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A simulation study is designed to explore the accuracy of attribute parameter 
estimation in the crossed random effects linear logistic test model (CRELLTM) 
with the impact of Q-matrix misspecification on attribute parameter estimation 
using the SAS® GLIMMIX procedure with a scaling constraint on item parameter. 
In addition, the impact of the interactions of Q-matrix misspecification with other 
manipulated factors, such as population distribution, sample size, and Q-matrix 
density, on parameter estimation is also investigated. The results indicated that 
misspecification type and percent have a considerable impact on the bias and root 
mean squared error of attribute estimates, especially under the conditions of high 
percent misspecification and over-misspecification. However, attribute correlation 
between the estimated and true parameters is not affected by misspecification type 
and percent. Other manipulated variables have no impact or interaction effects 
with Q-matrix misspecifications on attribute estimates. Since the Q-matrix is an 
indispensable element in applying the crossed random effects linear logistic test 
model, specifying an appropriate Q-matrix is a crucial task and must be completed 
with generous assistance from content and subject experts.
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Introduction

One of the central concerns in educational assessment pertains to the validity of tests, 
specifically, whether they accurately measure what they are intended to assess (Chen, 2006, 
2012; Cronbach and Meehl, 1955). This issue applies to all types of tests, including standardized 
educational assessments and classroom teacher-made tests. Over the past several decades, 
significant progress has been made in understanding the cognitive processes involved in 
solving test items. Researchers have drawn upon principles from cognitive psychology to 
address challenges in educational assessment and to establish the theoretical foundations of 
construct validity associated with these tests (Chen, 2012; Ma and Green, 2017).

Psychometricians have leveraged cognitive psychology principles to develop 
psychometric models for educational assessment data. These models are known as skills-
based psychometric models (Stout, 2002) or, more recently, cognitive diagnostic models 
(CDMs) or diagnostic classification models (DCMs; Rupp et al., 2010). A common thread 
among these approaches is the integration of cognitive information within statistical 
models (Embretson and Reise, 2000; Embretson and Gorin, 2001). Specifically, these 
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psychometric models incorporate a design matrix (Fischer, 1973, 
1995), also called the Q-matrix (Tatsuoka, 2009), which explicitly 
represents the construct of interest and delineates the relationships 
between test items and underlying cognitive components.

Q-matrix in the linear logistic test model

Among skills-based psychometric models, the Linear Logistic Test 
Model (LLTM), proposed by Fischer (1973), stands out as one of the 
earliest mathematical frameworks to explicitly incorporate cognitive 
components (Stout, 2002). Before the LLTM, Scheiblechner (1972) 
introduced a two-step regression approach to explore how cognitive 
operations—necessary for solving test items—predict item difficulty 
estimates within the Rasch model. Building upon this foundation, 
Fischer (1972, 1973) directly decomposed item difficulty parameters 
into a linear combination of cognitive operations within the Rasch 
model formula. For a more detailed understanding of these 
decomposition processes, readers can refer to Kubinger (2008).

An essential feature of applying the LLTM involves identifying a 
comprehensive list of cognitive components relevant to the test tasks. 
Subsequently, the relationships between test tasks and these cognitive 
components are established prior to parameter estimation. The 
resulting product is called a design matrix (Fischer, 1973) or a 
Q-matrix (Tatsuoka, 2009), with dimensions I (number of items) × K 
(number of cognitive components). DiBello et al. (2007) asserted that 
the formulation of a Q-matrix within the LLTM represents a critical 
advancement. This development serves as a bridge, transitioning from 
unidimensional item response theory (IRT) models (such as the Rasch 
model) to comprehensive cognitive diagnostic models (CDMs). The 
Q-matrix can be a binary matrix where 1 s indicate the presence of 
cognitive components on particular items, otherwise 0 s. Identifying 
cognitive components and constructing a Q-matrix have been 
considered essential and challenging tasks (e.g., Baker, 1993; Chen 
et al., 2008; de la Torre, 2008; DiBello et al., 2007; Rupp et al., 2010; 
Ma and Green, 2017).

