
TYPE Review
PUBLISHED 28 March 2025
DOI 10.3389/feduc.2025.1525917

OPEN ACCESS

EDITED BY

Chayanika Uniyal,
University of Delhi, India

REVIEWED BY

Mohammed F. Farghally,
Virginia Tech, United States
Yasheshwar Yasheshwar,
University of Delhi, India
Nidhi Kesari,
University of Delhi, India

*CORRESPONDENCE

Cristian Vidal-Silva
cristian.vidal.silva@edu.udla.cl

RECEIVED 10 November 2024
ACCEPTED 10 March 2025
PUBLISHED 28 March 2025

CITATION

Vinueza-Morales M, Rodas-Silva J,
Vidal-Silva C, Córdova-Morán J and
Cevallos-Ayón E (2025) Teaching
programming in higher education: a
bibliometric analysis of trends, technologies,
and pedagogical approaches.
Front. Educ. 10:1525917.
doi: 10.3389/feduc.2025.1525917

COPYRIGHT

© 2025 Vinueza-Morales, Rodas-Silva,
Vidal-Silva, Córdova-Morán and
Cevallos-Ayón. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Teaching programming in higher
education: a bibliometric analysis
of trends, technologies, and
pedagogical approaches

Mariuxi Vinueza-Morales1, Jorge Rodas-Silva2,
Cristian Vidal-Silva3*, Jorge Córdova-Morán1 and
Edwin Cevallos-Ayón1

1Faculty of Sciences and Engineering, Universidad Estatal de Milagro, Milagro, Ecuador, 2Innovation in
Academic Processes, SofTech Research Group, Universidad Estatal de Milagro, Milagro, Ecuador,
3Facultad de Ingeniería y Negocios, Universidad de Las Américas, Santiago, Chile

The continuous evolution of digital technologies has significantly reshaped
the landscape of higher education, particularly in programming instruction. As
programming skills become increasingly essential across multiple disciplines,
analyzing the research trends, key contributors, and institutional impact on
programming education is crucial. This study presents a bibliometric analysis
to identify influential research works, leading authors, and major institutions
that have shaped this field over the years. By systematically examining scholarly
publications, this study explores the most recurrent pedagogical approaches,
the role of emerging technologies, and the methodological frameworks used to
assess programming competencies. Additionally, it highlights prevailing research
trends, knowledge gaps, and future directions for improving programming
education in higher education institutions. The findings of this work will support
educators, curriculum designers, and policymakers in refining instructional
strategies, fostering innovative learning environments, and aligning academic
programs with industry demands.

KEYWORDS

programming education, bibliometric analysis, higher education, pedagogical

strategies, emerging technologies, curriculum development, research trends

1 Introduction

The rapid evolution of technology has significantly reshaped various domains,

including higher education (Froyd et al., 2012). One of the most crucial aspects of this

transformation is the teaching and learning of programming, which has become an

integral component of computer science curricula (Paiva et al., 2022). Understanding

how students acquire programming competencies and identifying the factors influencing

their success are critical concerns for educators and researchers. Numerous studies

have explored diverse pedagogical approaches, assessment methodologies, and challenges

associated with programming instruction (Medeiros et al., 2019). However, a consolidated

understanding of these approaches’ evolution, effectiveness, and future directions

remains underdeveloped.

Frontiers in Education 01 frontiersin.org

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2025.1525917
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2025.1525917&domain=pdf&date_stamp=2025-03-28
mailto:cristian.vidal.silva@edu.udla.cl
https://doi.org/10.3389/feduc.2025.1525917
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feduc.2025.1525917/full
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Vinueza-Morales et al. 10.3389/feduc.2025.1525917

Programming education has experienced significant growth

in recent years, with a surge of research examining innovative

teaching strategies. Despite this expansion, gaps persist in

consolidating insights on how programming education has

evolved, which methodologies yield the highest impact, and where

research efforts should be concentrated. This study aims to bridge

these gaps through a bibliometric analysis identifying key trends,

influential contributors, and emerging pedagogical methodologies.

In the digital era, programming has emerged as a fundamental

competency across multiple disciplines, particularly within

Science, Technology, Engineering, and Mathematics (STEM)

fields (Abichandani et al., 2022). Traditionally, programming

education was confined to technical and engineering domains;

however, its role has expanded across diverse academic fields,

recognizing its value not only as a technical skill but also as a

means of fostering critical thinking and problem-solving abilities

(González-Sanmamed et al., 2018; Jiménez-Toledo et al., 2019).

Acquiring proficiency in programming extends beyond syntax

and data structures—it requires logical reasoning, computational

thinking, and adaptability to new paradigms (Lin et al., 2022).

1.1 Pedagogical approaches in
programming education

Programming education relies on more than knowledge

transmission; it fosters a computational mindset, enhances

logical reasoning, and equips students with problem-solving

strategies (Compañ-Rosique et al., 2015). As technology advances,

programming education must continuously evolve to align

with industry demands and student needs, ensuring long-term

educational impact (Adamopoulos, 2020). Bloom’s taxonomy

provides a hierarchical framework for categorizing learning

objectives and guiding instructional strategies in programming

education (Masapanta-Carrion and Velázquez-Iturbide, 2018;

Bloom, 1956). Additionally, research highlights the effectiveness of

project-based learning (PBL) and pair programming in fostering

collaboration, critical thinking, and real-world problem-solving

skills (Younis et al., 2021; Shin et al., 2021).

Adaptability is a fundamental skill in programming, as

languages, tools, and methodologies are constantly evolving

(Merelli et al., 2016). Effective programming instruction must,

therefore, emphasize autonomy and adaptability, equipping

students with self-learning strategies, curiosity for emerging

technologies, and resilience in overcoming challenges (Cheng et al.,

2021; Vesin et al., 2018). Adaptive learning frameworks foster

creative problem-solving and logical reasoning, preparing students

for a rapidly changing technological landscape (Qadir et al., 2020).

1.2 Need for a bibliometric analysis

The extensive research on programming education underscores

the growing recognition of its importance in academic and

professional settings (Thuné and Eckerdal, 2018). Scholars,

educators, and practitioners have contributed many studies,

theories, and methodologies, shaping our understanding of

effective teaching practices (Xie et al., 2019; Silva et al., 2020;

Liargkovas et al., 2022; Yusuf and Noor, 2023). However, the sheer

volume of publications and the fast pace of new developmentsmake

it challenging to stay informed about the most impactful trends

and innovations.

