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Introduction: Current methods for reading di�culty risk detection at school

entry remain error-prone. We present a novel approach utilizing machine

learning analysis of data from GraphoGame, a fun and pedagogical literacy app.

Methods: The app was played in class daily for 10 min by 1,676 Norwegian first

graders, over a 5-week period during the first months of schooling, generating

rich process data. Modelswere trained on the process data combinedwith results

from the end-of-year national screening test.

Results: The best machine learning models correctly identified 75% of the

students at risk for developing reading di�culties.

Discussion: The present study is among the first to investigate the potential

of predicting emerging learning di�culties using machine learning on game

process data.
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1 Introduction

Learning to read is a crucial skill acquired during the first years of school and children

with difficulties in acquiring this skill may face adverse educational, vocational, and

health outcomes (McLaughlin et al., 2014; DeWalt et al., 2004). While researchers have

pointed to the relative ease with which a majority of students learn to read (Shankweiler

and Liberman, 1989), the same process is extremely effortful for struggling readers

and more so for students with dyslexia. If difficulties in this learning process are not

identified promptly and ameliorated, the performance gap between struggling readers

and their non-struggling peers will only widen, a phenomenon coined, the “Matthew

Effect” (Stanovich, 2009). Much research has therefore focused on how to optimize

early and accurate identification of struggling readers. The most common form of early

detection tool is currently a one-time multi-component assessment where early reading

skills and their precursors are examined (Thompson et al., 2015; Phillips et al., 2009).

Learning to read involves mastering a number of different component skills over a

protracted time course; these component skills include letter-sound decoding, whole

word recognition, reading fluency, and the ultimate goal of reading—comprehension

(Scarborough et al., 2009). As the statistical analysis capacity of reading research has

expanded, we are increasingly able to identify and quantify the relative contributions

of these different factors at different points of the developmental process. However,

while substantive progress has been made, current detection tools remain error-prone

at the level of individual prediction, potentially resulting in both false positives,
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where children are identified as having a difficulty which may

have resolved without expert input, or false negatives, where

a child who will go on to have persistent difficulties is not

identified as “at-risk” by an assessment tool. Arguably, a false

negative classification may have more serious consequences for

the individual student than a false positive classification. Still,

both these types of mis-classification can have significant socio-

emotional and educational consequences.

A currently underutilized opportunity is making use of the

extensive data made available via tracking children’s learning

within educational technology, for the purposes of detecting

reading difficulty. With an increasing number of digital supports

for literacy learning (Livingstone, 2021; Yang et al., 2018) being

present in the classroom, new opportunities for observing and

evaluating children’s pathway to literacy occur—at a level of detail

and specificity previously unavailable. One potential advantage

of this approach is that the game log data can non-intrusively

capture the dynamic process of learning, allowing for assessment

of a phenomenon more closely akin to the process of learning

to read itself. An additional characteristic of this type of data

exploitation is that the method of assessment can go hand-in-hand

with play-based learning—a process which has been called “stealth

assessment” in the wider learning analytics literature (Shute et al.,

2021). The processing of such complex data also necessitates

more powerful statistical methods that are underutilized

in current reading research; and the aim of the present

study was to employ and compare multiple machine learning

approaches to analyzing process data from the serious literacy

app GraphoGame.

1.1 Related work

1.1.1 Current approaches to early identification
Precise early identification of reading difficulties has proven

challenging for a number of reasons. Typically, early identification

is wanted at the time of school entry or during the first year of

school, and is typically maintained as a one-time multi-component

assessment. Early identification of reading difficulty is, however,

dependent on using early predictors of reading, as the identification

is likely to take place before formal reading instruction has started.

Research has documented a set of such pre-reading skills that

predicts later reading development in alphabetical orthographies

(Caravolas et al., 2013; Solheim et al., 2021). Still, we need to

improve identification for this age group, as identification is likely

more effective when provided early (Lovett et al., 2017). Dixon

et al. (2022) emphasize that early identification before, or at the

onset of, reading instruction is hampered by floor effects and

are insensitive to childrens’ learning experience and opportunities.