Formulations of the LLTM with the 
crossed-random effect

The LLTM is considered an extension of the Rasch model because 
the mathematical equation of the LLTM can be expanded directly 
from the Rasch model (e.g., Chen et al., 2011; Effatpanah and Baghaei, 
2021; Hartig et al., 2012) and all the features of the Rasch model (e.g., 
one-parameter model, specific objectivity, sufficient statistic, 
parameter separability; Effatpanah and Baghaei, 2021) can be applied 
to the LLTM as well. The mathematical equation of the Rasch model 
is presented as follows:
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where P(Xip = 1) represents the probability of the correct response 
to item i for person p, θp is the ability level of person p, and βi is the 
item difficulty of item i. In the LLTM, a linear combination of cognitive 
components replaces item difficulty, βi, βj, of the Rasch model. In other 

words, the item parameters of the Rasch model are replaced by a 
product of cognitive components and their weights (i.e., entries in a 
Q-matrix), which can be conceptualized as
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where qik, an entry in a Q-matrix, is the fixed and predetermined 
weight assigned to cognitive component k that is involved in item I, ηk 
is the estimated parameter for cognitive component k, and c is the 
normalizing constant and is simply defined as the mean of the βi 
estimates under the Rasch model. Thus, the mathematical equation of 
the LLTM is presented as follows:
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A well-known assumption behind the LLTM is that the variance 
of item difficulties is explained completely by cognitive components 
(i.e., ˆi iβ β= ). This assumption does not consider the fact that sampling 
items from an item population results in item sampling variance (De 
Boeck, 2008). In applications, the LLTM assumption leads to the same 
item difficulty estimates for the items requiring the same cognitive 
components and weights. This may not always be true. Thus, this can 
be considered a disadvantage of applying the LLTM to decompose 
item difficulty into cognitive components (e.g., Hartig et al., 2012; 
Janssen et al., 2004). To overcome the disadvantage of the LLTM, 
Janssen et al. (2003, 2004) proposed the crossed random-effects linear 
logistic test model (CRELLTM), just like in a regular regression model, 
by adding the error term on item difficulty to relax the assumption of 
the LLTM as the equation below where iε  is an error term with a 
normal distribution, ( )20, .i N εε σ≈

 1
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k
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Using the SAS GLIMMIX procedure for the 
CRELLTM

In SAS, the NLMIXED procedure, which fits NonLinear 
MIXED models (SAS Institute Inc, 2015), has been widely used to 
formulate diverse item response theory (IRT) models due to its 
availability of software and modeling flexibility (De Boeck and 
Wilson, 2004; Sheu et al., 2005; Wang and Jin, 2010). However, the 
SAS NLMIXED procedure cannot be applied in this study because 
the CRELLTM requires random effects for person ability and item 
difficulty simultaneously, which is referred to as crossed random 
effects (De Boeck and Wilson, 2004). Instead, the GLIMMIX 

https://doi.org/10.3389/feduc.2025.1506674
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Chen et al. 10.3389/feduc.2025.1506674

Frontiers in Education 03 frontiersin.org

procedure in SAS is suitable for models with crossed random effects 
(Wang and Jin, 2010). Historically, the GLIMMIX procedure was 
available as a SAS macro add-on product in SAS 9.1. In SAS 9.3, it 
became an individual package with significant improvements (Li 
et al., 2013; Tan et al., 2011). Like the NLMIXED procedure, the 
GLIMMIX procedure performs estimation and statistical inference 
for Generalized LInear MIXed Models, extending the class of 
Generalized Linear Models (GLM) by incorporating normally 
distributed random effects (SAS Institute Inc, 2015). Although the 
GLIMMIX procedure has been applied to formulate IRT-related 
models (e.g., Rasch models or linear logistic test models), only a few 
studies have examined its efficiency in parameter recovery (e.g., 
Black and Butler, 2012; MacDonald, 2014).