The rapid proliferation of research in programming education

necessitates a structured approach to identify effective teaching

strategies, assess their impact, and map the intellectual landscape

of the field (Cheah, 2020). This study seeks to provide a

bibliometric analysis that examines publication trends, identifies

the most cited sources, maps academic collaboration networks,

and highlights key contributors to programming education at

the higher education level. By synthesizing this information,

our work offers a structured overview of the current state of

programming education research and identifies areas that require

further attention.

1.3 Objectives and research questions

This study aims to provide a systematic bibliometric analysis of

programming education research. Specifically, it seeks to:

• Identify the most prevalent teaching and learning strategies in

programming education.

• Recognize the most influential authors and seminal

publications shaping the field.

• Determine the top contributing institutions and journals in

programming education research.

• Highlight emerging trends and future research opportunities.

To achieve these objectives, we formulate the following research

questions:

• RQ1: What are the predominant trends in programming

education methodologies in higher education? This study

addresses this question by analyzing research from the

SCOPUS and WOS databases (2014–2023), identifying

frequently citedmethodologies such as project-based learning,

flipped classrooms, and collaborative programming. The

analysis examines the evolution of these strategies and their

impact on programming competency development while

acknowledging the potential contributions of non-indexed

sources.

• RQ2: Who are the most influential authors, and what are

the seminal publications shaping programming education

research? This question is addressed by identifying the most

cited authors and publications in SCOPUS and WOS. The

study analyzes author networks, citation impact, and recurring

themes in key publications while recognizing that other

influential works may exist outside indexed databases.

• RQ3: Which journals and institutions have made the

most significant contributions to programming education

research? The study explores this question by examining

journals and institutions with the highest publication and

citation metrics between 2014 and 2023. The review highlights

research centers that have consistently shaped programming

Frontiers in Education 02 frontiersin.org

https://doi.org/10.3389/feduc.2025.1525917
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Vinueza-Morales et al. 10.3389/feduc.2025.1525917

education discourse while acknowledging contributions from

alternative publication platforms.

1.4 Paper organization

The remainder of this paper is organized as follows. Section

3 describes the research approach and bibliometric methodology,

detailing the data collection process and analytical tools used.

Section 4 presents the findings of the bibliometric analysis,

identifying key contributors, influential institutions, and emerging

trends. Section 5 discusses the implications of the findings,

addressing gaps in research and potential future directions. Section

6 provides the conclusions, summarizing the study’s contributions

and suggesting avenues for further investigation.

2 Theoretical foundations

Computational thinking plays a critical role in the modern

digital era, providing people with essential problem-solving

skills that transcend the boundaries of computer science and

programming, as noted by Lu et al. (2022). Based on principles

from computer science, mathematics, and logic (Li et al., 2020),

this approach enables people to solve complex problems, recognize

patterns, and design algorithmic solutions (Srinivasa et al., 2022).

As highlighted by Shen et al. (2022), computational thinking

significantly influences daily life by helping people make informed

decisions and solve problems efficiently. Whether optimizing daily

routines or critically evaluating online information, this set of skills

empowers people to navigate the complexities of the digital world

(Kanaki and Kalogiannakis, 2022). Furthermore, incorporating

it into educational curricula fosters essential competencies such

as logical reasoning and creativity, preparing students for future

challenges (Kwon et al., 2021). The Algorithm 1 presents an

algorithm that describes the steps to master new topics through

computational thinking (Vidal-Silva et al., 2024).

Require: A topic is selected

Ensure: A deep understanding is acquired

1: Establish foundational knowledge

2: Define the scope and key concepts

3: Identify and collect credible resources

4: Develop a structured learning plan

5: Set measurable learning objectives

6: while understanding is incomplete do

7: Review and refine selected materials

8: Expand research to gather diverse perspectives

9: Apply acquired knowledge through practice

10: Validate comprehension via self-assessment

11: Share insights through discussion or teaching

12: end while

13: Summarize key findings and document insights

Algorithm 1. Procedure for E�ective Topic Mastery

Beyond everyday applications, the benefits of computational

thinking extend to a wide range of disciplines (Li et al.,

2020; Lai, 2021). Shin et al. (2022) demonstrate how this

competency enhances scientific research by helping scientists

analyze complex data, simulate experiments, and develop better

models to understand the natural world. Computational thinking

supports biology, physics, and social sciences research, improving

decision-making by providing powerful tools for data-driven

insights (Helbing et al., 2023). With the growing demand for

digital literacy in the workforce, computational thinking equips

individuals with the tools required to thrive in an evolving job

market (Yadav and Berthelsen, 2021). This competency empowers

individuals as students or professionals and as active participants in

a technology-driven society.

2.1 Programming skills in engineering and
technical education

Programming competencies are critically important in

higher education, particularly within computer science and

across disciplines of Science, Technology, Engineering, Arts, and

Mathematics (STEAM) (Marín-Marín et al., 2021). The ability

to think algorithmically, solve complex problems systematically,

and develop automated solutions through coding has become an

indispensable skill set for students, regardless of their field of study

(Melro et al., 2023). Developing programming competencies in

higher education equips students with fundamental skills that go

beyond coding:

1. Algorithmic thinking: this allows students to break down

complex problems into smaller, manageable tasks while

constructing logical sequences of steps to address them (Lu et al.,

2022).

2. Problem-solving through programming: programming fosters

creativity and resilience, pushing students to iteratively refine

their solutions until achieving the most effective outcome (Ju,

2024).

3. Abstract thinking: students can conceptualize real-world

problems as abstract models, facilitating a deeper understanding

of complex phenomena across various disciplines (Qian and

Choi, 2023).

4. Automation and efficiency: programming enables students to

streamline repetitive tasks, enhancing both productivity and

efficiency (Selwyn et al., 2023).

The impact of programming competencies transcends

computer science, offering substantial benefits in STEAM

disciplines (Marín-Marín et al., 2021; Dúo-Terrón, 2023). These

skills contribute to both the technical and creative dimensions of

each field.

