
Frontiers in Education 01 frontiersin.org

Design and application of
teaching cases based on heuristic
teaching in C programming
language curriculums—taking the
loop structure for an example
Feifan Zhang *, Zhenwan Peng , Changqing Wang and Fei Yang

School of Biomedical Engineering, Anhui Medical University, Hefei, China

C programming is a general-purpose, processor-oriented, and powerful language,
widely used in various daily life applications. As a prerequisite for many core courses
in computer science and information technology such as data structures, it serves
as a fundamental course for multiple majors in universities globally. However, it
remains one of the most challenging subjects to learn and master, with consistently
high failure rates being a global problem. To improve learning efficiency and
develop problem-solving skills through programming, we implemented a heuristic
teaching method incorporating specially designed case studies. The participants
were freshmen majoring in Medical Information Engineering at Anhui Medical
University. Taking the loop structure as an example, we explain the design of
case studies to engage students. The average scores improved from 72.9 to 77.2
between semesters without and with the heuristic teaching approach. Independent
T-test results confirmed the statistical significance of this improvement. Student
evaluations of teaching performance increased from 90.73 to 94.53. These results
demonstrate the effectiveness of this heuristic teaching method with specially
designed cases. We think that the proposed method may be also suitable for
other programming courses.

KEYWORDS

C programming, heuristic teaching method, cases, loop-structure, programming
courses

1 Introduction

The C programming language is one of the most widely used programming languages,
with applications ranging from embedded systems, operating systems, to performance-critical
applications (Hart et al., 2023). As a prerequisite for core courses in computer science,
information technology, and engineering, such as Data Structures, Single-Chip Microcontroller
Systems, and Principles of Microcomputers and Interface Techniques, it serves as a
fundamental course for numerous majors in Chinese universities (Liu et al., 2013). The
primary objectives of C programming courses include developing students’ programming
skills, cultivating computational thinking, and improving the ability to solve complex real-
world problems through programming (Yu et al., 2023; Keppens and Hay, 2008; Wang et al.,
2017). These competencies are critical for succeeding in follow-up courses. Students who fail
to master C programming fundamentals will struggle in subsequent subjects. For instance,
students unfamiliar with pointers and structures may require significantly more time to
comprehend data structures such as linked lists. Similarly, those lacking proficiency in C
syntax will face challenges in Single-Chip Microcontroller Systems, as C serves as the primary

OPEN ACCESS

EDITED BY

Attila Gilanyi,
University of Debrecen, Hungary

REVIEWED BY

Varun Dutt,
Indian Institute of Technology Mandi, India
Akash K. Rao,
Manipal Academy of Higher Education, India
José Figueiredo,
Instituto Politécnico da Guarda, Portugal

*CORRESPONDENCE

Feifan Zhang
 ffz@ahmu.edu.cn

RECEIVED 18 September 2024
ACCEPTED 05 June 2025
PUBLISHED 19 June 2025

CITATION

Zhang F, Peng Z, Wang C and Yang F (2025)
Design and application of teaching cases
based on heuristic teaching in C
programming language curriculums—taking
the loop structure for an example.
Front. Educ. 10:1498100.
doi: 10.3389/feduc.2025.1498100

COPYRIGHT

© 2025 Zhang, Peng, Wang and Yang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Curriculum, Instruction, and
Pedagogy
PUBLISHED 19 June 2025
DOI 10.3389/feduc.2025.1498100

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2025.1498100&domain=pdf&date_stamp=2025-06-19
https://www.frontiersin.org/articles/10.3389/feduc.2025.1498100/full
https://www.frontiersin.org/articles/10.3389/feduc.2025.1498100/full
https://www.frontiersin.org/articles/10.3389/feduc.2025.1498100/full
https://www.frontiersin.org/articles/10.3389/feduc.2025.1498100/full
https://www.frontiersin.org/articles/10.3389/feduc.2025.1498100/full
mailto:ffz@ahmu.edu.cn
https://doi.org/10.3389/feduc.2025.1498100
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2025.1498100

Zhang et al. 10.3389/feduc.2025.1498100

Frontiers in Education 02 frontiersin.org

programming language in this domain. This demands strong self-
motivation and self-discipline. Otherwise, students may experience
self-doubt and lose interest in learning. Worse still, subsequent
programming-related courses could become insurmountable
obstacles, potentially hindering academic progress, career
opportunities, and pursuit of advanced degrees.