Using generalized linear or nonlinear models for the formulation of 
IRT models, such as the CRELLTM, there are the three required 
specifications, including (1) the random or distribution component, (2) 
the systematic component, and (3) the link component (De Boeck and 
Wilson, 2004; Wang and Jin, 2010). The random or distribution 
component specifies the distribution of the data. For dichotomous or 
binary data, it is appropriate to assign the Bernoulli or binary distribution. 
The Bernoulli distribution is one of the exponential distributions. The 
distribution component describes the relation between the distribution 
of the data (Yip) and the expected value of the distribution (μip), which is 
the probability of the correct response (Pip) for dichotomous data. The 
systematic component defines a linear or nonlinear function of the 
predictors for persons and items, denoted ηip. The equation of the 
systematic component for the CRELLTM is shown below.
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The Rasch-based model’s scaling constraint can be applied to 
either the item or person parameter to ensure the identifiability 
of the model. The scaling constraint for the CRELLTM in this 
study is to set 0 for the mean of item parameters (i.e., difficulty 
estimates) and, therefore, the person parameters (i.e., ability 
estimates) freely estimated. This is a common practice in Rasch 
modeling with some advantages. First, a constraint on item 
parameters is easy to model with SAS. In the SAS GLIMMIX 
procedure, when fitting a Rasch-based model, the default setting 
for the scaling constraint is applied to the item estimates (i.e., 
difficulty) to be 0 (Pan and Chen, 2019), which means an easy-
to-use procedure (Black and Butler, 2012). Furthermore, by 
constraining the item parameter, comparisons between individuals 
remain independent of the specific items used, which is a 
fundamental principle of Rasch models named specific objectivity 
(Feuerstahler and Wilson, 2019), and item parameters are more 
stable and interpretable across different samples or contexts 
(Brandt, 2008; Feuerstahler and Wilson, 2019). Conversely, 
imposing a constraint on the person parameter complicates the 
estimation process and may result in biased estimates, particularly 
in small sample sizes (Hoijtink and Boomsma, 1995).

The link component connects the expected value of the data to ηip, 
which is the systematic, nonlinear function for the CRELLTM. The 

logit link function is more commonly used than the probit link 
function for IRT models. The link function of the CRELLTM can 
be presented as follows:
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By conducting mathematical transformation, the probability of 
correct response based on ability level, cognitive component, and 
Q-matrix for the CRELLTM can be  expressed below, and all the 
notations can be found in the previous paragraphs.
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There are two categories of estimation methods under the 
GLIMMIX procedure: (1) pseudo-likelihood under linearization and 
(2) maximum likelihood with Laplace approximation 
(METHOD = LAPLACE) or adaptive quadrature 
(METHOD = QUAD). Pseudo-likelihood estimation methods yield 
biased estimates for non-normal data with small sample sizes. 
Maximum likelihood estimation with Laplace integral approximation 
seems to be an appropriate estimation method for the CRELLTM 
because the CRELLTM is a random-person random-item model that 
does not require the fixed effect (R-side effect in SAS) in parameter 
estimation processes. Please refer to the SAS User’s Guide (2015) for 
detailed information on these estimation methods.

The following is the SAS code of the CRELLTM to obtain cognitive 
attribute estimates using the SAS GLIMMIX procedure. In the code, 
resp1 represents an item response, which is the dependent variable, 

and there are four cognitive components, a1 to a4, as predictors.

Research purpose, questions, and scope of 
this study

In the context of utilizing the LLTM or CRELLTM, it is crucial to 
identify well-defined cognitive attributes (or task characteristics) and 
establish the appropriate relationships between test tasks (e.g., test 
questions) and cognitive attributes, which is the Q-matrix (Tatsuoka, 
2009) in addition to determining the psychometric model for the 
probability of the correct response. For the LLTM without random 
effects, studies have examined if the model provides accurate 

PROC GLIMMIX data = longformat method = laplace;
CLASS item person;
 MODEL resp1 (descending) = a1 a2 a3 a4/s noint link = logit 
dist = binary error = binomial;
RANDOM int. / subject = person s;
RANDOM int. / subject = item s;

run;
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parameter estimates for cognitive attributes (e.g., Cassuto, 1996; Green 
and Smith, 1987; MacDonald, 2014) and if the model is sensitive to 
misspecification of the Q-matrix (e.g., Baker, 1993). For the LLTM 
with random item effects, its sensitivity to misspecification of the 
Q-matrix has not been examined yet, to our knowledge, at least using 
the SAS GLIMMIX procedure as an estimation tool.

Based on the aforementioned rationale, a series of simulations 
were conducted in this study to explore the effects of Q-matrix 
misspecification on parameter estimation in the LLTM model with 
random item effects. The SAS GLIMMIX procedure was utilized to 
estimate the parameters of cognitive attributes. Q-matrix 
misspecification involves misspecification percent (i.e., 2.4, 4.8, and 
9.6%) and misspecification type (i.e., over-, under-, and balanced-
misspecifications). In addition, the impact of population distribution, 
sample size, and Q-matrix density with Q-matrix misspecification on 
parameter estimation was also explored.

