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Background: Scores from classroom observations serve as important pieces

of information for educational researchers, practitioners, and policymakers.

However, scoring procedures typically remain untested. This study aims to

investigate the effect of sequential and nonsequential scoring of lesson

segments from videotaped Norwegian mathematics and science classrooms.

Methods: Using a cross-over design, we randomly assigned four raters to

score 30 videotaped lessons in sequential (SEQ) or nonsequential (NON)

20-min segments. We explored means as well as correlations across

conditions and conducted Generalizability Studies (G Studies) to estimate the

precision of scores.

Results: We found marginal fluctuations in scores across conditions, and

correlation analysis indicated similar rankings of lessons and classrooms.

However, G Studies reveal that nonsequential scoring captures a greater

proportion of between-classroom variance, while sequential scoring captures

more variance between lessons. This also implies that the precision of scores

varies across conditions and the unit of analysis.

Conclusion: The findings suggest that scoring procedures could affect decision-

making drawing on scores from classroom observation. We argue, however, that

results depend to some extent on the observation system used to generate the

scores. Therefore, we encourage researchers to replicate our findings with other

observation systems.

KEYWORDS

teaching quality, observation systems, generalizability theory, classroom observation,
validity

Introduction

Classroom observation has the potential to provide important information on teaching
quality to researchers, educational practitioners, and policymakers. Because of this,
numerous observation systems have been developed over the last 20 years (Charalambous
and Praetorius, 2018). Some key purposes of observation systems are to provide feedback to
teachers or to explore student learning in the classroom (White and Klette, 2024). To meet
these purposes, observation systems include a set of scoring rules (e.g., observation mode
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or length, Casabianca et al., 2013), many of which are not
empirically tested. However, scoring rules may affect the reliability
of scores and their relations to student achievement (Bell et al.,
2012; Mashburn et al., 2014; White and Klette, 2024). For
observation systems to be helpful, evidence needs to be brought
forward that supports the use of scores toward the intended
purpose (e.g., observers scoring accurately and in accordance with
some rubric). In this paper, we provide such evidence for an
exemplary observation system and an exemplary scoring rule, that
is, presentation order.

Presentation order refers to the ways in which segments of
lessons are presented to observers. Ho and Kane (2013) argue that
by manipulating the presentation order, the likelihood for carryover
effects to happen could be decreased (i.e., raters assigning scores
based on their impressions from segments prior to the one they
are scoring). This is important, because carryover effects could
introduce construct irrelevant variability that reduces the validity
of scores. Live observation naturally limits raters to score segments
sequentially, but with videotaped lessons, the presentation order
can be manipulated. However, the time and date at which the rating
takes place can be held constant, which suggests that rater drift (i.e.,
raters’ performance lacking invariance over time) would be reduced
to a minimum.

Literature sees little empirical attention to this issue. Mashburn
et al. (2014) conducted an experimental study in which they
presented lesson segments to raters in a random order and found
that this had benefits for reliability and predictive validity compared
to scoring segments sequentially. For their study, the authors used
the Classroom Assessment Scoring System (CLASS, Pianta et al.,
2008), which is generic in the sense that it may be applied to any
subject of classroom teaching. In the present study, however, a
different observation system is used that draws on the established
Three Basic Dimensions (TBD) framework of teaching quality
(Praetorius et al., 2018), particularly tailored to mathematics and
science classrooms. Given this and the limited empirical evidence
on presentation order, it is unclear whether the findings from
Mashburn et al. (2014) are generalizable to our context. Therefore,
our study focuses on the degree to which presentation order
might affect ratings of teaching quality in Norwegian 6th grade
mathematics and science classrooms.

Framework for teaching quality

Following the Trends in Mathematics and Science Study
(TIMSS) Video Study, a generic framework of teaching quality
with three basic dimensions was developed (TBD, Praetorius et al.,
2018). They are classroom management, student support, and
(potential for) cognitive activation. Classroom management refers
to teachers’ procedures and strategies that enable efficient use of
time (time on task), as well as behavioral management (Kounin,
1970). Student support draws on self-determination theory (Deci
and Ryan, 1985) and aims at both motivational and emotional
support, as well as individualization and differentiation in learning.
Finally, cognitive activation addresses opportunities for “high-order
thinking” from a socio-constructivist perspective on teaching and
learning (e.g., problem-solving, Mayer, 2004). The three basic
dimensions have been shown to positively relate to students’

achievement across various studies and operationalizations (e.g.,
Blömeke et al., 2022; Lipowsky et al., 2009; for an overview see
Praetorius et al., 2018).

