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Assessing the learning potential 
of freshmen in labor education 
courses using ordinal features 
and support vector machine
Long Yan  and Yan Yang *

The College of Health Humanities, Jinzhou Medical University, Jinzhou, China

Introduction: Artificial intelligence (AI) marks a new wave of the information 
technology revolution and permeates various sectors as an indispensable 
tool. Despite its widespread adoption, its application in enhancing college 
students’ labor education remains scantily explored. Conventional teaching 
approaches often fail to assess students’ foundational knowledge accurately, 
impeding personalized learning. Hence, the current environment underscores 
the pressing necessity for a robust AI framework capable of reliably predicting 
individual students’ learning aptitude.
Methods: In this study we constructed a multidimensional feature vector model, 
leveraging data on students’ academic performance during their middle school 
years and their willingness to participate in college-level labor education. 
Through the usage of Support Vector Machines (SVM), we aim to assess 
students’ learning potential effectively. To validate the efficacy of our predictive 
model, we conducted jackknife cross-validation testing.
Results: Results indicate a remarkable overall accuracy rate of 97.75%, with an 
average sensitivity of 93.90% and an average specificity of 95.12%.
Discussion: The proposed method can play a role in enhancing teaching 
efficiency and tailoring interventions to individual students.
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1 Introduction

As a driving force of the latest technological revolution and industrial transformation, 
artificial intelligence (AI) stands as one of humanity’s most remarkable and profound 
inventions (Han et al., 2022; Sun, 2017). It is reshaping production methodologies and societal 
dynamics, propelling us into an era of intelligent collaboration between humans and machines, 
characterized by cross-disciplinary integration, co-creation, and resource-sharing (Zhan and 
Yang, 2017; Fu and Zhou, 2020). Concurrently, the ubiquity of online course platforms has 
surged due to rapid information technology advancements (Oliveira et al., 2021; Aldowah 
et al., 2017; Bryson and Andres, 2020; Haleem et al., 2022; Chen et al., 2020). These platforms 
meticulously document student activities and performance metrics, accumulating vast 
repositories of educational data. However, despite this abundance, a significant portion of this 
data remains underutilized, lacking comprehensive mining to extract its latent value.

Data mining within the realm of artificial intelligence involves deploying algorithms 
to uncover implicit correlations, trends, and patterns from extensive datasets (Hand et al., 
2001; Górriz et  al., 2020; Moreno and Redondo, 2016; Beale, 2007). The concept of 
‘knowledge discovery in database’ (KDD) was first proposed at the 11th International Joint 
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Conference on Artificial Intelligence in 1989, and the term ‘data 
mining’ was introduced at the 1st International Conference on 
Knowledge Discovery and Data Mining held in Canada in 1995. 
Data mining as an interdisciplinary approach utilizes machine 
learning, pattern recognition, statistics, databases, and visualization 
techniques to extract valuable information from large datasets. 
Despite its complexity, data mining equips decision-makers with 
profound insights, facilitating well-informed and precise decision-
making processes (Rui et  al., 2022; Hoogerwerf et  al., 2013; 
Pournaras, 2017). Data mining is tasked with handling large-scale 
data that is usually incomplete, ambiguous, and randomly 
structured. Therefore, the following requirements should 
be satisfied to ensure an effective data mining process (Han and 
Kamber, 2006; Li et al., 2014; Li et al., 2015; Yang et al., 2022; Yang 
and Wang, 2013; Yu et al., 2012): (i) The data must be of sufficiently 
large sizes and real; (ii) The discovered knowledge must align with 
the user’s needs and be  interpretable; and (iii) The discovered 
knowledge must be applicable for addressing specific problems.