The following specific research questions were explored in this 
study: (a) how do the type and percent of Q-matrix misspecification 
affect parameter estimation? And (b) are the effects of Q-matrix 
misspecification (i.e., type and percent) on parameter estimation 
different across various populations, sample sizes, and 
Q-matrix densities?

This research has a limited scope based on the nature of the 
CRELLTM model. First, only the recovery of the cognitive attribute 
parameters is examined, as the cognitive attribute parameter is the 
focus of the CRELLTM model. Second, the aggregate means of all 
cognitive attributes under diverse simulation conditions are 
investigated as outcome variables instead of individual attribute 
means. Third, the Rasch-type model is applied, which sets item 
discrimination to 1 and item guessing to 0 because the CRELLTM is 
an extension of the Rasch model.

Methods

Data generation

Datasets were simulated based on the LLTM model with random 
item effects using the SAS/IML package. The population distributions 
included normal (skewness = 0, kurtosis = 0), negatively-skewed 
(skewness = −0.5, kurtosis = 3), and positively-skewed 
(skewness = 0.5, kurtosis = 3) distributions. Person parameter 
estimates in the CRELLTM were assumed to be normally distributed 
with the mean freely estimated. However, we  were interested in 
exploring whether the positively or negatively skewed population 
distributions affect the estimates of cognitive attributes. A skewness of 
0.5 or − 0.5 is noticeable but not an extreme deviation from the 
symmetry, which may occur in educational data (Cassuto, 1996; 
MacDonald, 2014). Unlike specified attribute parameters, the ability 
parameters were generated based on Fleishman’s (1978) method. The 
ability parameter recovery was not the focus of this brief report.

Sample size is an essential factor in research related to the 
Q-matrix (e.g., Baker, 1993; Cassuto, 1996; MacDonald, 2014). In this 
study, we chose 50, 250, and 1,000 sample sizes to represent small, 
moderate, and large samples in the Rasch model context (Baker, 
1993). The percentages of misspecification in the Q-matrix were 2.4% 
(4 out of 168 entries), 4.8% (8 entries), and 9.6% (16 entries). 
We considered these proportions minor, moderate, and significant 

levels of misspecifications. These proportions were similar to those in 
Baker (1993) study. Bake considered 1, 2, and 3% the lower levels and 
5, 7.5, and 10% the higher levels. In Rupp and Templin’s (2008) study, 
which was based on the design of misspecifications for blocks of items, 
had a similar range from 1.66% (1 out of 60) to 10% (6 out of 60) 
except 23.33% (14 out of 60) for the balanced misspecification.

Like Rupp and Templin’s (2008) study, there were three types of 
misspecifications, including over-misspecification (0 s → 1 s), under-
misspecification (1 s → 0 s), and balanced-misspecification (0 s → 1 s 
and 1 s → 0 s). For each condition, 1,000 replications were generated. 
Parameters in the LLTM with random item effects were estimated by 
applying the SAS GLIMMIX procedure. The parameters of interest in 
this study were the estimates of cognitive attributes.

Q-matrices

As for attribute parameters, there were two sets of specified 
attribute parameters for spare and dense Q-matrices in Baker’s (1993) 
study. However, we only used the attribute parameters for the spare 
Q-matrix in Bakers’ study as the true attribute parameters in this study 
to simplify manipulated design factors. The true cognitive attribute 
parameters for both sparse and dense Q-matrices, therefore, were 
η1 = 2.152, η2 = 1.229, η3 = −0.468, η4 = 1.907, η5 = 1.051, η6 = 0.086, 
η7 = 0.141, and η8 = −0.474.

We adopted the sparse and dense Q-matrices in Baker’s 
(1993) study, which were initially extracted from Fischer’s (1972) 
and Medina-Diaz’s (1993) studies. In the Q-matrix, 21 items with 
8 cognitive attributes were involved. The sparse Q-matrix had 
only 48 out of 168 entries that contained 1 s (approximately 30% 
1 s), whereas the dense Q-matrix had 96 out of 168 entries that 
contained 1 s (approximately 60% 1 s). These two Q-matrices 
represented the true Q-matrices. Misspecified entries in the 
Q-matrix were randomly assigned using SAS based on design 
factors of misspecification percent and type mentioned in the 
previous paragraph. For instance, under the 2.4% (4 out of 168) 
under-misspecified Q-matrix, the SAS program was designed to 
randomly change four entries in the true Q-matrix from 1 s to 0 s. 
There were two reasons for randomly assigning misspecifications 
in the Q-matrics instead of specifically designing 
misspecifications, as in Rupp and Templin’s (2008) study. First, 
we were interested in the overall effects of misspecification type 
and misspecification percent. Second, Rupp and Templin (2008) 
reported the overall effects of misspecification type without 
considering specific designs on misspecification, indicating no 
effect on specific designs.