Research questions

Gathering reliable scores is crucial for drawing valid inferences
from classroom observation, but at the same time, presentation
order may affect the extent to which raters reliably assign scores.
To the best of our knowledge, presentation order has not been
investigated using observation systems with a subject-specific
focus. Our study aims to close this research gap by using an
experimental design in which two conditions are compared, that is,
sequential and nonsequential scoring procedures. We address the
following research questions:

(1) Are lesson segments scored differently across conditions?
(2) Are classrooms or lessons ranked differently across

conditions?
(3) How do sources of variance (i.e., classrooms, lessons, raters)

compare across conditions?
(4) How do measurement error and reliability compare across

conditions?

In this paper, we use Generalizability Studies (G Studies,
Cronbach et al., 1972; Shavelson and Webb, 1991) to analyze
scoring precision. By performing analysis of variance, G Studies
decompose observed variability in scores with respect to the study
conditions (i.e., facets in G Theory terms). In doing so, we gain
insights into multiple sources of variability at the same time,
which allows for the exploration of wanted (e.g., differences in
teaching quality between lessons or classrooms) and unwanted
variability in scores (e.g., rater bias). This is a major benefit over
and above other approaches to estimating reliability in scores
(e.g., inter-rater reliability or Coefficient Alpha). For this reason,
G Studies have often been used to identify sources of error
and to optimize the reliability and dependability of observational
measures (e.g., Ho and Kane, 2013; Jentsch et al., 2022;
Quansah et al., 2024).

Methods

The study was conducted within the (project name blinded
for peer review) project, which aims to investigate the effect
of teacher quality and teaching quality on the development
of student achievement and motivation in mathematics and
science classrooms.

Videotaped lessons

Data was obtained from schools in the Oslo metropolitan
area in Norway, with teachers conveniently participating in the
study. In total, 15 6th grade mathematics and science classrooms
were sampled, and one through six lessons per classroom were
videotaped over the course of several weeks. The length of
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TABLE 1 Prototypical scoring design across sequential (SEQ) and
nonsequential (NON) scoring procedures.

Classroom Lesson Segment Condition

SEQ NON

1 1 1 Rater 1 Rater 2

2 Rater 1 Rater 3

1 2 1 Rater 2 Rater 1

2 Rater 2 Rater 4

2 1 1 Rater 3 Rater 4

2 Rater 3 Rater 1

2 2 1 Rater 4 Rater 3

2 Rater 4 Rater 2

the lessons varied between 24 and 106 min, and lessons were
cut into approximately 20-min segments for analysis, which is
recommended by Mashburn et al. (2014).1 For this study, two
lessons (four segments) from every mathematics and science
classroom were analyzed. Segments were scored under both
experimental conditions (i.e., sequential and nonsequential).

Experimental conditions

To analyze the effect of presentation order on score reliability,
we designed our study as follows. For each lesson, we randomly
assigned one rater to the sequential condition. The rater would then
score both segments of this lesson. This condition is referred to as
the sequential condition (SEQ). At the same time, two different
raters were assigned to the nonsequential condition (NON). We
had raters randomly score either the first or the second segment of
a lesson. Using this design, raters were balanced across conditions,
and the number of times they scored the first or second segment of
a lesson. However, there was a chance that raters would score the
same classroom (see Table 1 for the scoring design).

Measures and rating procedure

We applied the observation system from the Teacher Education
and Development Study–Instruct (TEDS-Instruct). It captures the
TBD with four to six items per dimension using four-point rating
scales (see Table 2 for example items and indicators). Note that all
items in TEDS-Instruct can in principle be scored throughout the
lesson. That is, the observation system does not employ missings by
design.

Scores were assigned using Interact software (Mangold, 2023).
The rating procedure follows a common structure used in many
other observation systems (Casabianca et al., 2013): Observers
are presented with evidence from lessons and classrooms, and
after a certain amount of time, employ a set of indicators to

1 This could vary by a few minutes depending on the length of the lessons
or how they were organized. For example, we did not cut the 24-min lesson
into segments. In general, we tried to find a short break or a change in
teaching methods within a reasonable time frame.

make an informed judgment on the quality of teaching behaviors
and teacher-student interactions. These judgements are provided
through numerical values, which are then aggregated to dimension
scores.

Observers were student teachers in science, technology,
engineering, and mathematics (STEM) programs, and they were at
least in their 3rd year. They were trained extensively over the course
of 1 week by studying the literature as well as the rubric, conducting
video observations, and discussing their results with master raters.