In fact, C programming is considered one of the most challenging
courses for undergraduates (Dilshodov and Adxamjonov, 2023; Xu
et al., 2020). The challenges stem from multiple factors. Unlike natural
languages, its complex syntax rules and low-level abstractions create
inherent barriers (Cheah, 2020). Novice learners often remain
confused without sustained practice. Furthermore, since most
freshmen lack prior programming experience, and many are
accustomed to passive learning, they rarely engage in self-directed C
programming practice, preferring step-by-step instructor guidance
(Liu et al., 2013). Consequently, they struggle with fundamental
constructs like loops and arrays, which hampers writing functional
functions and procedures. This erodes learning motivation, ultimately
affecting career prospects. Additionally, the sheer volume of course
content coupled with dry instructional methods exacerbates the issue.
Lectures dominated by slide-reading diminish learning engagement,
fostering perceptions of C programming as uninteresting.
Consequently, students neglect essential practice despite its critical
role in mastering programming. This creates a vicious cycle:
inadequate practice perpetuates skill gaps, further discouraging
learning efforts.

Many methods have been proposed to improve teaching quality.
Common approaches for teaching programming include lecture-
based instruction, lab sessions, software visualization tools, and
problem-based learning frameworks (Santos et al., 2020). For
example, researchers have introduced adaptive learning activities that
incorporate the Revised Bloom Taxonomy (RBT) to align with
students’ cognitive skills in programming education (Troussas et al.,
2020). Empirical evidence suggests that adaptive teaching methods
consistently outperform non-adaptive approaches (Troussas et al.,
2020). Leveraging the computational power of mobile devices,
educators are increasingly adopting educational games.
Gamification—the integration of game-design elements (e.g., points,
badges) into instructional contexts—has proven effective in
enhancing student engagement and interest (Elshiekh and Butgerit,
2017). This strategy has been successfully implemented in C
programming courses (Ibanez et al., 2014), with studies
demonstrating its positive impact on learning outcomes (Ibanez
et al., 2014). Further research evaluated the gamified Android
application C-rocks as a pedagogical tool for C programming
(Talingdan and Llanda, 2019), concluding that the app significantly
improved student performance (Talingdan and Llanda, 2019).
Similarly, the App Inventor platform has been utilized to motivate
engineering students through game-based C syntax learning
(Dolgopolovas et al., 2018). Additionally, precision teaching
frameworks grounded in behavioral psychology principles have been
developed for programming education (Yu et al., 2023). These
frameworks operationalize three structured teaching phases and five
core instructional skills, resulting in enhanced teacher-student
interactions and higher learning efficiency compared to traditional
classrooms (Yu et al., 2023). Despite these innovations, a substantial
proportion of students continue to struggle with acquiring
programming competencies and failing course assessments.