Evaluation criteria

Three decision criteria were used to assess the sensitivity of the 
CRELLTM to Q-matrix misspecification, including bias, root mean 
square error (RMSE), and correlation. The estimation bias was 
computed as the average difference between the estimated and true 
parameters. The formula for estimation bias for cognitive attributes is 
as follows:
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The RMSE is the square root of the average squared difference 
between the estimated and true parameters and was used to detect the 
magnitude of estimation error. The RMSE formula is as follows:
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Person product–moment correlation was used to detect the 
consistency between the estimated and true sets of parameters. A high 
correlation coefficient indicates that the estimated parameters are 
consistent with the true parameters. Finally, factorial ANOVA analyses 
with the generalized eta-squared effect size were used to examine what 
manipulated factors affect bias, RMSE, and correlation. Cohen’s 
moderate effect size of 0.0588 (Cohen, 1988) was applied as the 
practical significant level.

Results

To explore the effects of Q-matrix misspecification, including type 
and percent on parameter estimation of cognitive attributes, the 
boxplots that describe the distribution of bias, RMSE, and correlation 
for Q-matrix misspecification type and percent were examined. In 
addition, the eta-squared effect sizes (η2) of the main effects and the 
first-level interactions with Q-matrix misspecification that were 
associated with manipulated factors in this study (i.e., sample size, 

population shape, and Q-matrix density) were computed. A graph of 
the significant interaction effect was shown as well.

Estimated bias

The results of factorial ANOVA analyses with generalized 
eta-squared effect sizes for estimated bias indicated that the main 
effect of misspecification types (η2 = 0.3064) and the interaction 
between type and percent of misspecification (η2 = 0.0743) were 
significantly associated with the bias of cognitive attribute estimation 
using the 0.0588 as the practical significant level. The main effect of 
misspecification percent (η2 = 0.0014) did not emerge as a significant 
impact on estimated bias. Population shape, Q-matrix density, and 
sample size did not show an interactive impact with Q-matrix 
misspecification (i.e., type and percent) on estimated bias either.

The most significant impact of manipulated factors on the 
estimated bias of cognitive attributes was misspecification type 
involving under-misspecification, over-misspecification, and balanced 
misspecification. The distributions of the estimated bias are shown in 
Figure  1. As shown in Figure  1, the average estimated bias 
(Mean = −0.0131) for the true Q-matrix was negligible and close to 0. 
When the Q-matrix was under-misspecified, parameter estimates 
seemed to yield positive bias (Mean = 0.0607); that is, cognitive 
attribute parameters were slightly over-estimated when the Q-matrix 
was misspecified from 1 s to 0 s. In contrast, there was a larger negative 
bias (Mean = −0.1180) when the Q-matrix was over-misspecified (i.e., 
from 0 s to 1 s) compared to the under-misspecified Q-matrix. In 
other words, cognitive attribute parameters tended to 
be  underestimated when there were many Q-matrix entries 
misspecified from 0 s to 1 s. As for the balanced-misspecified 
Q-matrix, there was a very small negative bias (Mean = −0.0348). The 

FIGURE 1

Distributions of estimated bias for cognitive attributes by misspecification type.
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standard deviations of estimated bias for three types of 
misspecifications and no misspecification were similar, approximately 
equal to 0.10.

The means for 0, 2.4, 4.8, and 9.6% of the Q-matrix entry 
misspecification are −0.013, −0.026, −0.028, and − 0.038, 
respectively with the standard deviations of 0.103, 0.108, 0.119, and 
0.155, respectively. Estimated bias slightly increased as the 
misspecification percent increased, but the mean bias differences 
among different percentages of misspecification were negligible, as 
evident in the reported eta-squared effect size (η2 = 0.0014). 
However, misspecification type and percent had a significant 
interaction effect on the estimated bias (η2 = 0.0743). As shown in 
Figure 2, the over-misspecification increased bias in the negative 
direction as the misspecification percentage increased. The under-
misspecification also increased bias but in the positive direction as 
the misspecification rate increased. Compared to the over-
misspecification, the increases in bias for the under-misspecification 
were slightly less. Interestingly, as the misspecification rate increased, 
the balanced misspecification yielded slightly increased estimated 
bias in a negative direction.