Previous applications of the observation system indicated
some reliability and validity evidence for the interpretation and
use of teaching quality scores. Generalizability Studies yielded
systematic differences across classrooms and lessons (Jentsch et al.,
2022), which suggests that relevant aspects of teaching quality
constructs were captured. Further, little evidence of rater error
or bias was found. Blömeke et al. (2022) explored how teaching
quality is related to students’ learning outcomes in lower secondary
mathematics classrooms. The findings showed that teaching
quality moderately affected students’ achievement in mathematics.
More information on the observation system is available in
Schlesinger et al. (2018).

Statistical analysis

Regarding analytical steps, we follow Casabianca et al.
(2013). First, mean differences and bivariate correlations were
explored across conditions and teaching quality dimensions. Mean
differences were obtained by estimating linear mixed models with
random classroom effects, and a fixed effect for the study condition
(dummy-coded). Bivariate correlations were estimated on the
levels of classrooms and lessons to support the hypothesis that
correlations were non-zero.

Second, G Studies (Cronbach et al., 1972; Shavelson and Webb,
1991) were conducted to provide an in-depth analysis of the scoring
dependability. In this study, we explore the extent to which teaching
quality scores vary with respect to classrooms, lessons, and raters,
by using a partially nested G Study design [(l:c)× r], where lessons
are nested within classrooms (l:c) and scored by different raters (r).
The corresponding variance components for classrooms, lessons
within classrooms, raters, and a classroom-by-rater interaction2

were estimated with linear mixed models using the lme4 package
(Bates et al., 2015) in R statistical software.

Depending on the purpose of the study, we define classrooms
or lessons as the object of measurement, that is, variation between
lessons from the same classroom may be regarded as signal
or error. For instance, if the purpose of a study is to predict
(long-term) student learning, then classrooms are the object of
measurement, and variation between lessons in the same classroom
contributes to measurement error (i.e., classroom-based decisions,
Casabianca et al., 2013). In doing so, we assume that lessons are
exchangeable within classrooms, given a reasonable time frame.
However, if the purpose is to give feedback to teachers for a fixed

2 Estimating a rater-lesson interaction under the sequential condition is
not possible because every lesson was scored by a single rater. For this
reason and because of the small sample size in our study, we refrained from
estimating the rater-lesson interaction altogether.
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TABLE 2 Example items and indicators for the three basic dimensions.

Dimension #Items Example item Example indicators Rating scale

Classroom
management

4 Time on task • The lesson starts/ends on time.
• There are effective strategies for transitions

between activities.

1: Less than 10 min, to.
4: more than 20 min are used for academic
activities.

Student support 4 Dealing with heterogeneity • There is variation in learning materials
and/or content for heterogeneous student
groups.
• There is variation in activities for

heterogeneous student groups.

1: No variation at all, to.
4: high amount and different forms of
variation for heterogeneous students.

Cognitive activation 6 Challenging questions and
problems

• Tasks are appropriate for students’ grade
level.
• Students are engaged in cognitively

demanding activities.

1: Students are engaged in activities with
low demand, to.
4: students are involved in highly
demanding activities.

Observers score items in lesson segments of 20–25 min.

lesson, then lessons are the object of measurement, and variation
between lessons observed in the same classroom provides relevant
information (i.e., lesson-based decisions). This study explores the
effects of presentation order for both classroom-based and lesson-
based decisions.

G Theory, then, allows for the calculation of absolute and
relative error variance and reliability coefficients (G coefficients,
Shavelson and Webb, 1991). Absolute error variance affects
criterion-referenced decisions (e.g., for evaluation purposes), and
relative error variance affects the relative standing of scores (e.g.,
rankings). We chose to estimate the more conservative absolute
measures in the present study. However, the differences are
negligible in this case because rater main effects contributed only
small shares of variability.

Absolute error variance for classroom-based decisions is given
by:

σ2
ε =

σ2
l:c

nl
+

σ2
r

nr
+

σ2
cr

nr
+

σ2
(l:c)r

nlnr

where n is the sample size of the study facet indicated by the
subscript. Here, nl is two, because two lessons from each classroom
were scored, and nr is also two for the sequential condition and
four for the nonsequential condition (see Table 1). The absolute
G coefficient, then, is classroom variance over classroom variance
plus error variance (e.g., Shavelson and Webb, 1991), and the
standard error of measurement is the square root of the error
variance. For lesson-based decisions, both classroom and lesson
variance are considered the object of measurement, that is, the
lessons-within-classrooms component does not contribute to error
variance. Therefore, the absolute G coefficient is classroom variance
plus lesson variance divided by the same denominator as before.
Note, however, that the number of raters scoring a lesson drops to
one and two, respectively, because a lesson was scored by a single
rater in the sequential design, but by two raters in the nonsequential
design.