• Science: programming is a powerful tool for analyzing

large datasets, modeling complex systems, and simulating

experiments. In fields like biology, physics, and chemistry,

the ability to automate data processing and perform statistical

analyses improves scientific discoveries’ precision and speed.

Frontiers in Education 03 frontiersin.org

https://doi.org/10.3389/feduc.2025.1525917
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Vinueza-Morales et al. 10.3389/feduc.2025.1525917

• Technology: programming drives a deeper understanding of

technological systems, empowering students to innovate and

develop new software tools.

• Engineering: programming is indispensable in engineering,

whether used to model and simulate physical systems or

optimize design processes. Coding equips students with tools

that improve accuracy and efficiency in the mechanical, civil,

and electrical engineering disciplines.

• Art: In the arts, programming opens new avenues for digital

creativity.

• Mathematics: programming enhances the solving of

mathematical problems by allowing the simulation of

mathematical models and the resolution of large-scale

calculations that would otherwise be impossible with manual

methods.

3 Research approach and
methodology

The rapid expansion of academic research and the

increasing complexity of knowledge domains pose challenges

for researchers seeking to stay updated within a specific field.

A systematic literature review is crucial in synthesizing existing

knowledge, identifying key trends, and highlighting gaps

where further investigation is required (Briner and Denyer,

2012). Traditional literature reviews often rely on a single

scientific database, which may lead to a fragmented view of

research trends. To mitigate this limitation, scholars recommend

employing multiple databases for a more comprehensive

analysis (Echchakoui, 2020). This study used data from two

well-established academic databases: Web of Science (WOS)

and SCOPUS.

We ensure broad coverage of high-quality, peer-reviewed

academic literature by incorporating both WOS and SCOPUS

in our bibliometric analysis of teaching and learning strategies

in programming education. These databases are recognized for

indexing various scholarly outputs, including journal articles

and conference proceedings in diverse disciplines such as

computer science and education (Pranckutė, 2021). Their

international scope (Valente et al., 2022) provides a global

perspective on programming education methodologies, offering

insights into different instructional approaches worldwide.

Furthermore, using both databases enhances the robustness

of the analysis by cross-referencing data, reducing bias, and

improving the completeness of the literature review (Zhu

and Liu, 2020). Consequently, selecting SCOPUS and WOS

enables a comprehensive exploration of publication trends in

programming education.

Records from both databases were merged into a

unified dataset to conduct this analysis–the selection

process adhered to well-defined inclusion and exclusion

criteria, ensuring that only relevant studies were retained.

Table 1 outlines the search parameters employed, while

Figure 1 illustrates the trends in publication output from

2014 to 2023.

TABLE 1 Search criteria and data collection overview for the bibliometric

analysis.

Criterion Values

Time span 2014–2023

Date of query June 2023

Document types Journal articles and conference proceedings

Journal and conference

types

Any type

Search fields Title, abstract, and keywords

Search Terms Programming AND Universities AND Strategies

AND (Learning AND Teaching)—in English

Records WOS: 1,464; SCOPUS: 361

Total records 1,697

3.1 Data collection and selection criteria

The data extraction process followed a rigorousmethodology to

ensure the relevance and quality of the selected records. Regarding

database coverage, WOS contained more relevant records (1,464)

than SCOPUS (361). The following exclusion criteria were applied

to refine the dataset and maintain consistency in the analysis.

• Removal of duplicate records: studies indexed in both

databases were identified and merged.

• Relevance filtering: articles that did not specifically address

teaching and learning strategies for programming education

in higher education were excluded.

• Exclusion of peripheral studies: papers that only mentioned

programming education without analyzing its pedagogical

effectiveness were removed.

• Language constraints: only English-language publications

were considered to ensure comparability.

• Full-text availability: studies lacking accessible full-text

versions were excluded.

Applying these criteria resulted in a refined dataset of 1,697

research articles, with an observed overlap of approximately 11%.

3.2 Publication trends and distribution

We analyzed the publication output over time to understand

the evolution of research in programming education. Figure 1

presents the annual publication trends from 2014 to 2023,

illustrating the growth and fluctuations in research activity within

this domain.

3.3 Assessment tools and bibliometric
analysis

This study employs bibliometric analysis as the primary

methodological approach rather than survey-based or experimental

methods. Bibliometric analysis allows for systematically evaluating

Frontiers in Education 04 frontiersin.org

https://doi.org/10.3389/feduc.2025.1525917
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Vinueza-Morales et al. 10.3389/feduc.2025.1525917

FIGURE 1

Total number of publications in WOS and SCOPUS, 2015–2023.

publication patterns, research impact, and intellectual structure in

a given field.

The bibliometric analysis was conducted using Bibliometrix,

an R-based open-source tool for statistical and visual exploration

of academic literature. Bibliometrix facilitates comprehensive trend

analysis, citation network mapping, and collaboration analysis

across research fields (Chen et al., 2021). This tool was selected

for its flexibility, integration with statistical software, and ability to

generate interactive visual representations of bibliometric data.

Additionally, theBiblioshinyweb-basedmodule was employed

to perform real-time data analysis (Moral-Munoz et al., 2020).

Biblioshiny enables researchers to visualize co-citation networks,

keyword co-occurrence patterns, and author collaborations,

providing valuable insights into emerging trends and influential

contributors in programming education research.

3.4 Final considerations

This study provides a rigorous and data-driven approach

to understanding programming education research trends by

leveraging bibliometric methods and data from multiple sources.

The systematic filtering of records, analysis of publication

trends, and use of advanced bibliometric tools contribute to a

comprehensive examination of the field, paving the way for further

research into effective pedagogical strategies and technological

innovations in programming education.

4 Findings and analysis

This section presents the results of the bibliometric analysis,

highlighting key contributors, prominent institutions, highly cited

works, and the most relevant terminologies in programming

education research. These findings offer valuable insights into the

evolution and impact of research in this Field.

4.1 Leading researchers in the field

The bibliometric analysis identified the most influential

researchers in programming education based on their citation

count, H-index, and publication record. Table 2 presents the top

authors contributing significantly to the Field. Among them, Li

Yong, Liu Yonggang, Liu Yan, Liu Yuan, and Yong Wang

stand out as leading figures in programming education research.

Their work has explored innovative methodologies, active learning

strategies, and computational thinking frameworks, shaping the

pedagogical approaches in programming instruction (Hirsch,

2005).