Root mean square error (RMSE)

The eta-squared effect sizes of misspecification factors and 
interactions with other manipulated factors (i.e., sample size, 
population shape, and Q-matrix density) for RMSE indicated that the 
main effects of misspecification percent (η2 = 0.193) and type 
(η2 = 0.158) were highly associated with RMSE of attribute estimates. 
Misspecification factors did not show interactions with other 
manipulated factors regarding estimated RMSE. That is, these other 
factors (i.e., sample size, population shape, and Q-matrix density) did 

not affect the impact of Q-matrix misspecification on RMSE of 
attribute estimates.

Figure 3 displays the distributions of RMSE for cognitive attribute 
by misspecification percent. The graph showed that the RMSE 
significantly increased when the percentage of misspecification 
increased. The RMSE means for 0, 2.4, 4.8, and 9.6% of misspecification 
in the Q-matrix were 0.54, 0.66, 0.75, and 0.85, respectively. Figure 4 
presents the distributions of RMSE for cognitive attribute by 
misspecification type. The RMSE means for none, under, over, and 
balanced misspecifications of the Q-matrix were 0.54, 0.77, 0.73, and 
0.76, respectively. Larger RMSEs were yielded by three types of 
misspecifications, compared to no misspecification. However, there 
seemed to be no differences among the means of RMSE for the three 
types of misspecifications.

Correlation between estimated and true 
attribute parameters

Unlike bias and RMSE of attribute parameter estimates, 
misspecification factors (i.e., percent and type) showed a small impact 
on attribute correlations between estimated and true attribute 
parameters (η2 = 0.0131 and 0.0066, respectively). The effects of 
interactions between misspecification factors and manipulated factors 
on attribute correlation did not reach the cutoff value of the 
eta-squared effect size (i.e., all η2 values < 0.0588).

The mean correlations for 0, 2.4, 4.8, and 9.6% of the Q-matrix 
misspecification were 0.86, 0.87, 0.88, and 0.89, respectively, 
indicating no effects of misspecification percent on attribute 
correlations. Similarly, the mean correlations for zero, under, over, 
and balanced misspecifications were 0.86, 0.88, 0.89, and 0.88, 
respectively.

FIGURE 2

Mean estimated bias by misspecification type and percent.
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Discussion

The linear logistic test model, one of the explanatory item 
response models, is a well-known method for estimating cognitive 
attribute parameters with the purpose of decomposing item difficulty. 
As Embretson and Daniel (2008) and other researchers (e.g., Baghaei 
and Kubinger, 2015; Chen et  al., 2011) indicated, it offers several 

advantages in educational measurement. First, the LLTM enables 
researchers to empirically test hypotheses about required knowledge, 
skills, and abilities (KSAs; Chen et al., 2008) for solving test items, 
which explicates the construct representation of test items (Embretson 
and Reise, 2000). For instance, Yuan and Engelhard (2023) applied the 
LLTM to investigate cognitive complexity and linguistic cohesion in 
science items. Second, the LLTM can be used to explore the features 

FIGURE 3

Distributions of RMSE for cognitive attribute by misspecification percent.

FIGURE 4

Distributions of RMSE for cognitive attribute by misspecification type.
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of the required KSAs so these KSAS can be manipulated for item 
development, test design, and item bank construction, which means 
providing a basic foundation for item generation, test design, and item 
bank (Hornke and Habon, 1986).

The LLTM with random item effects, also known as the crossed 
random effects LLTM or CRELLTM, has been developed to address a 
limitation of the LLTM: the assumption that the variances of item 
difficulty are entirely explained by cognitive attributes (Rijmen and De 
Boeck, 2002). However, the sensitivity of this model to the 
misspecification of the Q-matrix in terms of cognitive attribute 
estimates using the SAS GLIMMIX procedure has not yet been 
examined. This study aimed to provide practitioners and researchers 
with insight into the CRELLTM model and the utility of the SAS 
GLIMMIX procedure.