Emerging approaches such as heuristic teaching—recently validated
in domains like Chinese composition (Xue, 2022)—may offer
promising solutions for programming education. The heuristic
teaching method has been demonstrated as a highly effective
approach for improving pupils’ teamwork skills through structured
organization of physical education lessons (D’Isanto et al., 2022).
Heuristic learning, a learner-centered pedagogy, enables students to
actively construct knowledge, redefine curricular objectives, and
autonomously develop learning frameworks via self-directed
processes that integrate continuous diagnosis, metacognitive
reflection, and systematic knowledge organization (Pisarenko and
Zatona, 2024). This method offers distinct advantages, including
fostering student initiative, stimulating intrinsic motivation, and
facilitating self-actualization within the learning process (Pisarenko
and Zatona, 2024). Broadly defined, heuristics represent experience-
based problem-solving strategies that guide cognitive exploration
(Wakhata et al., 2023). The concept of heuristics traces its origins to
an ancient Greek philosophical paradox: “How can we search for
what we do not know, and if we know what we are looking for, then
why should we look for it?” (summarized as the science of discovery)
(Nokhatbayeva, 2020). Its pedagogical roots lie in Socratic dialogs,
where knowledge emerged through resolving contradictions in
discourse (Nokhatbayeva, 2020). In modern education, the Socratic
method informs the design of heuristic activities, exemplified by
mathematician George Pólya’s systematic heuristic framework for
problem-solving through sequenced questioning aimed at cultivating
critical thinking (Nokhatbayeva, 2020). As articulated by Russian
psychologist Kapterev, “Heuristic form of teaching is one in which
scientific laws, formulas, rules and truths are discovered and
developed by the students themselves under the guidance of the
teacher” (Nokhatbayeva, 2020). While this approach has profoundly
influenced mathematics education (Nokhatbayeva, 2020), its
application to C programming courses remains unexplored to date.
Given heuristic teaching’s capacity to enhance learning motivation,
promote active engagement through self-discovery, and improve
academic outcomes, this study designs a heuristic-based instructional
framework. We exemplify this methodology through a case study on
loop structure instruction, detailing its pedagogical design and
practical implementation.

The remaining of the paper is organized as follows. In Section 2,
we will explain the design and application of heuristic teaching in the
programming courses. The teaching of loop structure is taken as an
example. The results and discussions are shown in Section 3. And the
conclusions are shown in Section 4.

2 Materials and methods

In designing and implementing heuristic teaching methods,
we integrate principles from the Contextual Teaching and Learning
(CTL) model and Problem-Based Learning (PBL) framework. The
philosophical foundation of CTL lies in constructivism, which
emphasizes knowledge construction through contextual
connections—bridging abstract concepts with lived experiences or
real-world applications—rather than rote memorization (Kia, 2023).
PBL, grounded in cognitive psychology, adopts a “problem-driven
learning” paradigm that inverts traditional instruction by prioritizing
problem exploration before knowledge transmission. By synthesizing

https://doi.org/10.3389/feduc.2025.1498100
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Zhang et al. 10.3389/feduc.2025.1498100

Frontiers in Education 03 frontiersin.org

heuristic methods with CTL and PBL, we formulated the following
pedagogical tenets for C programming:

 1. Problem Contextualization: Embed syntax learning within
authentic programming scenarios to stimulate cognitive
engagement (shifting focus from “how” to “why”).

 2. Progressive Task Decomposition: Implement stepwise
complexity escalation—from code imitation to creative
implementation—by modularizing systems and gradually
elevating abstraction levels.

 3. Error-Driven Discovery: Leverage coding errors as diagnostic
tools for self-directed learning, enabling students to
autonomously uncover syntactic and logical principles.

 4. Multimodal Knowledge Representation: Demystify abstract
concepts through schematic diagrams, algorithm animations,
and tangible analogies (e.g., physical models of loop execution).

As the loop structure constitutes one of the three fundamental
constructs in structured programming and serves as the conceptual
foundation for subsequent chapters (e.g., arrays and linked lists),
we select it as a paradigmatic case to demonstrate the design and
implementation of heuristic pedagogy in C programming. Prior to
this instructional unit, students have achieved mastery of sequential
and selection structures. The proposed lesson plan spans 120 min. At
the beginning of the loop structure, we show a clip from the movie
Edge of Tomorrow to show the cycle of death and resurrection. Then,
we show students a clock with second hands keeping running (lasts
about 5 min). Thus, students would have an intuitive sense of the loop.
Next, we tell students about the story of Gauss and ask them to list the
solutions they can think of for the calculation of the sum of 1 to 100.
After students share three or four solutions, we ask them to think
about how we can solve this problem by C programming. Assuming
that we do not know the sum formulas of arrays, students will try to
write a sequential structure program as they have learned the
sequential structure. One possible sequential program example is
shown in Table 1.