Analyzing the H-index and citation impact provides insights

into these researchers’ academic influence in promoting

programming education. Their extensive contributions

reinforce the importance of structured teaching strategies,

computational thinking, and technology-enhanced learning in

programming curricula.

4.2 Prominent institutions and their
contributions

The bibliometric analysis also identified institutions that

have played a pivotal role in programming education research.

Table 3 lists the top ten universities with the highest publication

output in the Field. These institutions, including the University

of California, Toronto University, and the University of Sydney,

have significantly contributed to advancing pedagogical models and

digital learning frameworks.

These institutions are critical in advancing programming

education through their research on student engagement, problem-

solving techniques, and adaptive learning environments. The

high volume of publications from these universities highlights

the increasing academic focus on enhancing programming

instruction methodologies.

Frontiers in Education 05 frontiersin.org

https://doi.org/10.3389/feduc.2025.1525917
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Vinueza-Morales et al. 10.3389/feduc.2025.1525917

TABLE 2 Top authors in programming education research in higher education.

Authors WOS citations WOS H-index SCOPUS citations SCOPUS H-index Publications

Li Yong 2,058 23 7,591 42 11

Liu Yonggang 29 3 682 15 11

Liu Yan 2,072 22 9,997 50 11

Liu Yuan 1,151 18 938 16 11

Yong Wang 2,124 26 8,192 50 11

TABLE 3 Top institutions contributing to programming education

research.

Institution Publications Country

University of California, San Francisco 74 USA

University of Toronto 69 Canada

University of Colorado Boulder 59 USA

University of Michigan 59 USA

University of Sydney 43 Australia

University of Calgary 36 Canada

McGill University 35 Canada

University of Pennsylvania 35 USA

National University of Singapore 34 Singapore

University of Minnesota 34 USA

TABLE 4 Top cited documents in programming education research.

References Journal Total
citations
(TC)

Average
citations
per year

Sung et al. (2016) Computers and

Education

620 77.5

McLaughlin et al.

(2013)

Academic Medicine 603 60.3

Bers et al. (2014) Computers and

Education

378 37.8

Douzas et al. (2018) Information

Sciences

350 58.33

Chiu-Lin and

Gwo-Jen (2016)

Computers and

Education

319 39.88

4.3 Seminal works and references

We analyzed citation patterns and impact factors of highly

cited documents in programming education to identify the most

influential publications. Table 4 presents the top-cited papers,

revealing the substantial influence of studies focusing on active

learning, flipped classrooms, and computational thinking.

These documents reflect key advancements in programming

education, such as:

• The impact of active learning methodologies on student

performance (Sung et al., 2016).

• The role of flipped classrooms in improving engagement and

retention (McLaughlin et al., 2013).

• The integration of computational thinking into early

programming education (Bers et al., 2014).

4.4 Key terminology and concepts

We analyzed the most frequently used keywords to gain

deeper insights into the thematic focus of programming education

research. Figure 2 presents a word cloud visualization, highlighting

dominant terms in the field.

Table 5 further categorizes the most frequently used keywords,

demonstrating the emphasis on learning strategies, student

engagement, and educational technologies.

These results confirm that programming education research

primarily focuses on effective teaching methodologies, student

engagement strategies, and the integration of emerging

technologies. The findings suggest that future research should

explore adaptive learning systems, AI-driven programming

education, and interdisciplinary learning approaches.

4.5 Final remarks

The bibliometric analysis of programming education research

has revealed significant trends, key contributors, and influential

publications. The findings emphasize the growing academic focus

on student-centered learning models, the integration of AI in

programming education, and the role of global collaboration in

shaping programming instruction methodologies. By leveraging

these insights, educators and researchers can refine instructional

strategies and enhance the effectiveness of programming education

in higher education institutions.

5 Discussion

This study provides a comprehensive bibliometric analysis

of programming education research, identifying key trends,

influential contributors, and emerging pedagogical methodologies.

Analyzing data from SCOPUS and Web of Science (WOS)

offers valuable insights into how programming education has

evolved over the past decade and highlights opportunities for

future advancements.

Frontiers in Education 06 frontiersin.org

https://doi.org/10.3389/feduc.2025.1525917
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Vinueza-Morales et al. 10.3389/feduc.2025.1525917

FIGURE 2

Word cloud highlighting the most frequent terms in the analyzed articles.

5.1 Emerging trends and directions

The results of this study directly address RQ1, revealing

that the most effective teaching approaches in programming

education are project-based learning, flipped classrooms,

and collaborative programming. These methodologies have

been consistently cited as effective strategies for enhancing

student engagement, problem-solving abilities, and knowledge

retention. The increased adoption of these techniques aligns

with the growing emphasis on active and experiential

learning models.

Additionally, a growing interest has been observed in

leveraging emerging technologies such as augmented reality (AR),

virtual reality (VR), and artificial intelligence (AI) to enhance

programming instruction. These technologies are being explored

to create immersive learning environments, offering students

interactive and personalized experiences.

Addressing RQ2, this study identified the most influential

researchers and seminal publications that have shaped

programming education. The most cited works emphasize

the importance of interdisciplinary teaching approaches,

computational thinking development, and technology-

enhanced learning. The bibliometric analysis also revealed

extensive collaboration networks among leading researchers,

demonstrating a global commitment to improving programming

education methodologies.

A key trend highlighted in the analysis is the shift toward

collaborative programming techniques, such as pair programming

and peer learning, which have shown positive effects on code

quality and student learning outcomes. Furthermore, as software

development practices evolve, educational frameworks increasingly

align with industry demands by incorporating teamwork-based

learning experiences.

TABLE 5 Top ten keywords by frequency and percentage of appearance.

Keyword Frequency Percentage

Learning 1,127 2.50%

Programming 911 2.02%

Students 898 1.99%

Teaching 594 1.32%

Education 500 1.11%

University 345 0.76%

Computer 339 0.75%

Course 332 0.74%

Based 299 0.66%

Strategies 274 0.61%

5.2 Major contributions of this study

This study makes several contributions to the field of

programming education by systematically analyzing its evolution

and identifying dominant pedagogical strategies. Unlike traditional

literature reviews that focus on isolated methodologies, the

bibliometric approach offers a macro-level perspective, allowing

for the identification of knowledge gaps, research directions, and

emerging trends.