One-time multi-component assessments applied typically includes

phonological awareness, letter knowledge or word decoding, verbal

short-time memory, rapid automatized naming and oral language.

In a comparison of state of the art prediction across Norway and

Finland (Solheim et al., 2021), a typical logistic predictive model

identified 42% at risk at the end of first grade in Finland, but

the same model predicted only 27.9% in Norway. The authors

point to the need for language and context specific predictors,

when/if following this test-tradition further. Contrasting the one-

time multi-component assessment approach, dynamic assessment,

i.e., assessment of process where feedback is given alongside, “...and

may be less dependent on learning background” (Dixon et al.,

2022, p. 1). In dynamic assessment, rather than assessing the

products of learning, the focus is the processing of learning itself—

how does an individual respond to both instruction and feedback.

This approach is conceptually grounded in Vygotsky’s construct of

Zones of Proximal Development (Dumas et al., 2020), which can

be defined as the space between what a learner can do without

assistance, and what a learner can do with feedback or support.

While a such construct can be measured also at a single time point,

dynamic assessment emphasizes the aspect of learning over time,

involving frequent feedback and multiple measure points allowing

for learning to take place and be measured. Applying psychometric

rigor to such an individualized assessment process is not without

its challenges (Grigorenko and Sternberg, 1998), however as

assessment design advances, the potential of dynamic assessment

is growing. Indeed, recent meta-analysis (Dixon et al., 2022) shows

that dynamic assessment may provide better prediction than the

static approach, while calling for future studies to adopt longer

developmental windows for the assessment.

1.1.2 Early identification utilizing dynamic
literacy gameplay data

One unique opportunity to address this call—combining

rich, multi-faceted process data, collected over a longer window

of time—is exploring the predictive capabilities of dynamic

assessment using logdata from the digital reading games. The last

few decades have seen a steady increase in the availability of digital

early reading games, as well as an evidence base that supports their

use (Verhoeven et al., 2022). This provides unprecedented and

largely untapped information on children’s learning processes.

Graphogame is a digital learning platform that is singular

in terms of its combination of global reach and accessibility

of player logdata for research and innovation. It is a play-like,

digital learning platform that provides children with training

in phoneme awareness, letter-sound and early word decoding

training, providing real-time feedback. It was originally devised

by researchers at the University of Jyväskylä in Finland (Lyytinen

et al., 2009, 2007). Since its inception in Finland and promising

initial findings, the game has subsequently been adapted for at

least 10 alphabetic languages of varying orthographic depth, across

more than 20 countries in four continents (Africa, Europe, North

America, South America).

The game content adapts to the individual player according

to actual performance in identifying letters, syllables or words

matching auditory stimuli played through headphones (see

Figure 1a). Thus, the game provides, and documents, unique levels

according to in-the-moment skill. The adaptation algorithm of the

game ensures that the student receives 20% of trials as challenge

and 80% as mastery, based on the individual player’s previous

performance. Thus, a child has the opportunity to progress to

more difficult items, if and when, they demonstrate mastery of

more foundational content. In addition to curricular play, i.e.,

matching audio to letters, syllables or words, Graphogame also
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FIGURE 1

Screenshots of GraphoGame. (a) Curricular play: a trial. (b)

Extra-curricular: the inventory.

contains extra-curricular elements such as a stickerbook and a shop

inventory (see Figure 1b), where the player may spend coins earned

in curricular play. GraphoGame has an evidence-base exploring its

efficacy (McTigue et al., 2019).

A previous study (name deleted to maintain the integrity

of the review process) scrutinized data from 137 6-year old

children playing Graphogame over a 25 week period. Progress

data was extracted at 5-week intervals throughout the 25 weeks,

being operationalized as the number of word items known

by the last play session within each time period. This yielded

individual growth curves for each child over the 25 week period,

with five measurement occasions, which was also compared

to a traditional one-time multi-component screen administered

at school-entry, which measured letter-sound knowledge, rapid

automatized naming two tests of phonemic awareness and also

took into consideration family risk. Latent growth curve analyses

showed that variation in progress trajectories explained variation

in literacy performance at the end of the academic year, post

gameplay, to a greater extent than risk status at school entry, as

measured by the one-time screening tool. This work pointed to the

potential of using dynamic gameplay data to improve prediction

accuracy, however it still only used a small fraction of the player

data collected.

