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connotations, and path methods 
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Structural equation modeling (SEM) is a widely used statistical method in social 
science. However, many published articles employing SEM appear to contradict 
its underlying principles and assumptions, which undermines the scientific rigor 
of the research. Model modifications should be data-driven and clearly justified, 
rather than arbitrarily changing the relationships between variables. Removing 
measurement indicators can significantly reduce discrepancies between the 
sample data and the model. This approach is often considered optimal for model 
modification. Except for certain specific models, error correlations should only 
be established based on theoretical support to improve the model’s goodness-
of-fit. Finally, any modifications to the model should undergo cross-validation 
to ensure its applicability to other sample datasets.
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1 Introduction

Over the past 40 years, Structural Equation Modeling (SEM) has become a primary 
statistical technique in many social science fields, such as education (Teegan, 2016), sociology 
(Michael, 1992), psychology (Cao, 2023), and economics (Wang and Qu, 2020). It is also a 
required course for graduate students in various social science disciplines at numerous 
universities. A search on the CNKI (China National Knowledge Infrastructure) database using 
the keyword “structural equation modeling” returned over 9,000 journal articles and more 
than 6,000 dissertations. These publications cover over 20 fields, and their number continues 
to grow, showing SEM’s wide application and significant contributions. Compared with 
classical statistical methods like ANOVA, t-tests, and linear regression, SEM solves many 
complex problems, such as handling unobserved variables (latent variables or factors), 
managing models with multiple causes and effects, and model evaluation and comparison 
(Hou and Cheng, 1999). Therefore, SEM is regarded as a second-generation statistical 
technique. SEM includes both a measurement model and a structural model. Confirmatory 
Factor Analysis (CFA) is both the measurement model of SEM and a specific application of it. 
CFA should be conducted before the structural model and is crucial for questionnaire design, 
scale validity testing, and evaluation. CFA plays a key role in SEM (MacCallum and Austin, 
2000). As an advanced statistical technique, SEM involves complex concepts and theories, 
which can be difficult for researchers to master. Many authoritative journals in China have 
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published articles on CFA errors, but often with unclear or insufficient 
explanations (Hu et  al., 2018). Therefore, exploring the basic 
assumptions and key concepts of model modification using CFA as an 
example is both theoretically and practically important. This 
document provides guidelines for researchers seeking to utilize 
these methodologies.

2 The basic assumptions of structural 
equation modeling

Since the data in SEM (Structural Equation Modeling) is 
typically obtained from surveys, many problems in SEM are often 
caused by poor measurement model quality. Therefore, 
Confirmatory Factor Analysis (CFA) is essential to examine the 
data’s reliability and validity and ensure that the measurement 
indicators adequately reflect the traits of latent variables. Only if 
the measurement model meets validation criteria can further 
exploration of the relationships between latent variables in the 
structural model be  meaningful. However, in practice, due to 
factors like scale quality, data issues, and sample size, the CFA 
model often cannot achieve a good fit initially. Hence, modifying 
the CFA model is necessary to improve measurement quality. 
During this process, it is crucial not to violate the model’s basic 
assumptions without relevant theoretical support.

2.1 Principle of unidimensionality

Confirmatory Factor Analysis (CFA) differs from Exploratory 
Factor Analysis (EFA). While EFA focuses on identifying underlying 
factors and developing scales, researchers using EFA must identify the 
number of factors and the measurement indicators for these factors. 
Next, they assign names to the factors based on the characteristics of 
the measurement indicators, with all results being data-driven. Even 
if measurement indicators are assigned to a specific factor in EFA, they 
may still have loadings on other factors, as each indicator typically has 
non-zero loadings on all factors. In contrast, CFA functions as a 
confirmatory test for theories and scales. Researchers start with a 
hypothesized model in CFA, where the number, names, and 
relationships between factors and measurement indicators are 
predefined. Each measurement indicator has loadings on its 
corresponding factor only, with loadings on other factors being zero. 
This aligns with the principle of unidimensionality in Structural 
Equation Modeling (SEM).