The key contributions of this study include:

• Comprehensive mapping of programming education

research: by synthesizing findings from two major academic

databases, this study presents a structured overview of the

Frontiers in Education 07 frontiersin.org

https://doi.org/10.3389/feduc.2025.1525917
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Vinueza-Morales et al. 10.3389/feduc.2025.1525917

most influential research works, authors, and institutions

contributing to programming education.

• Identification of technological advancements: the findings

highlight the increasing role of AI, AR, and VR in

programming education, underscoring their potential to

transform instructional strategies.

• Insights into pedagogical effectiveness: the study confirms

the dominance of active learning methodologies, such as

project-based learning and flipped classrooms, in improving

student learning outcomes.

• Recognition of global collaboration trends: the bibliometric

analysis reveals strong academic networks, demonstrating the

interconnected nature of programming education research

across institutions and countries.

5.3 Gaps and challenges in existing studies

Despite the advancements in programming education, several

critical gaps remain that require further exploration:

• Lack of longitudinal studies: most research in programming

education focuses on short-term outcomes, such as student

performance in individual courses. However, there is a

significant gap in studies that assess the long-term impact

of programming education strategies on professional career

development, skill retention, and adaptability to technological

advancements.

• Limited research in diverse educational contexts: most

studies analyzed originate from developed countries,

particularly the United States and China. There is a pressing

need to explore programming education in underrepresented

regions, including developing countries, rural communities,

and alternative learning environments.

• Need for research on non-traditional learning pathways:

with the rise of coding boot camps, online platforms, and

self-directed learning, there is limited research on how

these alternative educational models compare to traditional

classroom-based programming instruction.

• Challenges in integrating AI and adaptive learning

tools: while AI-driven educational platforms have shown

promise, more research is required to evaluate their

long-term efficacy, scalability, and ethical implications in

programming education.

5.4 Potential biases and limitations

As with any bibliometric study, there are inherent limitations

that must be acknowledged:

• Selection bias: this study relies on SCOPUS andWOS, which,

despite their extensive coverage, may exclude relevant research

from non-indexed sources or regional academic journals.

• Temporal bias: the analysis is limited to publications from

2014 to 2023, potentially overlooking foundational studies that

continue to influence programming education.

• Reliance on citation-based metrics: while bibliometric

indicators such as the H-index and citation count

provide valuable insights, they may not fully capture the

qualitative impact of a study or its effectiveness in real-world

educational settings.

5.5 Opportunities for further investigation

Based on the identified gaps, this study proposes several

avenues for future research:

• Longitudinal studies on programming education outcomes:

more research is needed to understand how different teaching

methodologies influence students’ career progression and

long-term skills development.

• Interdisciplinary approaches to programming instruction:

future research should explore how integrating programming

with other fields (e.g., cognitive science, psychology, and

educational technology) can enhance learning outcomes.

• Expanding research to diverse geographic regions:

more studies should focus on programming education in

developing countries and alternative learning environments

to provide a globally representative understanding of effective

teaching practices.

• Evaluation of AI-driven teaching methods: as AI

continues to shape education, empirical studies should

assess the effectiveness of adaptive learning systems,

automated code feedback, and AI-powered tutoring in

programming instruction.

• Bridging the gap between academia and industry needs:

future research should investigate how programming curricula

can better align with industry requirements to ensure students

graduate with relevant, in-demand skills.

5.6 Final remarks

The findings of this study emphasize the dynamic nature of

programming education, reflecting continuous advancements

in pedagogical approaches and technological integration. While

significant progress has been made in refining instructional

strategies, considerable opportunities remain to enhance

accessibility, personalization, and real-world applicability in

programming education.

Future studies can address the challenges and research gaps

outlined in this discussion and contribute to the development

of more inclusive, effective, and technologically enhanced

programming education models. These insights will be invaluable

for educators, curriculum designers, and policymakers seeking

to optimize programming instruction for the next generation

of learners.

Frontiers in Education 08 frontiersin.org

https://doi.org/10.3389/feduc.2025.1525917
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Vinueza-Morales et al. 10.3389/feduc.2025.1525917

6 Conclusions

This bibliometric analysis provides a comprehensive overview

of the evolution of programming education research in higher

education. The findings underscore the growing academic interest

in programming instruction, revealing significant contributions

from researchers and institutions worldwide. Over the past decade,

programming education has evolved from a technical skill confined

to computer science disciplines to a critical competency across

various domains, including Science, Technology, Engineering,

Arts, and Mathematics (STEAM).

The analysis highlights three predominant pedagogical

strategies: project-based learning, flipped classrooms, and

collaborative programming, which have proven effective in

enhancing students’ problem-solving abilities, engagement, and

knowledge retention. These approaches align with the increasing

demand for industry-relevant programming skills, suggesting that

interactive and experiential learning methodologies play a crucial

role in student success.

6.1 Key contributions and implications

The study’s findings have several important implications for

educators, curriculum designers, and policymakers:

• Enhanced teaching methodologies: Adopting student-

centered approaches such as project-based learning, pair

programming, and active learning has reshaped programming

education. These strategies have demonstrated measurable

benefits in improving students’ comprehension, engagement,

and long-term retention of programming concepts.

• Integration of emerging technologies: The use of artificial

intelligence (AI), virtual reality (VR), and adaptive learning

technologies in programming instruction has gained

momentum. These tools offer personalized learning

experiences, real-time feedback, and interactive coding

environments, presenting new opportunities for improving

educational outcomes.

• Collaboration networks in research: The bibliometric review

indicates that leading institutions and researchers in the

United States, China, and Europe are driving advancements

in programming education. However, limited representation

from developing regions highlights the need for more inclusive

global collaboration to ensure equitable access to high-quality

programming education.

• Impact of institutional support: Universities with strong

research output in programming education play a crucial role

in shaping curriculum design and pedagogical innovations.

Encouraging cross-institutional collaborations can lead to

better resource-sharing and knowledge dissemination across

diverse educational contexts.

6.2 Challenges and areas for future
research

Despite these advancements, several challenges persist that

require further investigation:

• Need for longitudinal studies: Most existing research

focuses on short-term outcomes, such as student grades or

performance in isolated courses. Future studies should explore

long-term impacts of different teaching methodologies on

students’ professional careers, adaptability to new technologies,

and retention of programming skills beyond academia.