Note that the programming tasks can be completed in class since
students can implement them on their mobile phones with C
compilers installed. After they finish the tasks, we ask students to
analyze the disadvantages of the program in Table 1. One disadvantage
is its excessive length due to repetitive expressions. Another drawback
is that calculating the sum from 1 to 1,000 would require writing
numerous similar statements (this phase lasts about 10 min). We then

ask students to identify the commonality among these statements.
These can be generalized as = +sum sum i , where i takes values

…1,2,3, ,100. Thus, the result can be computed by iteratively executing
these generalized statements with incrementing i values. This process
forms a loop, as it repeatedly executes two operations: = +sum sum i
and = +1i i — analogous to the cycle of death and rebirth or the
movement of a clock’s second hand. Through this analogy, the loop
structure is introduced, enabling students to better grasp its execution
mechanism. Finally, we provide students with the optimized program
solving this problem, as shown in Table 2.

Substantially, based on the program shown in Table 2, we describe
the execution process of the for-loop structure in detail using
debugging within the integrated development environment (IDE) Dev
C++, which directly displays the changes in variables such as i. This
approach helps students better understand the for-loop structure.
After that, we guide students to summarize the syntax and
characteristics of the for-loop structure. Based on this summary,
we visually demonstrate the execution process using an animated
flowchart in PowerPoint, showing the workflow with a red point
traversing the diagram. Next, we ask students to modify the program
to calculate the sum of numbers from 1 to 1,000 using the C compiler
installed on their mobile phones. We then propose extension
challenges sequentially: calculating the sum of odd numbers and even
numbers within 1,1,000 . Once these problems are solved, students
gain familiarity with the basic usage of the for-loop structure.
Furthermore, we allocate 5 min for them to practice calculating the
sum of numbers divisible by five within 1,1,000 . This exercise not
only reinforces their mastery of the for-loop structure but also revisits
the selection structure through checking divisibility by five. The entire
process lasts about 25 min.

After finishing the practice, we teach students the knowledge of
the while-loop structure and do-while loop structure through
multimedia technology such as animated flowcharts with a red point
indicating execution progress. To better master the while-loop and
do-while loop, students are asked to implement the functionality of
the above programs using different loop structures. Furthermore,
students are asked to compare the differences between these three
loop structures (lasting about 20 min). Then, we ask students to write
a program that outputs a 10-star pattern using a loop structure, as the
visual patterns are intuitive (Figure 1). They can use any of the three
loop structures. We demonstrate the while-loop structure as an
example (Table 3).

After demonstrating the execution process with Dev C++, we ask
students to design a program that outputs an 8-row by 10-column star
pattern (Figure 2). We invite three students to demonstrate how they
would write this program. After their presentations, we provide a
solution where one loop controls the rows and a nested loop within it
controls the number of stars per row, similar to the previous program.
Through this, we introduce the concept of nested loops—embedding
additional loops inside a primary loop statement—to achieve multi-
level data traversal and processing. We then explain the core principles
of nested loops. Subsequently, we provide students with an example
program (Table 4) intended to print Figure 2, but containing
intentional errors. When students execute the given program, they
observe that only a single line of 10 stars (Figure 3) is printed instead
of the expected pattern. We ask them to diagnose why the output
differs from the target by debugging the program and monitoring
changes in loop control variable values.

TABLE 1 A possible C program for calculating the accumulation of 1 to
100 written by students.

Program: calculating the sum of 1 to 100

#include<stdio.h>

int main(){

int sum=0;

sum=sum+1;

sum=sum+2;

sum=sum+3;

…..

sum=sum+100;

return 0;

}

https://doi.org/10.3389/feduc.2025.1498100
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Zhang et al. 10.3389/feduc.2025.1498100

Frontiers in Education 04 frontiersin.org

Subsequently, a student is randomly selected to explain their
reasoning. We then analyze the program and clarify the reason: a loop
terminates when its continuation condition becomes false. Specifically,
after the inner loop completes execution, the value of its control
variable no longer meets the loop’s continuation condition. When the
outer loop iterates again, the inner loop’s control variable must
be reinitialized. Students are therefore instructed to modify the
program in Table 4. Next, we ask them to implement the same
functionality using a for-loop structure and determine whether this
issue persists with for loops. This ensures students fully comprehend

nested loop execution and develop awareness of loop control variable
management. Following this, based on Figure 2, students are tasked
with writing a program to output Figure 4. They then progress
incrementally to develop programs for Figures 5–7. Note that Figure 5
differs from Figure 4 in that the number of lines is dynamically
determined by user input.