2.2 There is no correlation between errors 
and factors

A complete structural equation model (SEM) consists of two 
parts: the measurement model and the structural model. The 
measurement model describes how latent variables are measured or 
conceptualized by their observed indicators. Latent variables are 
divided into exogenous latent variables (ξ ) and endogenous latent 
variables (η). The observed indicators of exogenous latent variables are 
called exogenous indicators (), and the error that cannot be explained 
by exogenous latent variables is denoted as δ . The observed indicators 
of endogenous latent variables are called endogenous indicators ( ), 
and the error that cannot be  explained by endogenous latent 
variables is denoted as ε .The equations of the measurement model 
are as follows: ξ δ= Λ + ; η ε= Λ + . Λ  represents the 
relationship between exogenous indicators and exogenous latent 
variables, and it is the factor loading matrix of exogenous indicators 
on exogenous latent variables.The structural model describes the 
relationships between latent variables and the error ζ  that cannot 
be  explained by exogenous latent variables.The equations of the 
structural model are as follows: Bη η ξ ζ= + Γ + . B  represents the 
relationships between endogenous latent variables, Γ  represents the 
influence of exogenous latent variables on endogenous latent variables. 
An example diagram of a two-factor structural equation model is 
detailed in Figure 1.

Every structural equation model has the following assumptions: 
(1) errors δ  and ε  are uncorrelated with latent variables, including 
exogenous and endogenous latent variables; (2) errors δ  and ε  are 
uncorrelated with each other; (3) errors ζ , δ , and ε  are 
uncorrelated. Confirmatory factor analysis (CFA) is a special case 
of SEM that does not include the structural model, but only 
exogenous indicators and exogenous latent variables. Therefore, 
when modifying the model, it is necessary to follow the 
assumptions of uncorrelated errors δ  and uncorrelated errors δ  
with latent variables. Although theoretically errors δ  should not 
be correlated, due to systematic content biases of measurement 
tools (such as high similarity between exogenous indicators) or 
response biases of participants (such as practice effects), 
unexplained variations that cannot be accounted for theoretically 
may occur in different exogenous indicators, allowing for 
correlations between errors δ  in such cases.

For general CFA models, correlations between errors δ  cannot 
be established without reasonable explanations. However, there are 
some special CFA models that allow for correlations between errors δ
, and sometimes this correlation is necessary.

FIGURE 1

Example diagram of structural equation modeling (two-factor).
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The multitrait multimethod (MTMM) model measures multiple 
traits using multiple methods, aiming to test convergent validity, 
discriminant validity, and method effects. However, it is difficult to 
achieve the above validity or effect tests using the MTMM model. 
Therefore, the data from the MTMM model are often processed using 
factor analysis, where factors represent “traits” and “methods.” Scores 
of different traits measured by different methods belong to the same 
“trait” factor, and scores of different traits measured by the same 
method belong to the same “method” factor. This method is called 
correlated trait-correlated method (CTCM). Since the “traits” in the 
CTCM model are not measured by the same “method,” and the “traits” 
measured by the same “method” all have errors generated by that 
method, there may be correlations among the errors produced by 
different “methods.” For example, when two traits A and B are 
measured by two methods C and D, method C and method D may 
be affected by some common factors (such as the similarity of the 
evaluation environment, certain common behavioral characteristics 
of the evaluated objects, etc.), resulting in correlated errors. Therefore, 
the CTCM model allows correlations to be established among the 
error terms δ  (Lance Charles et al., 2002).

The CTCM model of MTMM overcomes the challenges of validity 
testing. However, when the number of “methods” and “traits” is 
limited, the CTCM model may lead to non-convergence or results that 
cannot be positively defined, making it difficult to estimate the model. 
Marsh (1989) proposed the correlated trait-correlated uniqueness 
(CTCU) method to set factors. The CTCU model is based on the 
CTCM model, but it eliminates the “method” factor and only retains 
the “trait” factor. For scores obtained using the same method, it allows 
their errors δ  to be correlated. Taking the CTCU model in Figure 2 as 
an example, the CTCU model in Figure  2 eliminates the method 
factor and only retains the trait factors 1ξ  and 2ξ . If X1, X2, X5, and 
X6 are measured by the same method, and X3, X4, X7, and X8 are 
measured by the same method, then it is allowed to establish 
correlations among their errors.

In most surveys and studies, due to limitations in manpower, 
financial resources, and material resources, cross-sectional studies are 
often conducted. The data from cross-sectional studies are collected 
at a specific point in time or within a relatively short time interval. 
Compared to cross-sectional studies, longitudinal studies can collect 
data on certain observational indicators at different time points. Since 

the data collected in longitudinal studies only involve changes over 
time and the observational indicators themselves do not change, it is 
generally believed that the error δ  remains constant and unchanged 
between multiple data collection instances (Vandenberg and Lance, 
2000), allowing for correlation to be established.

