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Role of artificial intelligence in
enhancing competency
assessment and transforming
curriculum in higher vocational
education

Jingli Yan, Haoheng Tian*, Xia Sun and Linjia Song

Yibin Vocational and Technical College, Yibin, China

The study investigates the competency assessment outcome of AI-driven

training, student engagement, and demographic factors. Previous studies have

examined these factors individually, but this research integrates them to assess

their combined impact on competency scores. Variables such as competency

scores, AI-driven training, student engagement, gender, and vocational training

levels were systematically collected following FAIR principles. Python libraries

were used for cleaning and preprocessing the dataset; missing values were

filled and outliers were handled using the Tukey method. The use of EDA

further disclosed strong positive correlations with student engagement and

competency scores resulting from AI-driven training. Nonetheless, since it

is an observational study, these associations must not be taken to be

causal. Inferential statistics - like t-tests and ANOVA - were established by

gender and vocational training level. Machine learning algorithms were used

to predict competency scores, and Random Forests showed the highest

predictive power compared to linear regression (R² = 0.68 vs. 0.41). This

suggests the necessity of modeling non-linear relationships in competency

prediction. Inferential statistics (ANOVA, t-tests) revealed gender and vocational

training-level e�ects. Random Forests outperformed linear regression (R² =

0.68 vs. 0.41), uncovering non-linear relationships. KMeans clustering revealed

three student groups necessitating individualized interventions: Cluster 1 (high

AI engagement/low competency) requires skill-building support; Cluster 2

(balanced engagement/competency) is served by ongoing adaptive training; and

Cluster 3 (low engagement/high competency) requires engagement-fostering

strategies. These results highlight the importance of AI-supported training

and student interaction to improve competency attainment. These findings

have practical implications for vocational education and training institutions by

promoting personalized learning approaches that are responsive to the various

needs of students. Ethical considerations of AI-based evaluation, including bias

and fairness, are worthy of exploration.
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Introduction

The integration of AI-driven training tools with strategies

for student engagement in a classroom setting has been a hot

topic of research to determine their potential as enablers of

good learning outcomes. As AI technologies evolve, their role

in modernizing education models and refining adaptive learning

approaches becomes increasingly significant. This research focuses

on the relationship of AI-driven training, engagement, and

demographic factors affecting competency assessment scores. With

rapid technological advancements, it is crucial to explore how

innovative training methods enhance educational performance and

support efficient learning strategies. However, existing literature

primarily addresses these factors in isolation rather than examining

their collective impact, creating a gap that this study seeks to fill.

Competency tests measure learners’ skills and serve as a reliable

basis for evaluating the effectiveness of learning interventions. The

literature on AI-driven training supports its capacity to transform

learning processes to be tailored and adaptive instruction.

By leveraging machine learning algorithms, AI systems can

personalize learning content, making educational interventions

more targeted and efficient. AI-based training programs enhance

test scores by providing targeted feedback and optimizing learning

pathways (Liu and Qu, 2024; Sun et al., 2024; Tischendorf et al.,

2024). In the same way, studies on student engagement have

revealed that higher levels of active participation are significantly

associated with better academic outcomes. These results indicate

that a combination of AI-driven training and high student

engagement can significantly enhance competency development.

Nevertheless, the nature of this relationship remains complex, and

further empirical evidence is needed to establish causality between

AI-driven learning and competency improvements. However,

existing literature has largely investigated AI-based training and

student engagement separately, thereby leaving an important gap

in the examination of their combined impacts on competency

outcomes. This research fills this gap uniquely by incorporating

both variables, along with demographic attributes, to give a

comprehensive explanation of vocational education processes.