• Limited research in underrepresented regions: The majority

of studies analyzed originate from technologically advanced

countries. There is a pressing need for research that

examines programming education in developing countries,

rural areas, and non-traditional learning environments.

Expanding research to diverse educational contexts will

provide a more comprehensive understanding of global

programming education challenges and best practices.

• Adapting pedagogical strategies to non-traditional learning

paths: With the rise of online learning platforms, coding boot

camps, and self-directed learning, traditional classroom-based

strategies may not always be practical. Future research should

explore how programming education can be optimized for

learners outside formal university settings.

• Assessing the role of AI in personalized learning: While

AI-based learning tools are being increasingly adopted, their

long-term efficacy remains unclear. Future studies should

focus on how AI-driven adaptive learning environments

influence student motivation, engagement, and mastery of

programming concepts.

• Bridging the gap between academia and industry needs:

Employers often report skill gaps among graduates entering

the tech industry. Research should investigate how academic

institutions can better align their programming curricula with

real-world industry demands to ensure students are equipped

with the necessary competencies for professional success.

6.3 Final thoughts

This study provides a structured roadmap for future research

by identifying key trends, influential contributors, and emerging

areas of programming education. By addressing the identified

gaps and leveraging new technologies, educators and researchers

can enhance programming instruction, making it more effective,

inclusive, and aligned with the evolving demands of the

digital economy.

The findings reinforce the idea that programming is no longer

a niche skill but a fundamental competency across disciplines,

requiring continuous adaptation of teaching methodologies.

As technology advances, collaborative efforts among academia,

industry, and policymakers will be crucial in shaping the future of

programming education, ensuring that students worldwide receive

high-quality, relevant, and accessible instruction.

Author contributions

MV-M: Funding acquisition, Investigation, Methodology,

Project administration, Resources, Software, Supervision,

Validation, Visualization, Writing – original draft, Writing –

review & editing, Conceptualization, Data curation, Formal

Frontiers in Education 09 frontiersin.org

https://doi.org/10.3389/feduc.2025.1525917
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Vinueza-Morales et al. 10.3389/feduc.2025.1525917

analysis. JR-S: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review & editing.

CV-S: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing. JC-M:

Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing. EC-A:

Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abichandani, P., Sivakumar, V., Lobo, D., Iaboni, C., and Shekhar, P. (2022).
Internet-of-things curriculum, pedagogy, and assessment for stem education: a review
of literature. IEEE Access 10, 38351–38369. doi: 10.1109/ACCESS.2022.3164709

Adamopoulos, F. A. (2020). Learning Programming, Student Motivation. Cham:
Springer International Publishing.

Bers, M. U., Flannery, L., Kazakoff, E. R., and Sullivan, A. (2014). Computational
thinking and tinkering: Exploration of an early childhood robotics curriculum. Comp.
Educ. 72, 145–157. doi: 10.1016/j.compedu.2013.10.020

Bloom, B. (1956). Taxonomy of Educational Objectives. London: Longman.

Briner, R., and Denyer, D. (2012). Systematic Review and Evidence Synthesis as a
Practice and Scholarship Tool. Oxford: Oxford University Press, 112–129.

Cheah, C.-S. (2020). factors-contributing-to-the-difficulties-in-teaching-and-
learning-of-computer-programming-a-literature-review. Contemp. Educ. Technol.
12:ep272. doi: 10.30935/cedtech/8247

Chen, X., Zou, D., Xie, H., andWang, F. L. (2021). Past, present, and future of smart
learning: a topic-based bibliometric analysis. Int. J. Educ. Technol. Higher Educ. 18:2.
doi: 10.1186/s41239-020-00239-6

Cheng, Q., Benton, D., and Quinn, A. (2021). “Building a motivating and autonomy
environment to support adaptive learning,” in 2021 IEEE Frontiers in Education
Conference (FIE) (Lincoln, NE: IEEE), 1–7.

Chiu-Lin, L., and Gwo-Jen, H. (2016). A self-regulated flipped classroom approach
to improving students’ learning performance in a mathematics course. Comput. Educ.
100, 126–140. doi: 10.1016/j.compedu.2016.05.006

Compañ-Rosique, P., Satorre-Cuerda, R., Llorens-Largo, F., and Molina-Carmona,
R. (2015). Ense nando a programar: un camino directo para desarrollar el pensamiento
computacional. Revista de Educación a Distancia (RED) 46:11. doi: 10.6018/red/46/11

Douzas, G., Bacao, F., and Last, F. (2018). Improving imbalanced learning through
a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 465, 1–20.
doi: 10.1016/j.ins.2018.06.056

Dúo-Terrón, P. (2023). Analysis of scratch software in scientific production for
20 years: Programming in education to develop computational thinking and steam
disciplines. Educ. Sci. 13:4. doi: 10.3390/educsci13040404

Echchakoui, S. (2020). Why and how to merge scopus and web of science during
bibliometric analysis: the case of sales force literature from 1912 to 2019. J. Market.
Analyt. 8:9. doi: 10.1057/s41270-020-00081-9

Froyd, J. E., Wankat, P. C., and Smith, K. A. (2012). Five major shifts in 100 years of
engineering education. Proc. IEEE 100, 1344–1360. doi: 10.1109/JPROC.2012.2190167

González-Sanmamed, M., Sangrá, A., Souto-Seijo, A., and Estévez Blanco, I. (2018).
Ecolog’ıas de aprendizaje en la era digital: desaf’ıos para la educación superior.
Publicaciones 48, 25–45. doi: 10.30827/publicaciones.v48i1.7329

Helbing, D., Mahajan, S., Fricker, R. H., Musso, A., Hausladen, C. I.,
Carissimo, C., et al. (2023). Democracy by design: Perspectives for digitally assisted,
participatory upgrades of society. J. Comput. Sci. 71:102061. doi: 10.1016/j.jocs.2023.
102061

Hirsch, J. (2005). An index to quantify an individual’s scientific research output.
Proc. National Acad. Sci. 102, 16569–16572. doi: 10.1073/pnas.0507655102

Jiménez-Toledo, J., Collazos, C., and Revelo-Sánchez, O. (2019). Consideraciones
en los procesos de ense nanza-aprendizaje para un primer curso de programación
de computadores: una revisión sistemática de la literatura. TecnoLógicas 22:83–117.
doi: 10.22430/22565337.1520

Ju, Z. (2024). Computational Thinking Through Programming: A Meta-Analysis of
Collaborative Versus Solo Problem Solving. Sydney: Sydney School of Education and
Social Work, University of Sydney.