The results indicated that, without Q-matrix misspecifications, 
cognitive attributes of the CRELLTM can be estimated precisely with 
the SAS GLIMMIX procedure, as evidenced by a mean bias close to 0 
and a high correlation between the estimated and true cognitive 
parameters. However, as the percentage of misspecification in the 
Q-matrix increased, the impacts on attribute estimate RMSE increased 
substantially. In this study, the magnitude of the RMSE in attribute 
estimates dramatically increased with higher misspecification 
percentages in the Q-matrix. Compared to the condition of no 
misspecification, the over-, under-, and balanced-misspecifications 
had substantial increases in RMSE. This finding is consistent with 
other relevant studies (e.g., Baker, 1993; Cassuto, 1996; Green and 
Smith, 1987; MacDonald, 2014), which found that cognitive attribute 
parameters are sensitive to Q-matrix misspecifications, even with 
lower-level misspecifications (e.g., 3% or less; Baker, 1993). This 
consistent finding underscores the importance of accurate Q-matrix 
specification in attribute parameter estimation. As for misspecification 
type, there were no differences in RMSE’s magnitude between the 
three types of misspecifications (i.e., all RMSEs were around 0.75).

Interestingly, this study found an interaction effect on bias 
between misspecification type and misspecification percent, indicating 
that different types of misspecification yielded bias differently. 
Specifically, with an over-misspecified Q-matrix (i.e., 0 s were 
misspecified as 1 s), attribute parameters tended to be underestimated. 
Conversely, attributes were overestimated with an under-misspecified 
Q-matrix (i.e., 1 s were misspecified as 0 s). Furthermore, as the 
percentage of misspecification increased, over-misspecifications 
resulted in slightly higher bias compared to under-misspecifications. 
In the case of balanced misspecification (i.e., some 1 s were 
misspecified as 0 s and an equal number of 0 s as 1 s), attribute 
estimated bias slightly increased negatively as the misspecification 
percentage increased. This may be due to the balancing effect of over- 
and under-misspecifications. Since over-misspecification had a 
slightly larger impact than under-misspecification, the balanced 
misspecification of the Q-matrix resulted in a small, negative bias. This 
interesting finding has not been reported in existing studies.

Regarding attribute estimate correlation between estimated and 
true parameters, misspecification factors had no impact on it. In other 
words, regardless of different types or percentages of misspecification 
in the Q-matrix, the attribute estimates and the corresponding true 
parameters were highly consistent, which means that the relative 
difficulties (or sample estimates’ order) for cognitive attributes were 
consistent with the true attribute difficulties (or population 
parameters’ order).

We also investigated other manipulated factors (i.e., sample size, 
Q-matrix density, and population distribution) in this study, and all 
these factors showed no impact on RMSE, bias, or correlation. These 
findings may or may not be in line with other studies. Baker (1993) 
found that a dense Q-matrix with misspecifications yielded RMSE for 
attribute parameter estimates that were approximately half as large as 
those obtained with a sparse Q-matrix. Furthermore, as the sample 
size increased, the RMSE decreased for the dense Q-matrix in almost 
all conditions. Cassuto (1996) found that with larger samples or 
orthogonal-dense Q-matrix, attribute parameter estimates had smaller 
RMSE magnitudes and higher correlations. Green and Smith (1987) 
and MacDonald (2014) indicated that as long as there are large enough 
samples, the LLTM appears robust to Q-matrix misspecifications. In 
MacDonald’s (2014) study, some findings align with the findings in 
this study. He concluded that the LLTM is robust to the density of the 
Q-matrix and to the ability distributions with minor skewness.

Conclusions and implications

The Q-matrix is an indispensable element in applying 
CRELLTM. Exploring the quality of the Q-matrix and the impact of 
misspecifications is crucial. Generally speaking, this simulation study 
suggests that misspecification type and percent do have a 
considerable impact on the bias and RMSE of attribute estimates in 
the crossed random effects LLTM using the SAS GLIMMIX 
procedure, especially under the conditions of high percent 
misspecification and over-misspecification. Fortunately, the attribute 
correlation between the estimated and true parameters is not affected 
by misspecification type and misspecification percent. Other factors, 
such as sample size, the density of the Q-matrix, and ability 
distribution, do not impact attribute parameter estimation. Overall, 
this study contributes to the growing body of literature on Q-matrix 
misspecification, offering valuable insights and practical 
recommendations for improving the accuracy and reliability of 
attribute parameter estimates.