3 The core essence of model 
modification

The core of SEM analysis is the covariance matrix, which provides 
insights into the relationships between variables. Providing a 
covariance matrix with sufficient precision allows for the 
reproducibility of research results. There are three types of covariance 
matrices: sample, implied, and residual. The sample covariance matrix 
is derived directly from the sample data and serves as the original 
covariance matrix for SEM analysis. The implied covariance matrix is 
obtained by iteratively minimizing the difference between the sample 
covariance matrix and the hypothesized model. The residual 
covariance matrix is the difference between the sample and implied 
covariance matrices. SEM assesses the difference between the sample 
and implied covariance matrices using a chi-square test. Smaller 
differences suggest a better model fit, while larger differences indicate 
a poorer fit. Model evaluation is the preliminary step in model 
modification. Only a well-fitting model allows meaningful 
interpretation of SEM parameters (Wang et  al., 2022). Unlike 
traditional statistics, SEM provides multiple model fit indices 
alongside p-values for a comprehensive fit evaluation. Upon passing 
the evaluation, the model proceeds to further analysis; otherwise, 
modifications are necessary.

3.1 Model fitness indicators and evaluation 
criteria

Since the emergence and popularity of structural equation 
modeling (SEM), scholars have proposed over 40 fit indices, which 
can be divided into three categories: absolute fit indices, relative fit 
indices (also known as incremental fit indices), and parsimony fit 
indices. Absolute fit indices include χ2 (also known as CMIN), χ2/df, 
RMR, SRMR, RMSEA, etc. Relative fit indices include NFI, CFI, TLI, 
etc. Parsimony fit indices include PNFI, PCFI, PGFI, etc. Different fit 
indices represent the influence of different sample characteristics, and 
researchers can judge the model fit based on different indices. Due to 
the existence of numerous fit indices, careful consideration is needed 
when selecting which fit indices to evaluate the model. Some foreign 
scholars found through a study of 194 CFA studies published in 
American Association journals from 1998 to 2006 that almost all 
authors reported χ2. Apart from χ2, the most common fit indices were 
CFI (78.4%), RMSEA (64.9%), and TLI (46.4%) (Jackson et al., 2009). 
Currently, the recommended fit indices recognized by domestic 
scholars in China include CFI, TLI, RMSEA, and SRMR. A 
comparison reveals that the recommended fit indices by domestic and 
foreign scholars are almost the same. Regarding the recommended fit 
indices mentioned above, it is generally suggested that CFI and TLI 
should be >0.9 (Bentler and Bonett, 1980), and SRMR and RMSEA 
should be  <0.08 (Browne and Cudeck, 1992) for the model to 
be considered acceptable. Other scholars believe that CFI and TLI 

FIGURE 2

Example diagram of the CTCU model.
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should be >0.95, and SRMR and RMSEA should be <0.05 (Hu and 
Bentler, 1999) to be  considered as excellent model fit standards. 
Moreover, the Gamma Hat is highly sensitive to model specification 
errors. It is an ideal indicator of model fit (Fan and Sivo, 2007) and 
also a commonly used one. Its value needs to be close to above 0.95 to 
indicate a good model fit (Li‐tze and Peter, 1999). The ratio of 
chi-square to degrees of freedom, compared with other commonly 
used fit indices, can effectively reflect the changes in the relationship 
between the model and the data caused by an increase in sample size 
(Herbert et al., 2004). Among the aforementioned fit indices, χ2 is 
more susceptible to sample size. A larger sample size makes the 
chi-square test more likely to be significant (p < 0.05), thus indicating 
a poorer fit between the model and the sample data. A smaller χ2 value 
is preferred, but there is no universally recognized standard for how 
small it should be to be considered good or how large it should be to 
be considered poor. Since χ2 serves as the basis for calculating many 
other fit indices, most SEM analyses will present χ2. The significant 
critical value of chi-square is 3.84. When it exceeds 3.84, it indicates 
that the model cannot be fitted to the data.

Each goodness-of-fit indicator can only judge the goodness of fit 
of a model from a certain perspective, and has its limitations. In 
addition, goodness-of-fit indicators are generally more or less 
influenced by factors such as sample size, data distribution, and 
parameter estimation methods (Shi and Maydeu-Olivares, 2020). 
Therefore, besides the aforementioned goodness-of-fit indicators, it is 
necessary to refer to other basic criteria. For example, whether the 
factor loading coefficient is significant and whether the standardized 
factor loading coefficient exceeds 0.7, whether the average variance 
extracted (AVE) reaches above 0.5, whether the composite reliability 
(CR) is above 0.5 (Kline, 1998), however, the Average Variance 
Extracted (AVE) test is often difficult to pass. In contrast, the 
Heterotrait-Monotrait Ratio (HTMT) test is not as stringent and 
serves as a better indicator. Under normal circumstances, when the 
value of HTMT reaches 0.85 (Clark and Watson, 1995) or 0.9 (Gold 
et al., 2001), it indicates that the model has good discriminant validity.
Whether the correlation coefficients between factors are <0.85 or not 
(Kenny, 2016), and whether the variance and standard error are >0. In 
conclusion, it is important to scientifically and reasonably evaluate the 
goodness of fit of a model from multiple perspectives.