Data mining is a crucial research field related to artificial 
intelligence, statistics, and databases, enabling the development of 
intelligent and data-driven information technology systems (Losiewicz 
et al., 2000; Wang and Fu, 2005; Han and Chang, 2002). The pivotal 
roles of data mining include elucidating extracted information from 
data in forms of concepts, rules, patterns, and constraints. This 
harvested intelligence serves to assist decision-making processes or 
refine existing knowledge paradigms, thereby enhancing utilization of 
resources within extensive databases. Presently, data mining occupies 
a prominent position in both academic and industrial spheres, 
gathering widespread  international attention and interest. In the 
educational domain, data mining technologies hold considerable 
potential to collect, analyze, and report on students’ learning behaviors 
and outcomes, thereby improving learning environments and 
providing pertinent guidance to educators.

Labor education for university students bears significant 
importance, carrying the mission of nurturing practical and 
innovative talents essential for national and societal advancement 
(Huan, 2019; Jiang and Pan, 2019). Under the current circumstances, 
the enactment of labor education for college students holds 
multifaceted significance: From a theoretical standpoint, it fosters the 
strengthening and advancement of values rooted in labor; In the 
context of our current era, it aids in the development of modern labor 
skills essential for adapting to advancements in science and 
technology; In terms of cultural values, it supports the preservation 
and promotion of the rich tradition of valuing hard work and 
dedication; Pragmatically, it serves as a driving force behind societal 
development and advancement.

The traditional teaching approach tends to prioritize the teacher’s 
authority and rely heavily on textbooks and classroom lectures, 
focusing mainly on transferring knowledge (Wang, 2007; Yao, 2003; 
De Lorenzis et al., 2023). Typically, teachers lecture while students 
passively receive information. However, this method often struggles 
to assess whether students have truly grasped concepts learned in 
class, let  alone whether they have enhanced their overall skills. 
Consequently, it becomes challenging to provide timely and objective 
evaluations of teaching effectiveness and student learning. While this 
traditional method may streamline teaching for instructors, it fails to 
accommodate the diverse backgrounds and academic capabilities of 
students. Particularly, the students with weaker foundations or 

learning difficulties may not receive adequate support. To enhance 
teaching quality, educators must tailor their instructional approaches 
to suit individual student needs. For college students, traditional 
educational practices often fall short in evaluating the latent potential 
cultivated during middle and high school education, thus failing to 
meet the objective of precise instruction.

With the continuous advancement of artificial intelligence (AI) 
algorithms, it has become increasingly feasible to analyze and utilize 
large-scale datasets in greater depth (Callaway, 2024), thereby enabling 
accurate prediction and classification. This technological leap has 
introduced transformative changes to the field of education (Wang, 
2024; Hu et al., 2024). AI not only assists educators in identifying 
students’ learning patterns but also facilitates the prediction of their 
future academic and professional potential. Accurately assessing 
students’ latent abilities developed during secondary and high school 
education remains a longstanding challenge for traditional educational 
approaches, while the integration of AI algorithms may offer an 
effective solution. Consequently, there is an urgent need for reliable 
and effective AI-based methodologies capable of accurately evaluating 
students’ fundamental learning potential.

In this study, we constructed a multidimensional feature vector 
integrating students’ middle school grades and their inclination 
towards learning. The Support Vector Machine (SVM) algorithm is 
then employed to evaluate this learning potential metric. Jackknife 
cross-validation testing is utilized to validate the method’s 
performance. The results demonstrate that our proposed technique 
achieves a high success rate in predicting student learning potential.

2 Materials and methods

2.1 Dataset

Between February 13th and February 20th, 2024, we collected 
data from all regions of China using random sampling method. This 
involved an online survey via self-filled questionnaires on the Internet. 
The inclusion criteria were voluntary participation of current and 
graduated college students in course evaluations. Through the use of 
questionnaires, we obtained grade data from the respondents.

	 1.	 General demographic information: including location 
and gender.

	 2.	 Grades in Chinese language, politics, and history courses 
during middle school and high school.

	 3.	 Willingness to participate in college labor education courses: 
categorized as general (60) or enthusiastic (90).

	 4.	 Based on the classification method of GPA for major (degree) 
courses in higher education institutions of China, college labor 
education course grades are categorized as follows: A  – 
Excellent (≥91), B – Good (86–90), C – Average (76–85), and 
D – Fail (≤75).