TABLE 2 A possible C program with loop structure written for the
accumulation of 1 to 100.

Program: calculating the sum of 1 to 100

#include<stdio.h>

int main(){

int sum=0;

for(i=1; i<=100; i++)

 sum+=i;

return 0;

}

FIGURE 1

The pattern to be output.

TABLE 3 A possible C program with while-loop structure written for
outputting 10 stars.

Program: calculating the sum of 1 to 100

#include<stdio.h>

int main(){

int sum=0;

for(i=1; i<=100; i++)

 sum+=i;

return 0;

}

FIGURE 2

The pattern to be output.

TABLE 4 A C program outputting Figure 3.

Program: output 10 stars with while-loop structure

#include <stdio.h>

int main (){

 int i = 1, j = 1;

 while(i<=8) {

 while (j<=10){

 putchar('*');

 j++;

 }

 putchar('\n');

 i++;

 }

 return 0;

}

FIGURE 3

The pattern output.

FIGURE 4

The pattern to be output.

https://doi.org/10.3389/feduc.2025.1498100
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Zhang et al. 10.3389/feduc.2025.1498100

Frontiers in Education 05 frontiersin.org

After completing the previously mentioned patterns, we increase
the complexity of programming practice by integrating character
manipulation with standard I/O operations. Students are tasked with
generating patterns composed of characters (Figure 8). Next, they are
required to produce patterns based on a user-input uppercase letter—
for example, inputting “G” generates the pattern in Figure 9. To
account for potential errors, the program prompts users to re-enter if
the input is non-uppercase, continuing this validation loop until valid
data is received (Figure 10). Through this exercise, students
progressively learn to design interactive menus using loop structures
and selection statements (taught prior to loops). The entire activity is
designed to be completed within approximately 60 min.

Throughout these heuristic teaching activities, students actively
engage in thinking, learning, and practicing during class. With
frequent questioning and interactive practices progressing
incrementally from simple to complex tasks, students remain
motivated and cognitively engaged. Finally, we assign homework
requiring them to generate a specific pattern based on a user-input
uppercase character (Figure 11).

3 Results and discussions

We began teaching C programming courses to Medical
Information Engineering majors at Anhui Medical University in the
fall 2021 semester. Based on preliminary surveys conducted during
the first class, these freshmen (predominantly from Anhui Province)
had minimal programming exposure, with C programming being
their first formal coding course. Most lacked foundational computer
science knowledge. By the semester’s end, we observed persistent
difficulties in their ability to acquire programming skills and develop
computational problem-solving competencies. Consequently,
we implemented pedagogical reforms for the 2022 fall semester cohort
of the same program (comprising students mainly from Anhui
Province, with one exception from Shanxi Province). Adopting
heuristic teaching methodologies with customized case studies,
we maintained instructional continuity as outlined in Section
II. Notably, due to logistical constraints—including shared theoretical
coursework with master’s degree students—we could not conduct
parallel controlled experiments within the same semester (i.e.,
traditional vs. reformed methods). Furthermore, implementing
differential teaching approaches risked student objections, as course
grades directly impacted scholarship eligibility. Therefore, uniform
instructional strategies were applied within each cohort. However, the
students of the 2021 and 2022 fall semesters can be seen as two
contrast groups to a certain extent because they are taught by the same
teacher with the same teaching hours. Only the teaching methods are
different. In fact, these students are with the same curriculum. The C
programming lessons are both 45 teaching hours. Thus, the
examination scores and student evaluation scores of teaching
performance are used as indicators to show the efficiency of the
proposed teaching methods. Note that each topic in the 2022 fall
semesters was taught by the same teacher consistent with that in the
2021 fall semesters. Moreover, the examination papers have the same
level of difficulty with the same emphasis. The examination scores are
shown in Table 5.