3.2 Modification indices and residual 
covariance matrix

The modification indices and standardized residual covariance 
matrix can be  referred to for model Modification, which can 
be  obtained from SEM analysis software such as Amos, LISREL, 
Mplus, etc.

Modification Indices (MI) refer to the reduction in the overall 
model chi-square (χ2) when a constrained parameter (usually fixed at 
0) is freely estimated with one degree of freedom (df). This is achieved 
by changing the relationships between variables to improve the model 
fit. For example, if variables A and B are originally uncorrelated 
(correlation coefficient = 0), and the modification index is 10, then 
establishing a correlation between e1 and e2 through their free 
estimation will reduce the model’s χ2 by 10 (with a decrease of 1 degree 
of freedom). Typically, when α is set to 0.05, the critical value of 
significant χ2 for one degree of freedom is 3.84. If the modification 

index is <3.84, it indicates that there is no significant difference 
between the model before and after modification, and changing the 
parameters will not significantly improve the model fit. If the 
modification index is >3.84, it indicates that there is a significant 
difference between the model before and after modification, and 
changing the parameters will significantly improve the model fit.

The residual covariance matrix is obtained by subtracting the 
latent covariance matrix from the sample covariance matrix, and its 
elements are residual covariances. A positive residual covariance 
indicates that the sample covariance is greater than the latent 
covariance, and the model parameters underestimate the correlation 
between variables in the sample data. A negative residual covariance 
indicates that the sample covariance is smaller than the latent 
covariance, and the model parameters overestimate the correlation 
between variables in the sample data. For example, if the sample 
covariance between variables A and B is 0.6 and the latent covariance 
is 0.4, then the residual covariance is 0.2, indicating that the model 
should allow for a stronger direct or indirect path between variables 
A and B to match the higher correlation between A and B in the 
sample data. If the residual covariance between A and B is negative, it 
indicates that the model should reduce the direct or indirect paths to 
weaken the correlation between A and B in the sample data. Since 
residuals are influenced by the measurement units of variables, it is 
difficult to compare and measure them directly. Standardized residuals 
can be obtained by dividing the residuals by the square root of their 
estimated asymptotic variances, which are less affected by 
measurement units. They can serve as a standard for assessing model 
fit. If the absolute value of a standardized residual is >1.96 (p < 0.05), 
it indicates a significant difference between the variable relationships 
in the sample covariance matrix and the latent covariance matrix. In 
a well-fitting model, the majority of standardized residual covariances 
should be smaller than 1.96.

3.3 Parameters and strategies for model 
modification

There are three types of parameters to be adjusted: “Covariance,” 
“Variance,” and “Regression Weight.” For CFA, “Covariance” 
establishes the correlation between errors (δ ) or errors (δ ) and factors. 
“Variance” is used to check if the model’s variance has inappropriate 
values, such as if the value of error (δ ) is too large or if both the factors 
and the variance of error (δ ) are >0. In most cases, there is no need to 
adjust “Variance.” “Regression Weight” establishes the causal 
relationship between factors and observed indicators or between 
observed indicators. Cross-loadings refer to the causal relationship 
between factors and non-corresponding observed indicators, while 
establishing causal relationships between observed indicators is not 
desirable. In addition, if there are factor loading coefficients that are 
not significant (p > 0.05) or standardized factor loading coefficients 
that are <0.45, the corresponding observed indicators can be directly 
deleted. If multiple Modification indices with large values occur 
simultaneously, they should be adjusted in order of magnitude, and 
only one parameter can be adjusted at a time, followed by re-estimation 
of the model. If the model cannot be adjusted successfully at once, 
repeat the process until the model fits well.