Results

To address our first research question about whether observers
use rating scales differently across conditions, we compared the
scores obtained from sequential (SEQ) and nonsequential (NON)

scoring procedures, but found no statistically significant differences
(M± SD for SEQ vs. NON, classroom management: 3.20± 0.67 vs.
3.30± 0.60, p = 0.17, Cohen’s d = 0.16, student support: 1.96± 0.56
vs. 2.06 ± 0.53, p = 0.13, d = 0.18, cognitive activation: 2.50 ± 0.63
vs. 2.52 ± 0.59, p = 0.39, d = 0.03). Mean comparisons that
considered only the second segment of each lesson yielded almost
the same findings. In sum, these results indicate only marginal
differences in how raters assign scores across conditions.

Bivariate correlations

Our second research question was concerned with the extent to
which classrooms and lessons rank differently between conditions.
We found that Pearson correlations were almost equally high at
both the classroom (classroom management: r = 0.80, student
support: r = 0.81, cognitive activation: r = 0.73) and the lesson
level (classroom management: r = 0.72, student support: r = 0.65,
cognitive activation: r = 0.70), with small deviations for classroom
management and student support. Note that if estimates were
corrected for measurement error (“disattenuated,” e.g., Casabianca
et al., 2013), correlations would be close to perfect. Overall,
this implies that classrooms and lessons rank similarly across
conditions.

Generalizability study

Regarding our third research question, we conducted a G Study
which decomposed the total variability in scores into classroom,
lesson, and rater effects. The results highlight notable differences
between the sequential and nonsequential scoring procedures
(Table 3). The nonsequential scoring procedure captured larger
shares of between-classroom differences, ranging from one-fourth
to nearly one-third of the total variability in scores across teaching
quality dimensions. In contrast, for the sequential condition,
between-classroom differences accounted for as low as 4% (student
support) to a maximum of 20% (cognitive activation) of the
total variability in scores. Between-lesson differences explained
a significantly larger share of variance under the sequential
procedure, exceeding 40% of the total variability. However, in the
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TABLE 3 Variance decomposition of scores by dimension and condition (percentages of total variability in parentheses).

Sequential Nonsequential

CM SS CA CM SS CA

Classroom, c 0.063 0.010 0.080 0.093 0.088 0.085

(13.9) (3.2) (20.0) (26.0) (31.3) (24.0)

Lesson, l:c 0.195 0.183 0.165 0.065 0.027 0.042

(43.0) (56.8) (41.1) (18.1) (9.7) (11.9)

Rater, r 0.000 0.009 0.002 0.000 0.000 0.000

(0.0) (2.7) (0.5) (0.0) (0.0) (0.0)

cr 0.000 0.000 0.000 0.069 0.003 0.000

(0.0) (0.0) (0.0) (19.5) (0.9) (0.0)

Residual 0.196 0.121 0.154 0.130 0.163 0.228

(43.1) (37.4) (38.4) (36.4) (58.1) (64.1)

Total 0.454 0.323 0.401 0.356 0.281 0.356

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)

CM, classroom management; SS, student support; CA, cognitive activation.

nonsequential condition, this figure dropped to less than 20%, with
10% attributed to both student support and cognitive activation.

Rater effects were consistently low, typically below 5% of
the total variability, except for classroom management in the
nonsequential condition, which indicates that observers score
teaching quality similarly across conditions. Finally, unexplained
variance accounted for approximately 40% in the sequential
condition and up to 63% in the nonsequential condition. These
findings suggest that including additional facets of the study
design or higher-order interaction terms could help explain larger
shares of variance.

Drawing on the variance decomposition, we calculated
standard errors of measurement and absolute G coefficients to
answer the fourth research question on the precision of scores.
Table 4 shows that the precision of scores is similar when scores are
used for lesson-based decision-making (both conditions), or when
the nonsequential scoring procedure is used for classroom-based
decision-making. In these cases, standard errors are approximately
one-fourth of a point on the rating scale. Absolute G coefficients
are below what is typically considered sufficient precision. The
precision of scores, however, is much lower when applying
sequential scoring for classroom-based decision-making.