1.1.3 Early identification utilizing machine
learning

Analysis of the “big data” that log files generate necessitates a

reconsideration of the type of analysis methods most appropriate

for longitudinal prediction. Machine learning (ML) is a more

powerful approach that has more capacity than traditional

regression analysis to process and make sense of extensive data sets.

The latter approach assumes that the risk outcome is determined

by linearly combining a set of predictor variables, imposing very

strong constraints on how the predictor variables are allowed to

interact in the prediction. In contrast, ML encompasses a large

variety of flexible ways to identify and non-linearly combine large

sets of predictors.

ML is a form of artificial intelligence which aims to improve the

performance of a task, in this case, accurate prediction of reading

difficulty risk, through a computational training experience (Jordan

and Mitchell, 2015). Part of the data collected is designated as

the training set for a ML algorithm, using the training experience

to tune the algorithm for optimal prediction accuracy. The

performance of the trained algorithm can then be validated out-

of-sample, against the remainder of the dataset. The use of ML in

reading research is still in its infancy, although a recent special issue

in this journal (Erbeli and Wagner, 2023) featured studies on the

topic of risk prediction that are of relevance to the work reported

here. Two studies directly compared the predictive strength of ML

approaches with more traditional logistic regression approaches to

risk detection, using first/second grade single task emergent literacy

performance measures as their input, and third/fourth grade

literacy indicators as their outcome measures. Using random forest

(Erbeli et al., 2023) and classification and regression tree (Gutirrez

et al., 2023) ML models, respectively, the strength of prediction

across ML and logistic regression approaches was comparable. In

an additional study by Psyridou et al. (2023), a neural network

model was compared to linear and mixture models in predicting

reading difficulties at Grade 9, from 16 kindergarten predictor

variables. In this study, while all three methods worked well, the

neural network model appeared to be the most accurate. In the

accompanying editorial, Erbeli and Wagner concluded that, “If

there is to be a substantial improvement in prediction from the

machine learning approach, it is more likely to happen when richer

sources of data are incorporated” (Erbeli and Wagner, 2023, p.

4). Included in this, they suggest moving away from single tasks,

or data measured over a relatively short time window, rather

applying ML to activities such as daily classroom learning within

intervention activities.

1.2 Present study

The study presented here goes beyond the status quo in

key ways. Firstly, we broaden the scope of gameplay data used
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within predictive models, beyond the grainsize of what has been

previously reported in reading prediction research. Through more

comprehensive data mining and collaboration with the game

developers we were able to extract log data from gameplay,

including time spent and activities undertaken in extra curricular

gameplay, for example, visiting the shop to spend rewards. The

rationale for the latter was the accrued evidence of a relationship

between task-avoidant behavior and reading skill (Syal and Torppa,

2019). While extra-curricular activity in a digital game cannot be

labeled as task-avoidant behavior per se, individual differences in

the amount of time spent in extra-curricular activity relative to time

spent in literacy-related gameplay could be an indicator of relative

engagement, and a more direct measure as compared to adult

reports via questionnaire, which is a commonly used approach.

In addition, we build on the nascent body of work utilizing

machine learning for reading difficulty risk detection, providing an

innovative application via discrete, instructional gameplay data.We

thus explore extensive process data yielded from a sample of 1,676

6-year-old students playing the digital reading game Graphogame

for 5 weeks. In this we ask; Based on 10-min daily gameplay for 5

weeks, how accurately can machine learning methods identify which

school starters are at risk of future reading difficulties?

2 Material and methods

2.1 Data

We next describe the data processing flow, as depicted with

blocks (a)–(f) in Figure 2. All data processing, model training and

evaluation analyses were performed in the R (R Core Team, 2022)

environment.