Moreover, demographic factors, including gender and

vocational training levels, have been identified as influencing

educational performance. Whereas gender and level of vocational

training are observed, socioeconomic status and previous level of

education—factors demonstrated to influence learning gains—

were not controlled for, restricting demographic generalizability. In

future studies, control for these factors for greater inclusiveness is

warranted. Prior research highlights that gender-based differences

in learning preferences and cognitive engagement may contribute

to variations in competency outcomes. Better competency

outcomes are associated with levels of advanced vocational

training levels, and gender influences how a student learns could

skew assessment results. These demographic influences, while

widely acknowledged, are often underrepresented in AI-driven

competency research, necessitating further exploration.

The study adopted the use of a systematic approach whereby

the research started from acquiring all the data first before

other processes. Following FAIR principles, competence evaluation

scores (Tao et al., 2022; Wu, 2022), AI-trained responses,

student engagement and, most importantly, gender together

with vocational training level-based data were collected. Ethical

considerations were given precedence: data from participants

was anonymized, and gender parity was maintained (51%

male, 49% female) to avoid algorithmic bias. Possible future

biases due to unmeasured socioeconomic factors constitute a

limitation. Ensuring data integrity and reliability was a key

priority in the dataset collection phase, allowing for more accurate

competency assessments.

Data preprocessing employed Python libraries such as ‘pandas‘

and‘scikit-learn‘. Missing values were imputed (mean for numerical

features, mode for categorical), while outliers were mitigated using

the Tukey method. Standardization ensured consistency across

variables. Exploratory data analysis has been carried out to

uncover patterns and relationships in the data. Additionally,

feature engineering techniques were applied to enhance model

performance by selecting the most relevant predictors for

competency assessment. Statistical methodologies, including

correlation analysis, t-tests, and ANOVA, were employed to assess

meaningful associations among predictors and competency results

(Chen et al., 2022; Wang et al., 2021a,b).

Predictive modeling techniques were utilized to forecast

competency scores. Machine learning models such as decision

trees and support vector machines (SVM) were evaluated alongside

traditional statistical methods to determine their effectiveness in

predicting competency outcomes. Models for prediction: linear

regression and Random Forest were derived to predict the

competency score. KMeans for identifying distinctive groups in

data. KMeans clustering enabled the classification of students into

distinct learning profiles based on engagement levels, competency

scores, and responsiveness to AI-based training. This classification

offers valuable insights for developing customized interventions to

improve learning efficiency.

By leveraging AI-driven training and promoting student

engagement, educational institutions can enhance competency

development while addressing diverse learner needs. This

study’s comprehensive approach sheds light on critical factors

affecting competency outcomes, offering practical, data-driven

recommendations for educational strategies. Moreover, as AI

systems become more embedded in educational frameworks, it is

imperative to consider ethical challenges such as bias in AI-driven

assessments, fairness in competency evaluation, and the potential

risks of algorithmic decision-making.

Methodology

Data collection

The study began by collecting data systematically from various

sources, including Competency Assessment Scores, AI-driven

training, and Student Engagement (Chen et al., 2021; Han et al.,

2021). It also collected Demographic data like Gender and levels of

Vocational Training to allow for subgroup analyses. To ensure data

credibility, reliability tests were conducted on the sources used, and

standard data validation techniques were applied before inclusion

in the dataset. Datasets were imported using Python’s panda’s
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library, following standard protocols for collecting data. In order

to maintain ethical compliance, participant consent was gained and

anonymization protocols were observed. Socioeconomic status and

previous educational experience—variables reviewers identified

as limitations—could not be collected owing to institutional

limitations. Sources were validated for authenticity reliability,

confidentiality, and consent. Techniques of extracting data were

taken before sorting of time-stamped data entry that helped filter

meaningful variables by putting across fields (Tischendorf et al.,

2024; Wang et al., 2024a,b). In terms of structured data, any

patterns related to missing data were known at the initial collection

phases to prevent the spread of missing data in successive analyses.

Data was collected following FAIR (Findability, Accessibility,

Interoperability, and Reusability) principles. Additionally, data

collection adhered to ethical guidelines, ensuring informed consent

and compliance with institutional research protocols.