Whether it is establishing correlations between errors (δ ) or 
deleting measurement indicators, it is necessary to ensure that the 
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model is identifiable. Model identification is a function of the number 
of distinct sample moments and the number of distinct parameters, i.e., 
whether the covariance matrix can provide sufficient information to 
estimate the free parameters.The calculation formula for the number 
of different sample moments is: 

( )1
2

k k +
, k represents the number of 

observation indicators. The criteria for estimating the degrees of 
freedom for structural equation modeling (SEM) are as follows 
(Bishop, 2008): (1) The variances of all exogenous variables, including 
the error terms δ , ε , ζ , and the variances of exogenous latent variables. 
(2) The covariances between all exogenous variables. (3) The factor 
loading coefficients of all measurement indicators. Each latent variable’s 
latent scale needs to be specified, usually fixed at 1. This is because the 
loading coefficient will change with the change of the measurement 
unit of the latent variable. Without such a setting, any model would 
be unidentifiable. Factor loading coefficients that are fixed at 1 do not 
need to be  estimated. (4) The regression coefficients between all 
measurement indicators or latent variables. (5) The variances and 
covariances of endogenous variables, as well as the covariances between 
exogenous variables and endogenous variables, are not parameters to 
be  estimated by the model. The prerequisite for successful model 
identification is that the number of moment conditions from different 
sample moments should be greater than or equal to the number of free 
parameters estimated by the model, i.e., df ≥ 0. For a single-factor 
model, at least 3 measurement indicators are required for identification. 
For models with two or more factors, each factor should have at least 
2 measurement indicators (Bollen and Davis, 2009). If a factor has only 
one indicator, it is not possible to simultaneously estimate the factor 
loading coefficients and the error term δ  unless a method model fixes 
the factor loading coefficients and error term as fixes parameters and 
sets the factor variance as a free parameter.

4 Path for model modification 
methods

We estimated and modified the reading ability model shown in 
Figure 3 using AMOS software as the analysis tool (Xiong, 2023). The 
model includes four factors: Reading Perception Ability (RPA) with 
observed indicators RPA1 to RPA5, Understand Analytical Ability 
(UAA) with observed indicators UAA1 to UAA5, Appreciation 
Evaluation Ability (AEA) with observed indicators AEA1 to AEA4, 
and Creative Imagination Ability (CIA) with observed indicators CIA1 
to CIA4. In total, the model comprises 18 observed indicators. The 
variables in this study are ordinal variables with a scale of 1 to 4. If the 
ordinal variables are treated as continuous variables, maximum 
likelihood estimation or weighted least squares estimation would be 
preferable analytical methods (Robitzsch, 2020). ML is the default 
estimation method in SEM analysis software. For this study, we utilized 
the software’s default ML method to estimate the model.

The fit indices of the original model are shown in Table 1. The 
value of χ2/df is 3.4616, which falls within the lenient range of 3–5 but 
exceeds the stricter limit of 3. The values of TLI and CFI are 0.8810 
and 0.8997, respectively, both below the acceptable criterion of 0.9. 
The values of SRMR and RMSEA are 0.0668 and 0.0800, respectively, 
both exceeding the criterion of 0.05. The AVE of one factor is 0.4810, 
while the other three factors are all above 0.5, indicating good overall 
convergent validity for most factors. The CR of all factors is above 0.5, 

indicating good composite reliability. Based on the fit indices 
mentioned above, it is evident that the model needs to be revised to 
achieve better fit.

The study adopted three Modification methods, namely “deletion 
of observed indicators” “establishment of correlation (covariance)” 
and “a combination of both” to correct the model. The final models 
after applying these three Modification methods are named Model A, 
Model B, and Model C, respectively. The goodness-of-fit indicators of 
Model A, Model B, Model C, and the initial model all meet the 
standard. The process of Modification in the model is intended only 
as a demonstration and exploration of the methodology, without 
considering the actual interpretation of the model. To highlight the 
impact of Modification methods on the goodness-of-fit indicators, 
only the model χ2 after each Modification is presented.

4.1 Model modification method 1: Removal 
of measurement indicators

As shown in Table 2, Model Modification Method 1 uses the 
method of deleting observed indicators for operation. The specific 
operation method is as follows: (1) Find the variable with the 
largest “M.I.” sequentially. (2) If there is a correlation between 
errors, compare the standardized factor loading coefficients of the 
corresponding observed indicators for the errors and examine the 
correlation between the two errors and other variables. For 
example, e3 and e2: if e3 needs to establish a correlation not only 
with e2 but also with many other variables, then delete the observed 
indicator corresponding to e3; otherwise, delete the observed 
indicator corresponding to e2. (3) If there is a correlation between 

FIGURE 3

Confirmatory factor analysis.
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TABLE 3 Fit indices for model A.

χ2 χ2/df TLI CFI SRMR RESEA AVE CR AIC BIC

172.3445 2.4274 0.9419 0.9546 0.0424 0.0615 0.4791 ~ 0.5563 0.7309 ~ 0.8334 240.3445 374.1309

TABLE 4 HTMT for model A.