We utilized the online survey tool “Questionnaire Star”1 for data 
collection due to its efficiency, affordability, and user-friendly 

1  https://www.wjx.cn/
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interface. This platform has been widely used across various survey-
related fields. The data were obtained via self-administered 
questionnaires completed by participants with informed consent, 
thereby eliminating concerns regarding ethical violations or 
infringement of rights (Zhou et  al., 2020; Zhu et  al., 2020; Wu 
et al., 2020).

A total of 135 college students and graduates responded to the 
questionnaire. After filtering out incomplete responses, 
we obtained 123 valid questionnaires, resulting in a response rate 
of 91.11% (Table  1). Respondents were distributed across all 
regions of China (Figure 1A), with females comprising 57% of the 
sample (Figure 1B). The number of respondents reflects regional 
differences in educational development and population mobility. 
A relatively larger proportion of students were sampled from the 
more developed eastern regions, while fewer were sampled from 
the less developed western regions. The sampling distribution 
across other regions remained generally consistent. Furthermore, 
the gender and academic performance of students within the 
sample were relatively balanced. These characteristics support the 
reliability of our sampling methodology.

The grades were categorized into four classes: A, B, C, and 
D. Therefore, the dataset can be formalized as follows:

	 Ω = ∪ ∪ ∪A B C DS S S S

Where ∪ represents the symbol for “union” in the set theory.

2.2 Creating vectors with students’ grades 
and ordinal information

Based on the features that may be  associated with students’ 
learning potential, as outlined in Section 2.1, we  construct the 
following vector:

	 ( )= 1 2 3 4 5 6 7, , , , , , .kR r r r r r r r

Instead of considering the elements within a vector as separate 
units, we  incorporated the order relationship among students’ 
secondary school results and their willingness. By sorting these results 
in ascending order, we  created a new vector denoted as sR . This 
process ensures that the order relationships among the data 
are preserved.

	 ( )1 2 3 4 5 6 7i i i i i i ir ,r ,r ,r ,r ,r ,r .sR =

When two ir s are equal, they are sorted by lexicographic order of 
the words, ensuring each element’s ordinal number is unique. It 
implies that the following order

	 ≤ ≤ ≤ ≤ ≤ ≤
1 2 3 4 5 6 7

.i i i i i i ir r r r r r r

Each ir  has a unique “position” in sR , denoted by ig . The student’s 
secondary school performance and their willingness are represented 
by an n-dimensional vector V, which includes both position 
information and the original values.

	 ( )= × × × × × × ×1 1 2 2 3 3 4 4 5 5 6 6 7 7, , , , , , .V g r g r g r g r g r g r g r

For instance, suppose

	 ( )= 75,101,90,86,133,82,100 ,kR

and we obtain sR  where the values are ranked from 1 to 7:

	 ( )= 75,82,86,90,100,101,133 .sR

Therefore,

	

( )
( )

= × × × × × × ×
=
1 75,6 101,4 90,3 86,7 133,2 82,5 100
75,606,360,258,931,164,500 .

V

2.3 Support vector machine

Support Vector Machine (SVM) is a widely used supervised 
learning model in machine learning. SVM offer a principled approach 
to classification by explicitly optimizing the decision boundary, aiming 
to identify the hyperplane that maximizes the margin between different 
classes. It analyzes data to identify patterns and has been applied in 
various fields. The core principle of SVM involves representing input 
samples as points in a high-dimensional space and classifying them via 
an optimal separating hyperplane. SVM training aims for globally 
optimized solutions, which mitigate overfitting and enable handling a 
large number of features effectively. More detailed descriptions of the 
SVM method can be found in publications (Yang et al., 2022; Vapnik, 
1998; Steinwart and Christmann, 2008; Chang and Lin, 2011).