Discussion

In this study we compared sequential and nonsequential
scoring procedures to explore their impact on how raters assign
scores, as well as dependability and measurement error. Using
an experimental design, we found marginal, statistically non-
significant, differences in teaching quality dimension scores across
conditions. Correlation analysis yielded that lessons and classrooms
ranked very similarly across conditions, with measurement error
taken into account. However, G Studies revealed that the “unit
of analysis” plays an important role in deciding on an optimal
scoring procedure. Given slight adaptations to the original study
design (e.g., recruiting extra raters or observing a few more lessons),
the nonsequential procedure may provide sufficient reliability for
most (low-stake) situations in which classroom observation is used,

that is, giving feedback to teachers, predicting student outcomes,
or evaluating professional development activities. The sequential
procedure, on the other hand, did not provide enough precision to
inform long-term, classroom-based decisions in our study. These
results align with Mashburn et al. (2014), who found that scoring
20-min segments in random order outperformed sequential scoring
in terms of reliability and predictive validity.

However surprisingly, we saw a large rater-by-classroom effect
for classroom management in the nonsequential procedure, which
suggests that raters rank classrooms differently with respect to
how well teachers organize lessons. We would have expected
that such rater effects were more likely associated with student
support or cognitive activation, from which we know that they
are usually more difficult to score (e.g., Praetorius et al., 2014).3

Further research is needed to gather more information on why
scoring procedures make a difference using other methodological
approaches (Ho and Kane, 2013; Mashburn et al., 2014; Quansah
et al., 2024). It is possible that lesson variation is higher when
using the sequential procedure because every lesson was scored
by a single rater, whereas two raters scored each lesson in
the nonsequential procedure. This implies that lessons within
classrooms are likely to be less similar in the sequential condition
(i.e., smaller classroom effects). In other words, an (undesired)
rater-by-lesson interaction could add to the estimated lesson
random effects. Additionally, this suggests that the segments scored
within lessons are more similar in the sequential condition, further
increasing lesson variation, while in the nonsequential condition,
the rater-by-lesson interaction might get canceled out because
different observers produce the scores.

Regarding the limitations of the present study, we see that
statistical power was low due to the small sample size. The
main conclusions derived from the data, however, do not rely
on inferential statistics. We should also acknowledge the large

3 A reviewer suggested that this could be the case because of how
we measured classroom management. That is, items like time on task
(see Table 2) might need more than 20 min to be scored reliably. This
idea is in line with Jentsch et al. (2022) who discuss between-lesson and
within-lesson variability of classroom management and other dimensions of
teaching quality.
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TABLE 4 Standard error of measurement (SEM) and absolute G coefficients by dimension and condition.

Sequential Nonsequential

CM SS CA CM SS CA

Classroom-based

Error variance 0.146 0.126 0.122 0.077 0.042 0.059

SEM 0.383 0.355 0.349 0.278 0.204 0.243

Abs G 0.301 0.075 0.397 0.546 0.678 0.591

Lesson-based

Error variance 0.098 0.096 0.079 0.066 0.055 0.076

SEM 0.313 0.263 0.281 0.258 0.235 0.276

Abs G 0.621 0.597 0.673 0.653 0.648 0.584

CM, classroom management; SS, student support; CA, cognitive activation; Abs G, absolute Generalizability coefficient.

residual components in our G Studies (i.e., unexplained variance).
However, the sample size as well as the study design prevented us
from including additional facets, which might have explained extra
shares of variability in scores. For instance, facets such as lesson
segments, objectives, or teaching methods, which are known to be
associated with systematic variation in teaching quality, could be
considered in future studies.

Conclusion

Findings from this study indicate that observers utilize
rating scales similarly across sequential and nonsequential scoring
procedures. Moreover, bivariate correlations demonstrated that
rankings of classrooms and lessons remain consistent across
conditions. However, G Studies reveal that nonsequential scoring
captures a greater proportion of between-classroom variance,
while sequential scoring captures more variance between lessons.
Additionally, the precision of scores is similar for lesson-based
decision-making across conditions, but lower for classroom-
based decision-making when using the sequential procedure.
These results imply that while both conditions largely produce
similar ratings, the choice of the scoring procedure might have
consequences for the extent to which scores can be used toward
a specific purpose. Therefore, scoring designs should ideally be
informed by both the study purpose and empirical evidence.
Importantly, the latter could depend on the use of a particular
observational instrument in a specific context, which limits the
extent to which evidence can be used to provide general guidelines
informing scoring design.
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