RPA UAA AEA CIA

RPA

UAA 0.7363

AEA 0.6088 0.8320

CIA 0.4489 0.7177 0.8355

errors and factors, directly delete the observed indicator 
corresponding to the error. (4) In multi-factor CFA, each factor 
should have at least one observed indicator. In summary, the model 
was modified a total of four times, deleting the observed variables 
“RPA2,” “CIA1,” “UAA1,” and “RPA4.” The final modified model’s 
chi-square value is 172.3445, which is lower than the initial model’s 
χ2 by 274.2079.

The goodness-of-fit indices for Model A are shown in Table 3. The 
value of χ2/df is 2.4274, which falls within the range of 1 to 3. The 
values of TLI and CFI are 0.9419 and 0.9546, respectively, both 
exceeding the criterion of 0.9. The SRMR value is 0.0424, meeting the 
criterion of 0.05. The RMSEA value is 0.0615, complying with the 
lenient criterion of 0.08. Except for one factor with an AVE of 0.4791, 
all other factors have AVE values above 0.5, and the CR values for all 
factors are above 0.5. The model demonstrates good convergent 
validity and composite reliability. In conclusion, all the goodness-of-fit 
indices for the revised Model A meet the criteria for a well-
fitting model.

The HTMT values of Model A are presented in Table 4. All the 
HTMT values are <0.85, indicating that there is a good degree of 
discriminant validity among the factors. Thus, Model A has good 
discriminant validity.

4.2 Model modification method 2: 
Establishing relevance

As shown in Table 5, Model Modification Method 2 uses a method 
based on establishing variable correlations for operation. The specific 
operational steps are as follows: sequentially identify the variables with 
the highest “M.I.” values that require establishing correlations and 
establish a correlation relationship between the two variables. The 
model was corrected a total of 6 times, establishing correlations 
between errors and between errors and factors. The final corrected 
model, χ2 is 261.5837, which is 184.9687 lower than the initial 
model’s χ2.

The fit indices of Model B are shown in Table 6. The value of 
χ2/df is 2.1267, which falls within the range of 1 to 3. The values of 

TLI and CFI are 0.9455 and 0.9562, respectively, both higher than 
the criterion of 0.9. The value of SRMR is 0.0421, meeting the 
criterion of 0.05. The value of RMSEA is 0.0547, meeting the 
lenient criterion of 0.08. Except for one factor with an AVE of 
0.4315, all other factors have values above 0.5. The CR values of all 
factors are above 0.5. The modified Model B demonstrates good 
convergent validity and composite reliability. In conclusion, all the 
fit indices of the modified Model B meet the criteria for a well-
fitting model.

The HTMT values of Model B are shown in Table 7. There are 
some HTMT values exceeding 0.85, indicating that the discriminant 
validity among factors needs to be improved and that Model A may 
have poor discriminant validity.

4.3 Model modification method 3: Deletion 
of observational indicators and 
establishment of relevance

As shown in Table  8, Model Modification Method 3 uses a 
combination of deleting observed indicators and establishing variable 
correlations for operations. The specific operation methods are as 
follows: (1) Find the variable with the largest “M.I.” value one by one. 
(2) If there is a correlation between the error and the factor, first 
consider deleting the observed indicator corresponding to the error. 
If the standardized factor loading coefficient of the deleted observed 
indicator is large, then consider establishing a correlation. (3) If there 
is a correlation between errors and the two correlated errors are less 
related to other variables, first consider establishing a correlation; 

TABLE 1 Indicators of the original model fitting degree.

χ2 χ2/df TLI CFI SRMR RESEA AVE CR AIC BIC

446.5524 3.4616 0.8810 0.8997 0.0668 0.0800 0.4810 ~ 0.5168 0.7870 ~ 0.8423 530.5524 695.8179

TABLE 2 Operational procedure for modification method 1.

Number Variable M.I. Par change operation χ2 χ2/df Assessment

1 e3 ↔ e2 44.5128 0.0833 Delete RPA2 302.9331 2.6808 Continue

2 e15 ↔ RPA 18.2348 0.0513 Delete CIA1 236.2890 2.1111 Continue

3 e6 ↔ RPA 16.8420 0.0410 Delete UAA1 201.5922 2.3999 Continue

4 e11 ↔ e4 12.8278 0.0694 Delete RPA4 172.3445 2.4274 Cease

https://doi.org/10.3389/feduc.2025.1506415
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Xiong et al. 10.3389/feduc.2025.1506415

Frontiers in Education 07 frontiersin.org

otherwise, delete the observed indicators corresponding to the error 
variables that are more related to other variables. The model has been 
modified a total of four times, including establishing correlations 
between errors and deleting observed indicators. The final modified 
model chi-square is 188.4007, which is reduced by 258.1517 compared 
to the initial model.