As shown in Table 5, the average examination scores for C
programming courses in 2021 and 2022 were 72.9 and 77.2,

FIGURE 5

The pattern to be output.

FIGURE 6

The pattern to be output.

FIGURE 7

The pattern to be output.

https://doi.org/10.3389/feduc.2025.1498100
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Zhang et al. 10.3389/feduc.2025.1498100

Frontiers in Education 06 frontiersin.org

respectively. While differences in scores could theoretically arise from
factors like student backgrounds, instructor variations, or teaching
methodologies, several observations suggest these variables were
controlled: All students except one originated from Anhui Province;
both cohorts consisted of Medical Information Engineering freshmen
with comparable age profiles (average ages 17.91 in 2021 vs. 17.90 in
2022) and minimal programming experience. The 2021 cohort
included 59 students (30 male, 29 female), while the 2022 cohort had
88 students (52 male, 36 female). Crucially, the same instructor
delivered all course content. Given these stabilized conditions, the

4.3-point score increase in 2022 implies the heuristic teaching reforms
contributed to improved outcomes. Statistical validation was conducted
through a one-tailed t-test (justified by similar standard deviations: 9.1
for 2021 vs. 9.9 for 2022), yielding a p-value of 0.00447—significantly
below the 0.05 threshold. The 95% confidence interval −∞ − , 1.61
indicates the 2021 cohort’s mean score was at least 1.61 points lower
than 2022’s. A Cohen’s d value of 1.38 confirms a large effect size.
Supporting evidence emerges from score distributions: the 2021 modal
range was 70–79 (Figures 12, 13), shifting to 80–89 in 2022. Notably,
both the highest and lowest scores in 2022 marginally surpassed 2021’s
extremes. These findings collectively demonstrate the pedagogical
effectiveness of the redesigned heuristic teaching framework.

We also find that although students of the same semester attend
the same classrooms together, however, the scores differ with classes
(Figure 14). For freshmen of the 2021 fall semester, they were divided
into two small classes. The average scores of these two classes are 71.93
and 73.86, respectively. For freshmen of the 2022 fall semester, they
were divided into three classes. The average scores of these three
classes are 79.17, 77.79, and 74.31. As students of the same semester
attended theory classes of C programming together, they were
instructed with the same teaching contents and methods. However,
the scores are still different. We guess that this may be caused by class
discipline and academic atmosphere as they doing C programming
practice in the units of classes. According to our experience in
experimental programming classes, for classes with higher scores,
more students would ask questions or discuss problems during
programming. In contrast, some students were addicted to mobile
video games. Some of them even tried to play mobile video games
when others were programming. Of course, they would be stopped
from playing games in classes. Thus, we think the differences in
examination scores between classes of the same semester may
be caused by class discipline and academic atmosphere. This will
be our future research direction to further improve the teaching
efficiency while analyzing factors affecting teaching efficiency and
minimizing the difference between classes. Also, we need to develop
more suitable evaluation approaches such as formative assessment and
project assessment into our teaching process in the future research.
This is one of the limitations of the work.

After the C programming course concluded, students were asked to
evaluate teaching performance through scoring. Following the
implementation of the proposed method, teaching evaluation scores
increased from 90.73 to 94.53. Many students noted that complex

FIGURE 8

The pattern to be output.

FIGURE 9

The pattern to be output.

FIGURE 10

The pattern to be output according to the character input.

FIGURE 11

The pattern to be output according to the character input.

https://doi.org/10.3389/feduc.2025.1498100
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Zhang et al. 10.3389/feduc.2025.1498100

Frontiers in Education 07 frontiersin.org

concepts became easier to understand as the designed cases and targeted
analyses by teachers effectively connected abstract theories with practical
understanding. Some students highlighted that the praxis-oriented
approach, integrating theoretical frameworks with contextualized
applications, strengthened their learning processes. Student feedback
further confirms the efficacy of these teaching methods. The proposed
method may be applied to other computer science courses. For example,
object-oriented programming classes such as Python and Java also
involve loop structures. The teaching process can be adapted to suit these
courses. The framework can further extend to data structure instruction.
For instance, animations may directly demonstrate linked list operations

or binary tree traversal, while physical analogies (e.g., stacking plates)
could explain stack push/pop mechanisms. This approach thus helps
students better understand abstract concepts.

