotheses
	3.2 Experimental subject
	3.3 Learning content
	3.4 Experimental procedure
	3.5 Instrument
	3.5.1 Computational thinking skills
	3.5.2 Computational thinking self-efficacy

	4 Results
	4.1 Analyzing the impact of mind mapping on computational thinking skills
	4.2 Analyzing the impact of mind mapping on self-efficacy in computational thinking

	5 Discussion
	6 Conclusion and limitations

	References