Kanaki, K., and Kalogiannakis, M. (2022). Assessing algorithmic thinking
skills in relation to age in early childhood stem education. Educ. Sci. 12:380.
doi: 10.3390/educsci12060380

Kwon, K., Ottenbreit-Leftwich, A. T., Brush, T. A., Jeon, M., and Yan, G. (2021).
Integration of problem-based learning in elementary computer science education:
effects on computational thinking and attitudes. Educ. Technol. Res. Dev. 69,
2761–2787. doi: 10.1007/s11423-021-10034-3

Lai, R. P. (2021). Beyond programming: a computer-based assessment of
computational thinking competency. ACM Trans. Comp. Educ. (TOCE) 22, 1–27.
doi: 10.1145/3486598

Li, Y., Schoenfeld, A. H., di Sessa, A. A., Graesser, A. C., Benson, L. C., English, L.
D., et al. (2020). Computational Thinking is more about Thinking than Computing. New
York, NY: Springer.

Liargkovas, G., Papadopoulou, A., Kotti, Z., and Spinellis, D. (2022). Software
engineering education knowledge versus industrial needs. IEEE Trans. Educ. 65,
419–427. doi: 10.1109/TE.2021.3123889

Lin, Y.-T., Yeh,M. K.-C., and Tan, S.-R. (2022). Teaching programming by revealing
thinking process: Watching experts’ live coding videos with reflection annotations.
IEEE Trans. Educ. 65, 617–627. doi: 10.1109/TE.2022.3155884

Lu, C., Macdonald, R., Odell, B., Kokhan, V., Demmans Epp, C., and Cutumisu, M.
(2022). A scoping review of computational thinking assessments in higher education.
J. Comp. Higher Educ. 34, 416–461. doi: 10.1007/s12528-021-09305-y

Frontiers in Education 10 frontiersin.org

https://doi.org/10.3389/feduc.2025.1525917
https://doi.org/10.1109/ACCESS.2022.3164709
https://doi.org/10.1016/j.compedu.2013.10.020
https://doi.org/10.30935/cedtech/8247
https://doi.org/10.1186/s41239-020-00239-6
https://doi.org/10.1016/j.compedu.2016.05.006
https://doi.org/10.6018/red/46/11
https://doi.org/10.1016/j.ins.2018.06.056
https://doi.org/10.3390/educsci13040404
https://doi.org/10.1057/s41270-020-00081-9
https://doi.org/10.1109/JPROC.2012.2190167
https://doi.org/10.30827/publicaciones.v48i1.7329
https://doi.org/10.1016/j.jocs.2023.102061
https://doi.org/10.1073/pnas.0507655102
https://doi.org/10.22430/22565337.1520
https://doi.org/10.3390/educsci12060380
https://doi.org/10.1007/s11423-021-10034-3
https://doi.org/10.1145/3486598
https://doi.org/10.1109/TE.2021.3123889
https://doi.org/10.1109/TE.2022.3155884
https://doi.org/10.1007/s12528-021-09305-y
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Vinueza-Morales et al. 10.3389/feduc.2025.1525917

Marín-Marín, J.-A., Moreno-Guerrero, A.-J., Dúo-Terrón, P., and López-Belmonte,
J. (2021). Steam in education: a bibliometric analysis of performance and co-words in
web of science. Int. J. STEM Educ. 8:41. doi: 10.1186/s40594-021-00296-x

Masapanta-Carrion, S., and Velázquez-Iturbide, J. (2018). “A systematic review of
the use of bloom’s taxonomy in computer science education,” in SIGCSE ’18 (New York
City: Association for Computing Machinery), 441–446.

McLaughlin, J., Roth, M., Glatt, D., Gharkholonarehe, N., Davidson, C.,
Griffin, L., et al. (2013). The flipped classroom: a course redesign to foster
learning and engagement in a health professions school. Acad. Med. 89:86.
doi: 10.1097/ACM.0000000000000086

Medeiros, R. P., Ramalhomand, G. L., and Falcão, T. P. (2019). A systematic
literature review on teaching and learning introductory programming in higher
education. IEEE Trans. Educ. 62, 77–90. doi: 10.1109/TE.2018.2864133

Melro, A., Tarling, G., Fujita, T., and Staarman, J. K. (2023). What else
can be learned when coding? A configurative literature review of learning
opportunities through computational thinking. J. Educ. Comp. Res. 61, 901–924.
doi: 10.1177/07356331221133822

Merelli, E., Paoletti, N., and Tesei, L. (2016). Adaptability checking in complex
systems. Sci. Comp. Prog. 115–116, 23–46. doi: 10.1016/j.scico.2015.03.004

Moral-Munoz, J., Herrera-Viedma, E., Espejo, A., and Cobo, M. (2020). Software
tools for conducting bibliometric analysis in science: an up-to-date review. El
Profesional de la Información 29:3. doi: 10.3145/epi.2020.ene.03

Paiva, J. C., Leal, J. P., and Figueira, A. (2022). Automated assessment in computer
science education: a state-of-the-art review. ACM Trans. Comput. Educ. 22:3513140.
doi: 10.1145/3513140

Pranckutė, R. (2021). Web of science (wos) and scopus: the titans
of bibliographic information in today’s academic world. Publications 9:1.
doi: 10.3390/publications9010012

Qadir, J., Yau, K.-L. A., Ali Imran, M., and Al-Fuqaha, A. (2020). “Engineering
education, moving into 2020s: Essential competencies for effective 21st century
electrical & computer engineers,” in 2020 IEEE Frontiers in Education Conference (FIE)
(Uppsala: IEEE), 1–9.