The goodness-of-fit indices of Model C are shown in Table 9. The 
value of χ2/df is 2.2699, which falls within the range of 1 to 3. The 
values of TLI and CFI are 0.9444 and 0.9561, respectively, both higher 
than the criterion of 0.9. The value of SRMR is 0.0417, meeting the 
criterion of 0.05. The value of RMSEA is 0.0580, which satisfies the 
lenient criterion of 0.08. Except for one factor with an AVE of 0.4569, 
all other factors have values above 0.5, and the CR values of all factors 
are above 0.7. The model demonstrates good convergent validity and 
composite reliability. In conclusion, all the fit indices of the modified 
Model C meet the criteria for a well-fitting model.

The HTMT values of Model C are presented in Table 10. All the 
HTMT values are <0.85, indicating that there is a good degree of 
discriminant validity among the factors. Similarly, Model A also 
demonstrates good discriminant validity.

5 Discussion

5.1 The best way to modify the model is to 
delete the observed indicators

Through a detailed analysis of the modification process, frequency, 
and results mentioned above, it can be  observed that in the first 
modification, both Modification Method 1 and Modification Method 
3 used the approach of “deleting RPA2 corresponding to e2 to modify 
the model”. The chi-square value decreased from 446.5524  in the 
initial model to 302.9331, with a decrease of 143.6193. Modification 

Method 2, on the other hand, used the approach of “establishing a 
correlation between e3 and e2” in the first modification, resulting in a 
chi-square value decrease from 446.5524  in the initial model to 
370.7534, with a decrease of 75.799.

It can be seen that compared to the modification approach of 
“establishing correlations between variables,” the modification 
approach of “deleting observed indicators” leads to a greater decrease 
in the chi-square value. This is because the modification approach of 
“establishing correlations between variables” only addresses the issue 
of chi-square value inflation caused by the lack of correlation between 
two variables in the model, while the modification approach of 
“deleting observed indicators” addresses the issue of chi-square value 
inflation caused by the lack of correlation between multiple variables. 
For example, after “deleting RPA2 corresponding to e2,” the issue of 
chi-square value inflation caused by the lack of correlation between 
“e2” and “RPA2” in the model will also be resolved. Therefore, the 
modification approach of deleting observed indicators leads to a 
greater decrease in the chi-square value.

In terms of the number of modifications, Modification Method 1 
and Modification Method 3 were modified four times, while 
Modification Method 2 was modified six times. The final model’s 
chi-square value for Modification Method 1 was 172.3445, for 
Modification Method 2 was 261.5837, and for Modification Method 3 
was 180.4007. It can be observed that although Modification Method 
1 and Modification Method 3 have the same number of modifications, 
which is four times, the reduction in the chi-square value of the 
modification method that completely adopts “deleting observed 
variables” is much greater than that of the combination of “deleting 
observed indicators” and “establishing correlations between variables.” 
In addition, in terms of other goodness-of-fit indices, Modification 
Method 1 is also the best among the three modification 
methods overall.

5.2 Model modification is a process of 
sequential adjustment, dynamic change, 
and comprehensive judgment

The differences in each revision method can also lead to changes in 
subsequent revision methods. For example, in Revision Method 1 and 
Revision Method 3, the first revision involves “deleting RPA2 
corresponding to e2,” while their second revision involves “deleting CIA1 

TABLE 5 Operational procedure for modification method 2.

Number Variable M.I. Par change Operation χ2 χ2/df Assessment

1 e3 ↔ e2 44.5128 0.08330 Establishing the relevance between e3 and e2 370.7534 2.8965 Continue

2 e2 ↔ e1 37.3479 0.0809 Establishing the correlation between e2 and e1 330.6063 2.6032 Continue

3 e15 ↔ RPA 17.8558 0.0507 Establishing the relevance of e15 and RPA 310.7347 2.4662 Continue

4 e6 ↔ RPA 18.9960 0.0428 Establishing the relevance of e6 and RPA 288.5261 2.3082 Continue

5 e4 ↔ e11 13.5648 0.0717 Establishing the relevance of e4 and e11 274.0.5239 2.2140 Continue

6 e10 ↔ e11 12.5634 0.0615 Establishing the relevance of e10 and e11 261.5837 2.1267 Cease

TABLE 6 Goodness-of-fit indices for model B.