2.1.1 Participants
At the beginning of the school year in 2021 all first-grade

teachers in a southern, urban municipality of Norway, were invited

to participate in the study. The study participation involved letting

students play the literacy game GraphoGame for ten minutes daily

in class, using iPads, over the course of 5 weeks. Working with

GraphoGame was already part of the curriculum in the majority of

schools. The teachers who participated belonged to a wide variety of

schools in themunicipality, and we deem the sample of participants

to be representative of the population. Among the 6,209 first

grade students in the municipality, 1,676 (27%) participated in the

present study [block (a) in Figure 2]. Students with fewer than

5 days of gameplay were excluded from the dataset, with 1,640

remaining students (52.7% boys). Mean age at the start of gameplay

(September/October 2021) was 6.25 years.

2.1.2 Gameplay data
As part of this study, extended logging functionality was added

to Graphogame. All game events were timestamped and saved

to a Google Cloud Platform server. For curricular gameplay the

stimulus and the distractors were registered, together with screen

coordinates, the chosen trial reply and its reaction time. All extra-

curricular activity was also logged, such as the spending of gold and

silver coins (earned in curricular gameplay) in the shop, visits to

the hairdresser, and stickerbook activity. This resulted in a total of

over 1 million log files, formatted according to the JSON standard

(Pezoa et al., 2016).

The richness and complexity of gameplay data was handled

by relying on documented domains of prediction for reading

difficulties to construct from the process data a set of 96 features

to identify future struggling readers [see block (b) in Figure 2].

The features can be linked and grouped related to dimensions

empirically shown to be of importance for predicting reading

difficulties, dimensions also underpinning the one-time multi-

component assessments pointed to above. These dimensions

include (a) students’ effort shown in time on task and completion

(Robson et al., 2020), (b) the accuracy of the performance (Perfetti

and Hogaboam, 1975), (c) aspects of recall and timing related

to reading development (Swanson and Howell, 2001; Stanovich,

1981), and finally (d) aspects of extra curricular activity, that could

represent task avoidance (Syal and Torppa, 2019) (see Figure 3).

Among the 96 features, four were considered redundant, due

to being highly correlated with some of the remaining features.

Hence, the final feature set contained 92 features [block (c) in

Figure 2]. Supplementary Table S1 contains explanations for the

full list of features.

2.1.3 National screening test
Ourmain goal in the present study was to evaluate the potential

of machine learning analyses of gameplay features in predicting

whether a student will be classified as a weak reader at the end of

first grade.Weak reading skill is operationalized as falling below the

threshold on a pen- and paper based, group-administered national

screening assessment conducted at the end of the first school year

(in April/May 2022). The screening test has been psychometrically

validated (Norwegian Directorate for Education and Training,

2018, 2015;Walgermo et al., 2021) in large national samples and has

been used as outcome measure in several large-scale randomized

intervention studies (Lundetræ et al., 2017; Solheim et al., 2018).

Although mandatory, the screening test was not completed

by about 5% of the students for which gameplay features was

constructed. These students were either exempted from taking the

test, or had moved to a different municipality.

Hence our final dataset [see Block (f) in Figure 2] was

comprised of n = 1562 students that all played a minimal

number of trials and completed the reading screening test.

In addition, we added age and gender [see Block (d) in

Figure 2] to this dataset. The screening is intended to identify

15–20% of the weakest readers, so that these students may

benefit from extra resources during the first years of schooling.

The screening test is intended to provide at-risk classification

on the following five aspects of literacy: letter knowledge,

spelling, phonological analysis, word reading, and sentence reading

comprehension. The proportion of at risk students in each

aspect was 17% for letter knowledge, 22% for spelling, 14%

for phonological analysis, 21% for word reading, and 19% for

sentence reading comprehension. Being at risk with respect to

a particular aspect is positively associated with the likelihood

of being at risk with respect to the other aspects. Among
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FIGURE 2

Data processing and model training workflow.

FIGURE 3

Feature groups considered in the present study arranged according to dimensions predicting reading di�culties.

the participants, the Pearson correlation values between test

scores varied from moderate (0.54 between letter knowledge and

sentence reading) to strong (0.78 between letter knowledge and

phonological awareness).