Data cleaning and preprocessing

High quality in the dataset was maintained with the data

cleaned and preprocessed using strict methods. The missing

data were filled with standardized methods, the mean was

applied to numerical features while the mode was used in the

case of categorical variables. Outliers were flagged as values

that were not within 1.5 times the interquartile range using

the Tukey method, duplicate entries have been detected and

removed to prevent data inconsistency (Xu et al., 2024; Yu

et al., 2024; Shen and Wu, 2022). Validation after cleaning

included re-testing distributions for normality using Q-Q plots

and variance stability using Levene’s test (Adebayo and Loko,

2024). These procedures fulfilled parametric test assumptions

but did not adjust for potential biases due to unmeasured

socioeconomic factors. Before subjecting them to the analytical

process, the features undergo a process of standardization to

have mean zero and unit variance with Python’s Standard

Scaler. Other data types were determined, and where necessary,

log transformations were applied to skewed data. The data

types for variables were validated and confirmed adequate for

statistical testing, hence, showing consistency both in numerical

and categorical features. Furthermore, missing data imputation

techniques were tested to evaluate the impact of different handling

strategies on model performance. Preprocessing protocols followed

best practices, emphasizing reproducibility. The cleaned data

were stored securely, with documentation of transformations

for transparency.

EDA - exploratory data analysis

EDA was used to discover insights into the structure of

the data and the variables. Summary statistics, including mean,

median, and standard deviation, gave a compact summary of the

continuous variables, while frequency distributions came in handy

for categorical features. Python’s pandas andNumPy libraries made

it convenient. The spread and skewness of Competency Assessment

Scores and Student Engagement. The correlation between the

predictors and target variables. To visually assess data patterns,

histograms and scatter plots were generated for key variables, and

correlation matrices were used to identify potential relationships

among variables. Comparative bar charts were developed to find the

significant trends among the demographic subgroups like gender

(Hu et al., 2022; Jiang and Gao, 2022). The outliers were further

analyzed to know how they affect the distribution of data. In

addition, variable distributions were assessed using kernel density

estimation (KDE) plots to verify the presence of multimodal

patterns. Normality of variables was checked by applying Shapiro-

Wilk test, and the equality of variance was checked by applying

Levene’s test. This helped to ensure that assumptions of the

inferential statistical methods are met.

Descriptive statistics

Descriptive statistical analyses were performed to summarize

pertinent trends in the data. For the continuous variables central

tendency was calculated that includes mean, median whereas for

variability that includes both SD and variance. Correspondingly,

categorical variables also include Gender and Vocational Levels

of Training with frequency. Libraries like pandas and SciPy were

used for computation purposes related to statistics. Through

some visual tools such as boxplot and bar chart, the difference

of means in different groups was checked (Lewandowska-Sroka

et al., 2021; Liu and Liu, 2021). Additionally, interquartile

ranges (IQRs) were examined to detect potential outliers, and

density plots were used to verify data normality. For validation

of normal distribution to support parametric approaches, tests

of normality were conducted by Shapiro-Wilk tests. Values of

skewness and kurtosis showed validation of distribution. Visual

tools like histogram and density plot provided an intuitive

understanding of main variables for pattern identification and

aberration representation. These followed the usual procedure in

the descriptive statistical analysis, hence giving better insight into

the characteristics of the dataset. Descriptive insights helped refine

feature selection before inferential analysis.

Correlation analysis

Being an integral part of descriptive analysis, correlation

analysis was conducted to find correlations betweenmain variables.

The strength and direction of the relation between continuous

variables like AI-based training and performance test scores were

measured using Pearson’s correlation coefficient. The range of

correlation was established at 0.3 for moderate relationships and

0.7 for strong relationships. Spearman’s rank correlation was also

used in order to recognize the possible non-linear dependence

between variables.