4 Conclusion

The C programming language has various applications and is also
a prerequisite for courses such as Data Structures, Object-oriented
Programming, and Embedded Systems. However, C programming
remains one of the most difficult courses in many majors, with a high
failure rate. Failure to learn C programming may not only decrease
students’ motivation in learning programming languages but also
increase the difficulty of mastering knowledge related to subsequent
courses. Furthermore, this may affect their future career prospects.

To improve the teaching efficiency of C programming classes
offered to freshmen majoring in Medical Information Engineering at
Anhui Medical University, we designed teaching cases based on
heuristic teaching methods and implemented them starting in the
2022 fall semester. Since the loop structure is foundational for
subsequent topics such as arrays and pointers, we used it as an example
to demonstrate case design strategies and stimulate students’ learning
interest. We utilized examination scores as an indicator to evaluate the
effectiveness of the designed cases and heuristic teaching methods. As
the students were freshmen with no prior programming experience,
this metric is valid. Results indicate that with the heuristic-based
cases, the average score rose from 72.9 (2021) to 77.2 (2022), while
teaching evaluation scores increased from 90.73 to 94.53. This
demonstrates that the heuristic teaching cases significantly enhance
instructional efficiency in C programming courses. We believe these
methods could inform pedagogy in other computer-related subjects.

TABLE 5 Examination scores of C programming courses of two different semesters.

Semester Number of
students

Average scores The highest
score

The lowest
score

Standard deviation

2021 fall 59 72.9 94 53 9.0

2022 fall 88 77.2 96 55 9.9

FIGURE 12

The score distribution.

FIGURE 13

The percentage of score ranges.

FIGURE 14

The relationship between scores and classes.

https://doi.org/10.3389/feduc.2025.1498100
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Zhang et al. 10.3389/feduc.2025.1498100

Frontiers in Education 08 frontiersin.org

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

FZ: Methodology, Writing – original draft. ZP: Methodology,
Writing – original draft. CW: Methodology, Writing – original draft.
FY: Methodology, Writing – original draft.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This research was
funded by Department of Education Anhui Province, grant
numbers 2023zyxwjxalk039, 2023jyxm0235, and 2022jyxm710. This
research was also funded by Anhui Medical University, grant
number 2024xjxm117.

Acknowledgments

We appreciate the editors and reviewers for their earnest work and
insightful comments. We appreciate Deepseek for helping us
correcting grammar errors.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References
Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning

of computer programming: a literature review. Contemp. Educ. Technol. 12:ep272. doi:
10.30935/cedtech/8247

D’Isanto, T., Aliberti, S., Altavilla, G., Esposito, G., and D’Elia, F. (2022).
Heuristic learning as a method for improving students’ teamwork skills in
physical education. Int. J. Environ. Res. Public Health 19:12596. doi: 10.3390/
ijerph191912596

Dilshodov, A., and Adxamjonov, M. (2023). “Application of the opengl library in the
course of programming and computer simulation” in Engineering Problems and
Innovations, 112–114.

Dolgopolovas, V., Jevsikova, T., and Dagiene, V. (2018). From android games to coding
in C—an approach to motivate novice engineering students to learn programming: a
case study. Comput. Appl. Eng. Educ. 26, 75–90. doi: 10.1002/cae.21862

Elshiekh, R., and Butgerit, L. (2017). Using gamification to teach students
programming concepts. Open Access Library J. 4, 1–7. doi: 10.4236/oalib.1103803

Hart, R., Hays, B., McMillin, C., Rezig, E. K., Rodriguez-Rivera, G., and Turkstra, J. A.
(2023). Eastwood-tidy: C linting for automated code style assessment in programming
courses. Proceedings of the 54th ACM Technical Symposium on Computer Science
Education, 1, 799–805.