2.2 Model training

We next describe model training as visualized by blocks (g),

(i), and (j) in Figure 2. Our task is to classify school starters
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according to whether they will fall below the threshold on the end-

of-year screening test. As depicted in Figure 2 the merged data was

randomly split into testing and training sets containing 25 and 75%

of the observations, respectively. The split was balanced, so that the

same percentage of at-risk students was retained in the test and

training sets. This split was done separately for each of the five

at-risk reading aspects. We emphasize that the testing set was a

hold-out sample, used exclusively for final evaluation of the chosen

binary classifier [Block (k) in Figure 2].

Block (i) in Figure 2 represents the next and crucial step

of training models on the training set. Given the lack of prior

studies using machine learning to predict reading test scores from

gameplay data, no clear candidate for classification algorithm was

available a priori. We therefore selected a set of machine learning

classifiers to span a range of machine learning approaches in

order to identify an appropriate method. The methods include

probabilistic and non-probabilistic approaches, and both classical

(knn, nb, svm) and recent (bagging and boosting) methods. In

addition, as a benchmark we included a simple baseline logistic

model. Tuning parameters for eachmethod were determined by the

default choice implemented in the caret package (Kuhn, 2022).We

here shortly describe the methods in the present study.

bagfda Bagged flexible discriminant analysis is a bagged ensemble

algorithm. Flexible discriminant analysis is a non-linear,

non-parametric generalization of linear discriminant analysis

using multiple adaptive regression splines (Friedman, 1991).

The tuning parameter was the number of prunes: 2, 9, 17.

boostct Boosted classification trees (Friedman, 2001) is an

ensemble method, where weak classification trees are

combined. The tuning grid was constructed from max depth

1, 2, 3 and iterations 50, 100, 150.

boostglm Boosted Generalized Linear Model is also an ensemble

method, where generalized linear models are combined. No

pruning was used, and the mstop parameter was varied across

50, 100, 150.

knn k-Nearest Neighbors (Altman, 1992) is a non-linear non-

parametric method were a player is being assigned to risk

status if a plurality of its k nearest neighbors have risk status.

The tuning parameters were k = 5, 7, 9.

nb Naive Bayes (Murphy, 2012) is a non-linear probabilistic

method based on Bayes’ Theorem. A tuning parameter

determined whether kernel density estimation was employed

or not.

svm Support vector machine (Cortes and Vapnik, 1995) is a linear

non-probabilistic classifier, which is built by caret with a

default cost parameter c = 1.

base As baseline model, we fitted a logistic regression model (Cox,

1958) with a simple set of predictors we deemed important:

proportion of correct responses, mean reaction time, level

attained on syllables, and number of days.

A cross- validation scheme with 10-folds (10-CV), repeated

five times, was used to evaluate the performance of the methods.

During resampling, tomitigate the issue of class imbalance, we used

up-sampling so that in each fold the at-risk class was oversampled.

For each model, parameter tuning was done by optimizing the

Area Under the operating characteristic Curve (AUC) (Hanley and

McNeil, 1982). The AUC value ranges from 0.5 (random classifier)

to 1.0 (perfect classifier). Among the seven candidate models, a final

model [block (j) in Figure 2] was determined by maximizing the

AUC value.

2.3 Evaluation

The chosen model was evaluated by predicting at-risk status

for each participant in the testing set, and comparing it to the

participant’s true at-risk status. The prediction results may be

tabulated in a confusion matrix

Screening test

No risk Risk

Prediction No risk TN FN

Risk FP TP

containing the frequencies of true negatives (TN), false

negatives (FN), false positives (FP), and true positives (TP).

There are many metrics that are used to evaluate trained

classifiers. In the present study our main objective is to identify as

many at-risk students as possible, while trying to keep the number

of false positives as low as possible. Early detection of students that

are at risk of obtaining low scores on the national screening tests

is more important than misjudging a student that will not score

low on the screening test. In our evaluation we therefore first and

foremost focus on the sensitivity of the classifier, i.e., the proportion

of at-risk students that are correctly classified, is of vital importance.