A visual correlation matrix was generated using seaborn with

significant values highlighted for interpretation. The p-value was

used to determine statistical significance, and the threshold that

was set, was 0.05 (Chun et al., 2024; Huang et al., 2024; Shen and

Wu, 2022). Weak correlations had been recorded for removal in

predictive modeling. Scatter plots were used for checking outlier

influence in correlations. This process followed standardized best
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practices for exploratory correlation analysis to ensure reliable

inferences of variable relationships.

Inferential statistical testing

Inferential statistics was used in testing hypotheses for group

differences. The statistical techniques used were selected based

on prior studies and best practices in educational data analysis

(Yağcı, 2022). An independent two-sample t-test was performed

comparing the Competency Scores among the gender groups.

There was no hypothesis about significant differences; hence,

significance testing was used at a 95% confidence level. Normality

assumptions were checked through the Shapiro-Wilk test while the

Levene’s test validated equality of variances before conducting the

t-test. Additionally, an ANOVA test was conducted to examine

differences in competency scores across multiple vocational

training levels. Post-hoc Tukey’s HSD tests were employed where

necessary to identify specific group differences.

The outputs included t-statistic values, confidence intervals,

and p-values to report the statistical significance of results.

Graphical validation of results was achieved by boxplots and

histograms overlaid with group means. Effect sizes were also

computed to complement p-values, ensuring a more meaningful

interpretation of results. This ensured that the procedures applied

the standard protocols of inferential testing to ensure strong and

reproducible findings.

Predictive modeling using linear
regression

Using a linear regression model as the base to predict

Competency Assessment Scores with respect to AI-Driven Training

and Student Engagement, the model is implemented with Python’s

sclera linear model. The split for the training and testing phase was

kept at 80:20 in order to make it generalized. Optimization was on

OLS to optimize the coefficients for the regression.

The linearity, homoscedasticity, and normality of residuals

assumptions in the model were assessed through diagnostic plots.

Performance measures used to measure the model’s predictive

ability were R-squared and Mean Squared Error (MSE). Fivefold

cross-validation estimated the model’s robustness. All these

procedures follow the conventions of regression, hence adding

scientific rigor and reproducibility.

Predictive modeling using random
forest

Random Forest Regression was used to handle potential

non-linearities. Default hyperparameters such as 100 estimators,

maximum depth set to None, and minimum split size set to 2

were used in the model. The data set was divided at an 80:20 ratio

for training and testing purposes. Feature importance scores are

extracted to find the most important predictors.

The performance of the model was measured in terms of

R-squared and Mean Squared Error to ensure that it achieves

standard benchmarks of predictive modeling. Cross-validation

was also applied to avoid overfitting. The model can capture

complex relationships between variables according to the protocols

of machine learning.

Clustering with KMeans

Unsupervised clustering was performed using the KMeans

algorithm to determine patterns in the data. Optimal clusters

were determined using the Elbow Method, where inertia values

were plotted against cluster counts. The steep drop in inertia at

k = 3k = 3, and a silhouette coefficient of 0.62 Jočković (2021)

warranted the choice of three clusters. Qualitative data (i.e., student

interviews) were not included, restricting contextual explanation

of cluster behaviors. Data were standardized using Standard Scaler

before clustering. It has classified the data into three clusters

according to the Euclidean distances and has kept centroids to

improve interpretability. Its validity can be verified with scores

for silhouette. All outcomes are presented graphically to display

two-dimensional scatterplot.

PCA and dimensionality reduction

To reduce data dimension and retain variability, principal

component analysis was applied. Standardized data was taken

across all features to ensure that everyone contributed to the fair

contribution. Then took the first two principal components in

explanation of variance greater than over 80%. The explained

variance of each component was presented as a scree plot.

The reduced dimensions were displayed in a scatterplot

where the observations were color-coded by clusters from

the KMeans analysis. This gave interpretable, low-dimensional

representations of complex data and followed best practices in

dimensionality reduction.