Based on the findings from this study and other relevant studies, 
there are several important and practical implications. First, this study 
and others show that cognitive attribute parameters are highly 
sensitive to Q-matrix misspecifications and highlight the critical need 
for precise and accurate Q-matrix specification. Even a few 
misspecifications in the Q-matrix can lead to significant impacts on 
attribute estimates. For researchers and practitioners, these findings 
emphasize the necessity of rigorous validation and careful construction 
of the Q-matrix. Ensuring the accuracy of the Q-matrix can lead to 
more reliable and valid interpretations of students’ cognitive attributes, 
ultimately improving the quality of educational assessments.

Second, this study indicates that different types of misspecifications 
(e.g., over- and under-misspecifications) affect attribute estimates 
differently. This highlights the need for careful consideration of the 
potential type of misspecification when interpreting cognitive attribute 
parameters. Furthermore, the finding that all types of misspecifications 
resulted in similar RMSE magnitudes suggests that the type of 
misspecification may not be as critical as the presence of misspecification 
itself. This implies that efforts should focus on reducing overall 
misspecification rather than prioritizing one type over another.

Third, the LLTM with random item effects might be preferred 
over the LLTM without random effects. Incorporating random effects 
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allows for modeling item-specific variations not explained by the 
cognitive attributes alone, leading to more accurate and realistic 
parameter estimates by accounting for the inherent variability in item 
difficulties (Kim and Wilson, 2020). For example, this study found 
that the LLTM with random item effects provided a nuanced 
understanding of bias and RMSE (e.g., the significant interaction 
effect on bias, uniform RMSE for misspecification type), which have 
not been captured by models without random effects (e.g., Baker, 
1993; Cassuto, 1996; MacDonald, 2014). Additionally, this study 
indicates that using the SAS GLIMMIX procedure with a scaling 
constraint on item parameters to implement the CRELLTM can make 
the model robust to Q-matrix misspecifications with variations in 
sample size, Q-matrix density, and minor skewed ability distribution. 
This further demonstrates the advantages and strengths of the 
CRELLTM and the feasibility of the SAS GLIMMIX procedure.

Overall, these implications highlight the importance of precision 
and careful consideration in the specification of Q-matrices when 
applying CRELLTM. They also provide valuable guidance for practical 
applications in the field of educational testing.

Limitations and future research directions

This study includes several fixed variables, such as the number of 
items, attributes, and correlations among cognitive attributes. These 
variables are often manipulated in other relevant studies (e.g., Baker, 
1993; Cassuto, 1996; Green and Smith, 1987; MacDonald, 2014). 
Some manipulated variables in this study have limited levels. For 
example, only two minor skewed ability distributions and randomly 
assigned misspecifications. These factors form the limitations of this 
study. Future research can expand the research design to investigate 
the impact of Q-matrix misspecifications on the CRELLTM model 
more thoroughly. First, future research should explore a wider range 
of misspecification patterns, including more complex combinations 
of under- and over-misspecification and well-designed 
misspecification patterns (Rupp and Templin, 2008). This will provide 
a more comprehensive understanding of how different types of 
misspecifications affect attribute parameter estimates (Baghaei and 
Ravand, 2015). Second, future research should design various 
Q-matrix conditions with different numbers of items and attributes 
and correlations among attributes. For instance, Cassuto’s (1996) and 
Green and Smith’s (1987) studies indicate different impacts of 
misspecifications on orthogonal and correlated Q-matrics. Third, 
future research should investigate the impact of more extreme 
skewness levels on parameter estimates to better understand how 
these distributions affect the influence of misspecifications on 
attribute parameter estimation in diverse educational settings (Lee 
and Park, 2018). Fourth, future research should apply the LLTM with 
random item effects to real-world educational data to validate the 
findings from simulation studies. This will help assess the practical 
applicability and robustness of the model in real assessment contexts 
(Krell et al., 2021).

Finally, the outcome variable in this study focused on attribute 
parameters. As seen in other studies (e.g., Cassuto, 1996; MacDonald, 
2014), Future research can also investigate item difficulty and ability 
parameter recovery with the influence of Q-matrix misspecifications. 
This study applied the LLTM with random item effects for binary data. 
Future research can use the same research design and apply the same 

measurement model for polytomous data (e.g., Kim and Wilson, 
2020). The CRELLTM is an extension of the Rasch model. Future 
research can explore the effects of item discrimination and guessing 
with Q-matrix misspecifications on cognitive attribute estimation 
using the CRELLTM.
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