Sensitivity =
TP

TP + FN
.

All else equal, it is desirable to achieve as high sensitivity

as possible.

The sensitivity must however be balanced against other aspects

of classification performance. The precision gives the proportion of

correctly classified at-risk students, relative to the total number of

students classified as at-risk:

Precision =
TP

TP + FP
.

All else equal, it is desirable to achieve as high precision

as possible.

Finally, we also calculate the overall accuracy of the classifier,

Accuracy =
TP + TN

TN + FN + FP + TP
.

All else equal, it is desirable to achieve as high accuracy

as possible.

3 Results

3.1 Descriptive statistics for feature set

In Supplementary Table S2, are given the univariate descriptive

statistiscs for each of the unstandardized features.
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3.2 Final model selection

For each of the five reading measures, the final model was

chosen based on the mean AUC value obtained from cross-

validation. In Figure 4 these values are plotted, and it is seen that

models perform quite similarly, with the exception of knn, which

performed worse with relatively low AUC values. In general, bagfda

and boostglm were found to perform best, with bagfda chosen as

the final model for aspects letter knowledge, word reading and

sentence reading, while boostglm provided the final model for

aspects phonological analysis and spelling.

3.3 Precision, sensitivity, and accuracy

The confusion matrices obtained when applying the chosen

classifier (boostglm or bagfda) and the baseline model for the

testing set are given in Table 1. Based on thesematrices, we calculate

for each of the five aspects of reading sensitivity, precision and

accuracy, with the results given in Table 2.

Sensitivity is of primal concern when detecting at risk students,

and it is seen that the baseline model has poor performance with

respect to this measure. Baseline sensitivity is highest for the

spelling outcome. Still, only 37% of students at risk for poor spelling

performance were detected by the baseline. For the other four

aspects of reading, baseline model at-risk detection rates were 26%

or lower. In contrast, bagfda and boostglm models achieved far

higher sensitivity values, ranging from 72% (letter knowledge) to

80% (word reading). With respect to the secondary performance

measure, precision, the baseline model uniformly outperformed

the machine learning models. In all five aspects, more than half of

the baseline model flagged participants were in fact at risk on the

screening test. However, the baseline model generally flagged too

few students of being at risk. Concerning the measure of accuracy,

flagging few students will inevitably result in accuracy coming close

to true proportion of at-risk students. For instance, with respect to

letter knowledge, 83% of students were not at risk, so that lazily

classifying all students as not being at risk will reach 83% accuracy.

A general pattern observed in Table 1 is that the far better

sensitivity values obtained by the advanced models relative to the

baseline model come at the cost of increasing the number of false

positives. That is, although the advanced models detect far more

of the at-risk students than does the baseline model, these models

also falsely flag many students who are not at risk. For instance, in

sentence reading 72 of the 386 students were at risk. The baseline

model flagged only 31 students as being at risk, with 18 of these

being truly at risk. The bagfda model flagged 119 students, with

55 being truly at risk. So we may say that the cost of reaching a

sensitivity of 76.4% (55/72) is a low precision of 46.2% (55/119).

4 Discussion and recommendations

4.1 Discussion of findings

Using both innovations in stealth assessment and machine

learning, this study set out to determine how accurately data

from 5 weeks of digital game play could identify the school

starters at risk of becoming struggling readers. A priority in our

model testing was optimization of test sensitivity—i.e., correctly

classifying as many of the at-risk students as possible. Our findings

strongly affirmed the value of this approach. Using a set of 92

features of gameplay, representing the classes of time on task,

accuracy of performance, recall and reaction time, as well as

extra-curricular activity, and testing a series of machine learning

models, the bagfda model achieved detection sensitivity of 0.80

for word reading. Across five literacy outcome measures—letter

knowledge, phonological analysis, spelling, word reading and

sentence reading—the sensitivity to correctly classify at-risk was

between 0.72 and 0.80; the overall accuracy of the classification

ranged from 0.72 to 0.82.