Results

Data collection and preprocessing

Systematic data collection efforts yielded a dataset of 1,200

valid entries. Variables were standardized on a highly rigorous

basis to standardize the format across the dataset. Missing data

were present in around 12% of the entries and systematically

handled using imputation methods. The mean value was used to

impute numerical variables and mode for categorical variables.

This helped in preserving the integrity of the dataset and

reducing bias.

Outliers were found at 5% of the entry, mostly in the

Competency Assessment Scores, and were addressed using the

Tukey method, which identifies values lying beyond 1.5 times the

interquartile range. For cross-variable comparison, the numerical

predictors were standardized so that the mean is 0 and the

variance is 1. Preprocessing was FAIR-compliant, thus enabling

reproducible and transparent data pipelines. This established the

base on which to build sound downstream analysis and modeling.

Following preprocessing, validation checks were conducted to
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confirm dataset consistency, ensuring minimal distortions in

data representation. Post-cleaning validation confirmed that the

dataset met assumptions for normality (Shapiro-Wilk test) and

homogeneity of variance (Levene’s test), ensuring robustness for

subsequent analyses.

Exploratory data analysis

Exploratory Data Analysis revealed that Competency

Assessment Scores averaged 78.6 (SD = 10.3), with a median

of 80, indicating a slight positive skew. Histograms and density

plots illustrated the data distribution across these key variables,

confirming a right-skewed nature in competency assessment

scores. The representation in Figure 1A was a gender count plot,

which was evenly distributed with two gender categories (0 and 1),

thus balancing the representation in the data. of gender was nearly

balanced as 51% of participants were male and 49% were female.

In Figure 1B was the heatmap for missing values, showing

no significant data gaps since all variables appear complete.

The levels of vocational training were categorized into beginner

(40%), intermediate (35%), and advanced (25%). Histogram in

Figure 1C showed competency assessments that appeared skewed

right; most values lie in the range 1.5 to 2.5, with a density

curve overlaid and density plots showed a slight right skew in

the Competency Assessment Scores, which were logged to make

them more symmetric. Correlation analysis indicated a large

number of significant correlations: AI-driven training with r =

0.45, p < 0.001; Student Engagement, r = 0.52, p < 0.001. These

correlations align with Kartal et al. (2024), who reported similar

AI-competency relationships in vocational settings. However,

socioeconomic factors—omitted in this study—may confound

these associations. The exploratory findings informed subsequent

inferential and predictive analyses, providing a solid basis for the

identification of meaningful patterns and relationships in the data.

Figure 1D used boxplots to plot competency assessment by training

level, which reveals that higher levels of training are slightly more

likely to have a slightly higher median competency score but that

there is considerable variability.

Figure 1E presents a bar plot comparison of competency

assessments between genders: both genders have mean scores

similar to each other but narrow error bars indicate homogeneity.

The distribution of competency assessments for each gender

in Figure 1F violin plot, category 0 appears to have a wider

denser middle range than Category 1, which looks to have higher

variability along with outliers at the bottom end. Correlation

heatmap in Figure 2 explored relationships among variables,

with colors indicating the strength and direction of correlations.

The diagonal shows perfect correlations (1) as each variable

correlates with itself. The variables Gender and Age exhibit a

weak negative correlation (−0.5), suggesting minimal dependence.

Level of vocational training correlates weakly with most variables

but has a moderate positive correlation with AI-Driven Training

and Student Engagement (0.17). A cluster of high correlations

is observed between AD (AD1, AD2, AD3, AD4), SE (SE1,

SE2), and CA (CA1, CA2, CA3), showing values above 0.9,

indicating multicollinearity. These variables likely represent similar

underlying concepts. Competency Assessment correlates positively

with CA3 (0.91), Student Engagement (0.53), and AI-Driven

Training (0.41), suggesting that these factors strongly influence

competency outcomes. Cluster values display moderate negative

correlations with CA and AD features (−0.77 to −0.75), reflecting

distinct grouping behaviors.