The package LIBSVM v3.17 (Yang et al., 2022; Chang and Lin, 
2011) which is an implementation of SVM classifier was used in this 
study. The Radial Basis Function (RBF) kernel, defined below, was 
selected as the kernel function for our model:

	
( ) ( )γ= − − 2, exp .k x y x y

The RBF kernel maps the input space into an infinite-
dimensional feature space, enabling it to capture highly complex 
nonlinear relationships. As a local kernel, RBF assigns greater 
influence to similar samples, while the impact of dissimilar ones 

TABLE 1  Grade distribution for university students in labor education 
course.

Score Grade Number Percentage

≥91 A: Excellent 28 22.76

86≤ and ≤90 B: Good 33 26.83

76≤ and ≤85 C: Average 28 22.76

75≤ D: Fail 34 27.64
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approaches zero. Its inherent smoothness prevents overly fluctuating 
decision boundaries, thereby contributing to strong generalization 
capabilities. These characteristics make the RBF kernel particularly 
well-suited for modeling many types of natural data.

Two parameters, the penalty parameter C and the kernel width 
parameter γ, were determined via an optimization procedure using a 
grid search strategy provided by LIBSVM.

2.4 Assessment of the prediction 
performance

In statistical prediction, researchers commonly use three cross-
validation methods to assess the effectiveness of a predictor in real-world 
scenarios: independent dataset test, subsampling test, and jackknife test. 
Among these, the jackknife method evaluates model performance by 
iteratively leaving one sample out as the test set while using the 
remaining samples for training. This process is repeated for every sample 
in the dataset, ensuring that all data points are used for both training and 
evaluation. The method maximizes data utilization and provides a nearly 
unbiased estimate of model performance (Qiu et al., 2014; Li et al., 2022; 
Zhao et al., 2021). Therefore, we employed the jackknife test in our study 
to evaluate the anticipated success rates of our predictor. This test 

involves leaving out one sample at a time from the dataset Ω and 
evaluating it using the predictor trained on the remaining samples.

To assess accuracy of our model, we  adopted sensitivity ( nS ), 
specificity ( PS ), accuracy (Acc), and the Matthew’s correlation 
coefficient (MCC), which are widely used for measuring the quality 
of binary classifications. They are defined as follows:

	
=

+n
TPS

TP FN

	
=

+P
TNS

TN FP

	
( )+

=
+ + +

TP TN
Acc

TP TN FP FN

	

( ) ( )
( )( )( )( )

× − ×
=

+ + + +

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

where TP, TN , FP, and FN  stand for the number of true positive, true 
negative, false positive, and false negative obtained from the 
prediction, respectively.

FIGURE 1

Geographical distribution and sex ratio of the participants.
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3 Results

There are two hyperparameters for the SVM model with RBF 
kernel: the regularization parameter denoted as C and influence of a 
training example on the decision boundary denoted as γ. A 
hyperparameter tuning process is required to retrieve the optimal 
pair of C and γ, which is not predetermined for a specific problem. 
In this study, we employed a grid search approach from the LIBSVM 
package to determine these parameters. By testing various values of 
C and γ (Yang et  al., 2022; Chang and Lin, 2011), we  found the 
optimal values to be  C = 2 and γ = 3.0517578123e-05. Initially, 
we converted the prior grades and class attendance willingness into 
a 7-dimensional feature vector for each of the 123 respondents, 
forming the LE123 dataset. These feature vectors were then scaled 
and inputted into the Support Vector Machine (SVM). Through the 
jackknife test, we  calculated the sensitivity, specificity, overall 
accuracy and Matthew’s correlation coefficient, presented in Table 2. 
The method we used achieved an overall accuracy of 97.75%, with 
only four incorrect predictions. Notably, the sensitivity and specificity 
of each category exceeded 90%, averaging over 93%. Furthermore, 
the Matthews Correlation Coefficient (MCC) reached a value of 
0.9573, indicating a high level of agreement between the predicted 
and actual classifications. These results indicate the potential 
effectiveness of our approach in predicting students’ interest in 
university labor courses.