This level of prediction sensitivity and accuracy compares

favorably to existing studies using single time-point assessments

with a similar sample and prediction time frame, for example

the Norwegian student sample reported in Solheim et al. (2021).

Across 918 first graders Solheim et al. (2021) reported end of grade

1 reading fluency risk prediction rates equating to a sensitivity

of 0.279, and accuracy of 0.62. However, it is important to note

that Solheim et al. (2021) reported a higher level of precision,

0.89, compared to any of the models here (range 0.29–0.57). In

a separate sample using a similar screening assessment, though

with additional measures including rhythm awareness (Lundetræ

and Thomson, 2017), the screening tool administered at school

entry and used to predict reading and spelling at the end of grade

1 also had lower sensitivity (0.35 for word reading and 0.49 for

spelling), but higher overall accuracy (0.89 for word reading and

0.92 for spelling). It should remarked, however, that in both the

study of Solheim et al. (2021), and Lundetræ and Thomson (2017),

data were collected in a highly controlled way, i.e., administered

one-by-one at school start and researcher led group-administered

assessment in the end of year 1, as part of a large RCT. In the

present study both the initiation of gameplay and assessment was

maintained by the teacher alone, i.e., with a consequently larger risk

of reliability issues. Also, the performance metrics in these studies

were calculated in-sample, i.e., from the same sample that were used

to train the binary classifier. Hence, the classifier may be overfitted

to the data at hand, and prediction performance measures may

be biased.

From Table 2, we see that the optimal ML model, which had

the highest precision, as well as good accuracy and sensitivity was

for the spelling aspect outcome, relative to the other aspects. A

plausible reason for this could be that this specific aspect, which

involves the spelling of single words with regular orthographic

patterns, involves more fine-grained processing of a lot more letters

than is the case for the items of the other aspects. Put another way,

to get a correct score of one spelling item, the student has to actively

and correctly generate (as opposed to the recognition required

in reading) multiple letter-sound combinations, to a degree not

demanded from the other aspects. Add to this, that mastery of

the game content involved when playing over the first 5 weeks of

school, i.e., mainly associating sounds with letters, is a prerequisite

for the mastery of spelling. Therefore, much of the data for the ML

models is highly relevant for this aspect.

This study adds to a growing body of large-scale studies that

demonstrate the value and further potential of machine learning

models as an important tool in reading difficulty prediction
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FIGURE 4

AUC values obtained under cross-validation for each of five aspects of reading.

(Erbeli and Wagner, 2023). Previous studies comparing the

predictive accuracy of two distinct machine learning models

compared to logistic regression approaches for detecting difficulties

in the third (Erbeli et al., 2023) or fourth grade (Gutirrez

et al., 2023) from first and second grade measures reported

comparable accuracy across methods. However, Psyridou et al.

(2023), using neural network models to predict Grade 9 reading

fluency and comprehension difficulty from seventeen kindergarten

age variables found that the neural network model was more

accurate than either linear or mixture models. Focusing on shorter-

range prediction across the first school year, we report similar

levels of prediction accuracy in the current study, using an

alternative ML approach. Given the lack of an established best ML

approach, here we decided to train and evaluate more than one

machine learning model. In-sample cross-validation performance

was quite similar (Figure 4) for three of the most advanced models

(bagfda, boostct, and boostglm) that were based on bagging or

boosting, and better in general than the performance the simpler

models knn, nb, and svm. Bagging and boosting are ensemble

learning algorithms where the final classification is derived from

combining results from several simple models (Kuncheva, 2014).

Findings from the present study confirm that ensemble algorithms

perform well when trained on educational process data. In

addition, the use of readily-collected gameplay data for prediction,

in contrast to the time-intensive administration of multiple

behavioral assessment measures offers a more scalable model for

widespread screening.