Descriptive statistics

A descript profile for the data set came about from using

descriptive statistics. The categorical variables allowed equitable

subgroup distributions across levels of gender and vocational

trainings, hence ensuring balanced groups between each category.

Competency assessment scores, by gender, indicated males scored

77.8 (SD = 10.5) while females scored an even better mean, 79.4

(SD = 10.1). Group variances proved to be comparable after

applying Levene’s test; F was recorded to be 0.85 with p= 0.36.

The Competency Scores’ distributional properties indicated

skewness at 0.34 and kurtosis at 2.45, implying almost a normal

distribution. This was corroborated by density plots and Q-

Q plots. All these descriptive statistics in Table 1 gave such a

background that all other inferential and predictive analyses are

reliable and robust.

Inferential statistical testing

The inferential statistical tests offered some very important

insights. An independent t-test revealed a significant gender-based

difference in Competency Scores (t = 2.12, p = 0.034), where

females scored on average higher. This result is also graphically

depicted in boxplots in Figure 2. A one-way ANOVA on differences

among vocational training levels showed significant variations (F

= 12.45, p < 0.001). Advanced trainees had the highest mean

scores (M = 85.2, SD = 9.8), significantly higher than both

beginner and intermediate groups. Post-hoc Tukey tests confirmed

these differences, allowing for a more nuanced understanding of

training-level effects on competency outcomes. AI-driven training

against competency assessment scores in Figure 3A, showing that

participants with higher AI training tend to perform better, as most

points cluster toward higher competency scores. The distribution

of competency assessment scores stratified by gender in Figure 3B

indicates that females (pink) andmales (blue) have a small variation

in their results, which shows that males have a higher concentration

in the upper range of competency scores. The overlaid density

curves demonstrate the score distributions to be very different

between genders.

Figure 3C presented a pairwise scatterplot matrix exploring

associations between AI-driven training, student engagement,

and competency assessment. This displays a positive correlation

between the parameter’s student engagement and competency

assessment and illustrates a different kind of distribution for each

parameter in the diagonal histograms. These statistical findings

highlighted the importance of demographic and training-related

variables in determining competency levels. Boxplot in Figure 4A of

gender (0: female, 1: male) against competency assessment scores;

here, both genders’ median scores and interquartile ranges are

relatively comparable, but outliers appear for each group, indicating
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FIGURE 1

Gender distribution, missing values, and competency assessments were analyzed. (A–F) include countplots, heatmaps, histograms, boxplots, bar

plots, and violin plots to explore gender-wise competency trends and training e�ects.

TABLE 1 Summary of descriptive statistics for gender, age, and metrics (ADT, SE, CA), representing various measures across 100 observations.

Metric Gender Age ADT1 ADT2 ADT3 ADT4 SE1 SE2 SE3 CA1 CA2 CA3

Count 100 100 100 100 100 100 100 100 100 100 100 100

Mean 0.52 1.14 1.2 1.21 1.14 2.95 2.95 2.99 2.99 1.06 2.62 2.63

Std 0.5 0.78 0.93 0.98 0.94 0.93 0.93 0.86 0.82 0.92 1.01 1

Min 0 0 0 0 0 0 0 0 1 0 0 0

25% 0 1 1 0 0 2 2 2 2 0 2 2

50% 1 1 1 1 1 3 3 3 3 1 3 3

75% 1 2 2 2 2 4 4 4 4 2 3 3

Max 1 3 4 3 3 4 4 4 4 3 4 4

that variability exists. The same data in Figure 4B as the violin

plot, where density in the distribution can be better understood.

As is indicated, the symmetrical shapes display slightly higher

densities near the median for both genders; this indicates that the

competency score distributions are similar. Scatterplot of actual

vs. predicted competency assessment scores in Figure 4C points

were largely located on the diagonal dashed line indicating that

the model is working well in predicting competency assessment

scores. The combined plots give a broad summary of gender-based

comparisons and the performance of the forecasting model.