Qian, Y., and Choi, I. (2023). Tracing the essence: ways to develop
abstraction in computational thinking. Educ. Technol. Res. Dev. 71, 1055–1078.
doi: 10.1007/s11423-022-10182-0

Selwyn, N., Hillman, T., Bergviken-Rensfeldt, A., and Perrotta, C. (2023).
Making sense of the digital automation of education. Postdigit. Sci. Educ. 5, 1–14.
doi: 10.1007/s42438-022-00362-9

Shen, J., Chen, G., Barth-Cohen, L., Jiang, S., and Eltoukhy, M. (2022).
Connecting computational thinking in everyday reasoning and programming
for elementary school students. J. Res. Technol. Educ. 54, 205–225.
doi: 10.1080/15391523.2020.1834474

Shin, N., Bowers, J., Krajcik, J., and Damelin, D. (2021). Promoting computational
thinking through project-based learning. Disciplinary Interdiscipl. Sci. Educ. Res. 3:7.
doi: 10.1186/s43031-021-00033-y

Shin, N., Bowers, J., Roderick, S., McIntyre, C., Stephens, A. L., Eidin,
E., et al. (2022). A framework for supporting systems thinking and
computational thinking through constructing models. Instruct. Sci. 50, 933–960.
doi: 10.1007/s11251-022-09590-9

Silva, L., Mendes, A. J., and Gomes, A. (2020). “Computer-supported collaborative
learning in programming education: a systematic literature review,” in 2020 IEEE
Global Engineering Education Conference (EDUCON) (Porto: IEEE), 1086–1095.

Srinivasa, K., Kurni, M., and Saritha, K. (2022). “Computational thinking,” in
Learning, Teaching, and Assessment Methods for Contemporary Learners: Pedagogy for
the Digital Generation (Cham: Springer), 117–146.

Sung, Y.-T., Chang, K.-E., and Liu, T.-C. (2016). The effects of integrating mobile
devices with teaching and learning on students’ learning performance: A meta-analysis
and research synthesis. Comp. Educ. 94, 252–275. doi: 10.1016/j.compedu.2015.11.008

Thuné, M., and Eckerdal, A. (2018). Analysis of students’ learning of computer
programming in a computer laboratory context. Eur. J. Eng. Educ. 44, 1–18.
doi: 10.1080/03043797.2018.1544609

Valente, A., Holanda, M., Mariano, A. M., Furuta, R., and Da Silva, D. (2022).
“Analysis of academic databases for literature review in the computer science education
field,” in 2022 IEEE Frontiers in Education Conference (FIE) (Uppsala: IEEE), 1–7.

Vesin, B., Mangaroska, K., and Giannakos, M. (2018). Learning in smart
environments: user-centered design and analytics of an adaptive learning system.
Smart Learn. Environm. 5:24. doi: 10.1186/s40561-018-0071-0

Vidal-Silva, C., Cárdenas-Cobo, J., Tupac-Yupanqui, M., Serrano-Malebrán, J., and
Sánchez Ortiz, A. (2024). Developing programming competencies in school-students
with block-based tools in chile, ecuador, and peru. IEEE Access 12, 118924–118936.
doi: 10.1109/ACCESS.2024.3449228

Xie, B., Loksa, D., Nelson, G., Davidson, M., Dong, D., Kwik, H., et al. (2019). A
theory of instruction for introductory programming skills.Com. Sci. Educ. 29, 205–253.
doi: 10.1080/08993408.2019.1565235

Yadav, A., and Berthelsen, U. (2021). Computational Thinking in Education: A
Pedagogical Perspective. London: Routledge.

Younis, A., Sunderraman, R., Metzler, M., and Bourgeois, A. (2021). Developing
parallel programming and soft skills: A project-based learning approach. J. Parallel
Distrib. Comp. 158, 151–163. doi: 10.1016/j.jpdc.2021.07.015

Yusuf, A., and Noor, N. M. (2023). Research trends on learning computer
programming with program animation: a systematic mapping study. Comp. Appl. Eng.
Educ. 31, 1552–1582. doi: 10.1002/cae.22659

Zhu, J., and Liu, W. (2020). A tale of two databases: the use of web of science and
scopus in academic papers. Scientometrics 123:8. doi: 10.1007/s11192-020-03387-8

Frontiers in Education 11 frontiersin.org

https://doi.org/10.3389/feduc.2025.1525917
https://doi.org/10.1186/s40594-021-00296-x
https://doi.org/10.1097/ACM.0000000000000086
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1177/07356331221133822
https://doi.org/10.1016/j.scico.2015.03.004
https://doi.org/10.3145/epi.2020.ene.03
https://doi.org/10.1145/3513140
https://doi.org/10.3390/publications9010012
https://doi.org/10.1007/s11423-022-10182-0
https://doi.org/10.1007/s42438-022-00362-9
https://doi.org/10.1080/15391523.2020.1834474
https://doi.org/10.1186/s43031-021-00033-y
https://doi.org/10.1007/s11251-022-09590-9
https://doi.org/10.1016/j.compedu.2015.11.008
https://doi.org/10.1080/03043797.2018.1544609
https://doi.org/10.1186/s40561-018-0071-0
https://doi.org/10.1109/ACCESS.2024.3449228
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1016/j.jpdc.2021.07.015
https://doi.org/10.1002/cae.22659
https://doi.org/10.1007/s11192-020-03387-8
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

	Teaching programming in higher education: a bibliometric analysis of trends, technologies, and pedagogical approaches
	1 Introduction
	1.1 Pedagogical approaches in programming education
	1.2 Need for a bibliometric analysis
	1.3 Objectives and research questions
	1.4 Paper organization

	2 Theoretical foundations
	2.1 Programming skills in engineering and technical education

	3 Research approach and methodology
	3.1 Data collection and selection criteria
	3.2 Publication trends and distribution
	3.3 Assessment tools and bibliometric analysis
	3.4 Final considerations

	4 Findings and analysis
	4.1 Leading researchers in the field
	4.2 Prominent institutions and their contributions
	4.3 Seminal works and references
	4.4 Key terminology and concepts
	4.5 Final remarks

	5 Discussion
	5.1 Emerging trends and directions
	5.2 Major contributions of this study
	5.3 Gaps and challenges in existing studies
	5.4 Potential biases and limitations
	5.5 Opportunities for further investigation
	5.6 Final remarks

	6 Conclusions
	6.1 Key contributions and implications
	6.2 Challenges and areas for future research
	6.3 Final thoughts

	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