4.2 Limitations

While the findings here demonstrate the exciting promise

of using complex datasets to better predict the trajectory of

complex behaviors such as reading development, prediction

also requires sensitive outcome measures of reading. While the

advantage of using the Norwegian national screening test as an

outcome measure was its robust development process, ease of

mass administration and assessment of five complementary aspects

of reading and spelling (Norwegian Directorate for Education

and Training, 2018, 2015), a screening measure is by nature

not comprehensive, and also not designed to fully separate out

performance at the higher end of ability; future work should

validate the current approach with more fine-grained outcomes of

reading performance. Equally, Graphogame has been designed as

a reading intervention, as opposed to being specifically designed

as a stealth assessment. In some respects, this makes the game an

ideal form of assessment, as it allows ecological capture of the very

learning process we are trying to predict. However, designing the

game with assessment also in mind may allow increased sensitivity,

through more planful exposure to gameplay items known from

previous research to differentiate struggling from non-struggling

readers, for example reading and spelling of consonant clusters,

or to identify the optimal adaptation algorithm for struggling

readers.

In the present study we extracted features from the process

data in a rather manual way, by using expert knowledge
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TABLE 1 Confusion matrices for chosen and baseline models when applied to testing set for five aspects of reading.

Outcome

Letter knowledge bagfda Baseline

Screening test Screening test

No risk Risk No risk Risk

Prediction No risk 247 18 Prediction 313 50

Risk 73 47 7 15

Spelling boostglm Baseline

Screening test Screening test

No risk Risk No risk Risk

Prediction No risk 254 21 Prediction 297 56

Risk 49 65 6 30

Phonological analysis boostglm Baseline

Screening test Screening test

No risk Risk No risk Risk

Prediction No risk 236 12 Prediction 326 48

Risk 97 41 7 5

Word reading bagfda Baseline

Screening test Screening test

No risk Risk No risk Risk

Prediction No risk 230 16 Prediction 288 59

Risk 74 63 16 20

Sentence reading bagfda Baseline

Screening test Screening test

No risk Risk No risk Risk

Prediction No risk 250 17 Prediction 304 55

Risk 64 55 10 17

TABLE 2 Sensitivity, precision and accuracy for chosen and baseline model for each of five reading aspects.

Outcome Model Sensitivity Precision Accuracy

Letter knowledge bagfda 0.723 0.392 0.764

Baseline 0.231 0.682 0.852

Spelling boostglm 0.756 0.570 0.820

Baseline 0.349 0.833 0.841

Phonological analysis boostglm 0.774 0.297 0.718

Baseline 0.094 0.417 0.858

Word reading bagfda 0.797 0.460 0.765

Baseline 0.253 0.556 0.804

Sentence reading bagfda 0.764 0.462 0.790

Baseline 0.236 0.630 0.832

to connect gameplay behavior to feature extraction. While

this captures large aspects of gameplay, it does so in a

rather limited form. Dynamic day-to-day behavior that

may be indicative of future learning difficulties may not be

registered sufficiently well by the 92 features investigated in

this study.
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Another limitation pertains to the inherent uncertainty in

sensitivity and other classification measures that stem from

a finite sample size. Although the number of participants

in the present study is comparable or in many cases larger

than in comparable studies, the splitting of data into

training and testing sets means that the testing set contains

no more than 380–390 participants. Therefore, there is

some statistical uncertainty in, e.g., the sensitivity values

reported here.

4.3 Recommendations for future work

As the present study has shown promising results regarding

identifying the optimal ML model to apply for this kind of data,

a pressing next step is to investigate how to provide the optimal

input for the machine learning algorithms. In this, two strands of

investigation should be pursued.

Firstly, it is a pertinent question whether the features that

serve as input may be optimized. In the present study we have

created features that can be linked to hypothetical/empirical factors

of reading difficulties. It remains, however, to investigate what

gameplay information carries the most information. We do not

know the relative importance of the features of these classes, with

the predictive utility of specific error patterns, and extra curricular

activity particularly unexplored to date. It is an empirical question

whether these one or several of these classes of features can be

extended—or detailed—to improve the prediction.

Secondly, future studies should consider applying deep learning

approaches (Aggarwal, 2018) combined with refined construction

of features. This involves building abstract gameplay representation

vectors to be used as input for neural network training. This will

come at the cost of abandoning human understandable features as

used in the present study, but with the potential benefit of more

accurate prediction.
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