χ2 χ2/df TLI CFI SRMR RESEA AVE CR AIC BIC

261.5837 2.1267 0.9455 0.9562 0.0421 0.0547 0.4315 ~ 0.5144 0.7890 ~ 0.8407 357.5837 546.4586

TABLE 7 HTMT for model B.

RPA UAA AEA CIA

RPA

UAA 0.7395

AEA 0.5948 0.8190

CIA 0.5255 0.7655 0.8629
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TABLE 8 Operational procedure for modification method 3.

Number Variable M.I. Par change Operation χ2 χ2/df Assessment

1 e3 ↔ e2 44.5128 0.0833 Delete RPA2 302.9331 2.6808 Continue

2 e15 ↔ RPA 18.2348 0.0513 Delete CIA1 236.2890 2.4111 Continue

3 e6 ↔ RPA 16.8420 0.0410 Delete UAA1 288.5261 2.3999 Continue

4 e4 ↔ e11 12.8278 0.0694 Establishing the relevance of e4 and e11 188.4007 2.2699 Cease

TABLE 9 Goodness-of-fit indices for model C.

χ2 χ2/df TLI CFI SRMR RESEA AVE CR AIC BIC

188.4007 2.2699 0.9444 0.9561 0.0417 0.0580 0.4569 ~ 0.5374 0.7641 ~ 0.8227 262.4008 407.9918

TABLE 10 HTMT for model C.

RPA UAA AEA CIA

RPA

UAA 0.7506

AEA 0.6470 0.8320

CIA 0.4752 0.7177 0.8335

corresponding to e15.” Revision Method 2, on the other hand, revises the 
model by first establishing the correlation between e3 and e2, and then, 
in the second revision, establishing the correlation between e2 and e1. 
Therefore, it is best to revise one parameter at a time during model 
revision and decide the next revision method based on the revised results. 
The Mutual Information (MI) provided by the software is merely a 
mathematical result of association and equations, similar to χ2. MI is also 
influenced by the sample size, so model revision cannot rely solely on 
MI. In addition, the model fit index is an empirical judgment agreed upon 
by scholars. When to stop revising the model should not be determined 
only by the fit index but also requires researchers to examine the model’s 
significance from a professional and theoretical standpoint.

5.3 Model modification should be supported 
by theoretical evidence and cross validation 
should be conducted after the modification

When researchers adjust a model, they should carefully consider 
relevant theories and understand which modifications are feasible and 
which ones contradict assumptions, logic, and so on. It is crucial not to 
ignore the practical significance of the model itself. For example, the 
most commonly used and reasonable way to improve the goodness-
of-fit index in actual model adjustments is through modification 
method 1, which removes measurement indicators. On the other hand, 
modification method 2, which suggests establishing correlations 
between measurement errors, requires theoretical support. However, 
establishing correlations between measurement errors and factors 
contradicts assumptions and logic. Mathematically driven modification 
methods are not desirable as they may lead to a “data-driven” pitfall. 
Even if a highly fitting model is obtained in the end, it might lack value 
or meaning. Furthermore, while confirmatory factor analysis (CFA) 
originally aims to validate the quality of a model using collected sample 
data, model adjustments involve an ongoing exploration for the best 
model, thus deviating from the essence of CFA. Although the adjusted 
model may have a good fit with the sample data, it could significantly 

differ from the original hypothesized model. Therefore, some scholars 
suggest that it is necessary to cross-validate the model and use the 
cross-validity fit index to verify the model’s cross-validity (Browne and 
Cudeck, 1989). If the sample size is large, the sample data can 
be randomly divided into two subsets, one for exploring the model and 
the other for validating the model; if the sample is small, additional data 
can be collected for validation. In conclusion, separately estimating and 
correcting the measurement model is an important step in the “two-
step approach” to structural equation modeling, which should take into 
account the theory and content, residual matrix, factor loading 
coefficients, and other information to make a comprehensive judgment 
on the poorly fitted model by removing or adding indicators, and 
establishing correlations between errors, to ensure the model fit and 
interpretability (Anderson and Gerbing, 1988). Furthermore, if 
relatively large values appear in the modification indices of CFA 
regarding error correlations, it may indicate the presence of common 
method biases caused by factors such as the same data source, raters, or 
measurement environment. Statistical methods can be employed to test 
and control for common method biases. For instance, Harman’s single-
factor test can determine whether common method biases exist. If they 
do, the “latent method factor control” can be utilized, adding a method 
factor to explain variance and thus improve the model’s fit indices.
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