4 Discussion

The ongoing research on the application of artificial intelligence 
technology has garnered significant attention from individuals across 
diverse sectors. This has led to the production and deployment of 
smart robots and similar technologies. Scholars worldwide have 
conducted research on artificial intelligence technology in healthcare, 
computer information technology, education, biological sciences and 
other fields (Mavrych et al., 2025; Choudhary et al., 2023; Aljuaid, 
2024; Rajabi et al., 2024; Baig and Yadegaridehkordi, 2024; Farrokhnia 
et al., 2024; Jemmy et al., 2024). This technological innovation has 
presented both opportunities and challenges for labor education, 
particularly for college students, manifesting in issues related to the 
recognition of labor values, the transformation of labor content, and 
the evolution of labor methodologies. There is an urgent need to 
explore and promote the innovative and robust development of labor 
education within the framework of AI technology.

This study proposes a novel machine learning model based on the 
academic performance of high school students and their interest in 
labor education courses, utilizing Support Vector Machine (SVM) for 

predictive classification. The model yielded promising outcomes and 
demonstrated the feasibility of applying machine learning methods to 
the assessment of labor education.

Compared with most previous labor education studies that focused 
on qualitative analysis or relied on teachers’ subjective scoring methods 
(Black and Wiliam, 1998; Jesse et al., 2025), this study employed SVM 
to facilitate an objective and data-driven evaluation of students’ 
performance in labor education. This approach not only improves the 
efficiency and consistency of scoring but also mitigates cognitive bias, 
addressing recent concerns about “technical trustworthiness” and 
“fairness” in educational assessment (Williamson and Piattoeva, 2019; 
Selbst et al., 2019). Compared with earlier studies that utilized linear 
regression or other simple statistical models (Romero and Ventura, 
2010), SVM demonstrates greater robustness in handling small-
sample, non-linear classification problems. Its application in this study 
has shown its potential in the design of intelligent education systems.

This method could be integrated into college course management 
systems to automatically analyze students’ classroom participation, 
homework completion, and related behavioral data, thereby assisting 
instructors in conducting comprehensive assessments in labor 
education. In addition, the model could be  used for the early 
identification of students encountering difficulties in labor education, 
enabling timely intervention to improve the effectiveness of teaching.

Although the model has achieved promising improvement in 
educational assessment, the relatively small sample size in this study 
may limit its generalizability. In future research, we plan to expand the 
dataset by incorporating more schools and students from diverse 
disciplinary backgrounds. Multimodal data and longitudinal tracking 
will also be integrated to enhance the reliability and external validity 
of the predictive model. We  will also integrate AI ethics and 
educational equity principles to ensure the interpretability, fairness, 
and transparency of the intelligent scoring system.

5 Conclusion

In this study, we constructed a multidimensional feature vector 
that integrates students’ secondary school academic performance and 
their learning inclination. We then employed the SVM algorithm to 
assess students’ learning potential with this feature set. The performance 
of the method was validated using jackknife cross-validation, and the 
results showed that sensitivity, specificity, overall accuracy, and the 
MCC all exceeded 90%, indicating that the proposed technique is 
effective in predicting students’ learning potential.

Through our study, we aim to foster innovative perspectives on 
labor education reform, leveraging the application of artificial 
intelligence to support its evolution and progress. Additionally, our 

TABLE 2  Prediction results on the dataset LE123 in jackknife test.

Dataset Grade Sensitivity Specificity Overall Accuracy MCC

LE123

A 94.12% 94.94%

97.75% 0.9573

B 90.91% 95.16%

C 96.43% 96.43%

D 94.12% 93.94%

Average 93.90 ± 1.96% 95.12 ± 0.89%
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research introduces a novel approach by integrating data mining 
techniques into the teaching methodologies of college labor education 
courses, offering valuable insights for educational management entities 
seeking to tailor targeted teaching strategies for this demographic 
within the contemporary landscape of educational reform and 
technological advancement. The dataset in our current study is 
relatively limited. In future work, we plan to collect a larger and more 
diverse dataset in order to improve model accuracy and generalizability.
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