Ibanez, M. B., Di-Serio, A., and Delgado-Kloos, C. (2014). Gamification for engaging
computer science students in learning activities: a case study. IEEE Trans. Learn. Technol.
7, 291–301. doi: 10.1109/TLT.2014.2329293

Keppens, J., and Hay, D. (2008). Concept map assessment for teaching computer
program ming. Comput. Sci. Educ. 18, 31–42. doi: 10.1080/08993400701864880

Kia, A. D. (2023). The use of heuristic reasoning in Christian education. AI-Ishlah:
Jurnal Pendidikan 15, 1571–1580. doi: 10.35445/alishlah.v15i2.3888

Liu, S., Chen, Z., and Tang, J. (2013). The improved methods of teaching practice
based on C language programming. 2013 Conference on Education Technology and
Management Science (ICETMS 2013), 807–810.

Nokhatbayeva, K. (2020). The effects of heuristic teaching methods in mathematics.
Proc. Int. Young Scholars Workshop 9, 142–156. doi: 10.47344/iysw.v9i0.158

Pisarenko, V., and Zatona, D. (2024). Using heuristic methods in primary school. In
EDULEARN24 Proceedings: 16th International Conference on Education and New
Learning Technologies, 9486–9495.

Santos, S. C., Tedesco, P. A., Borba, M., and Brito, M. (2020). Innovative approaches
in teaching programming: a systematic literature review. In Proceedings of the 12th
International Conference on Computer Supported Education, 1, 205–214.

Talingdan, J. A., and Llanda, C. R. (2019). Assessment of the effectiveness of learning
theories using gamified android app in teaching C programming. IOP Conf. Ser. Mater.
Sci. Eng. 482:012030. doi: 10.1088/1757-899X/482/1/012030

Troussas, C., Krouska, A., and Sgouropoulou, C. (2020). A novel teaching strategy
through adaptive learning activities for computer programming. IEEE Trans. Educ. 64,
103–109. doi: 10.1109/TE.2020.3012744

Wakhata, R., Mutarutinya, V., and Balimuttajjo, S. (2023). Relationship between active
learning heuristic problem-solving approach and students’ attitude towards
mathematics. Eurasia J. Math. Sci. Technol. Educ. 19:em2231. doi: 10.29333/ejmste/12963

Wang, X. M., Hwang, G. J., Liang, Z. Y., and Wang, H. Y. (2017). Enhancing students’
computer programming performances, critical thinking awareness and attitudes towards
programming: an online peer-assessment attempt. J. Educ. Technol. Soc. 20, 58–68.

Xu, B., Yan, S., Jiang, X., and Feng, S. (2020). SCFH: a student analysis model to
identify students’ programming levels in online judge systems. Symmetry 12:601. doi:
10.3390/sym12040601

Xue, B. (2022) The use of picture books and heuristic teaching method for Chinese
writing skill of grade 3 Chinese students in Sichuan Province, China, (doctoral
dissertation, Rangsit University).

Yu, F., Liu, Y., and Xiao, F. (2023). Research on construction and practice of precision
teaching classroom for university programming courses. IEEE Access 11, 9560–9576.
doi: 10.1109/ACCESS.2023.3240105

https://doi.org/10.3389/feduc.2025.1498100
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://doi.org/10.30935/cedtech/8247
https://doi.org/10.3390/ijerph191912596
https://doi.org/10.3390/ijerph191912596
https://doi.org/10.1002/cae.21862
https://doi.org/10.4236/oalib.1103803
https://doi.org/10.1109/TLT.2014.2329293
https://doi.org/10.1080/08993400701864880
https://doi.org/10.35445/alishlah.v15i2.3888
https://doi.org/10.47344/iysw.v9i0.158
https://doi.org/10.1088/1757-899X/482/1/012030
https://doi.org/10.1109/TE.2020.3012744
https://doi.org/10.29333/ejmste/12963
https://doi.org/10.3390/sym12040601
https://doi.org/10.1109/ACCESS.2023.3240105

	Design and application of teaching cases based on heuristic teaching in C programming language curriculums—taking the loop structure for an example
	1 Introduction
	2 Materials and methods
	3 Results and discussions
	4 Conclusion

	References