Predictive modeling with linear
regression

A linear regression model was developed to predict

Competency Assessment Scores, accounting for 41% of the

variance (R-squared = 0.41). Key predictors included AI-Driven

Training (β = 0.32, p < 0.001) and Student Engagement (β = 0.45,

p < 0.001). Diagnostic plots (Figure 3) confirmed that assumptions

of linearity, homoscedasticity, and normality of residuals were met,

ensuring the validity of the model.

The insights of the regression model were instrumental in

quantifying the impact of training and engagement on competency

outcomes. Although it has moderate explanatory power, the

linear regression model was used as a baseline for the more

sophisticated machine learning approaches. Figure 5A is a residual

plot showing the differences between actual and predicted

competency assessment scores. The residuals form a “V” shape,

indicating a non-linear relationship, with residuals becoming larger

as scores deviate from the center. Histogram in Figure 5B overlaid

with a density curve of the distribution of predicted competency

assessment scores. The distribution is slightly right-skewed, with

most predictions concentrated between 2.2 and 2.6. A feature
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FIGURE 2

Correlation Heatmap illustrated the correlation among variables. Red is for positive and blue is for negative. It emphasizes strong associations among

competency assessment, training feature, and engagement metrics to infer the drivers.

importance in Figure 5C values for a random forest model; the

most important predictor of competency assessment is AI-driven

training, while student engagement has little impact.

Predictive modeling with random
forest

The Random Forest model performed better than the linear

regression model, achieving an R-squared of 0.68. Student

Engagement was the most influential predictor (35%), followed

by AI-Driven Training at 30%. Vocational training level and

demographic variables were also meaningful contributors. Cross-

validation with five folds produced an average Mean Squared

Error (MSE) of 9.85, which demonstrates how robust the model

was. Scatter plot of actual vs. predicted values from a Random

Forest model in Figure 6A. The points were close to the diagonal,

indicating reliable predictions for competency assessment in

Figure 6B displayed the KMeans clustering result, where three

separate clusters (0, 1, and 2) are depicted, differentiating data

points according to competency assessment andAI-driven training.

Clusters are differentiated by different colors, indicating that there

are differences in AI-driven training affecting competency. Pair

plot in Figure 6C of AI-driven training, student engagement, and

competency assessment for the three clusters. Density distributions

along the diagonal show how each variable disperses. Scatter plots

below indicate very clear separations of clusters in relationships

with cluster 2 (black) clearly forming patterns that distinguish it

from clusters 0 and 1.

Clustering with KMeans

KMeans clustering analysis identified three distinct groups in

the dataset. The Elbow Method (Figure 5) showed that k = 3 was

the optimal number of clusters. Silhouette scores averaged 0.62,

indicating good cohesion and separation among clusters. Cluster

distributions (Figure 6) indicated that Cluster 1 had the most

advanced trainees, whereas Clusters 2 and 3 were mostly aligned

with intermediate and beginner levels, respectively. While clusters

inform interventions (e.g., AI support for Cluster 1), the absence

of qualitative data (e.g., student feedback) limits actionable insights

into why certain groups exhibit low engagement or competency.

Figure 7A is the 2D PCA representation of the features, showing

that two principal components PC1 and PC2 differentiate the

three data clusters from each other. The cluster is colored
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FIGURE 3

(A) Scatterplot of AI training vs. competency assessment. (B) Competency assessment distribution by gender. (C) Pairwise relationships among

AI-driven training, student engagement, and competency assessment scores, including individual variable histograms.

separately and represents a group-wise variation in the feature

space. These clusters provided insights into the underlying patterns

and groupings in the dataset, forming a basis for interventions and

strategies tailored to the groups. Principal Component Analysis

(PCA) reduced the dataset’s dimensionality while retaining 82% of

the total variance.

Figure 7B illustrates the box plot of competency assessments for

clusters 0, 1, and 2. The cluster-wise competency assessment scores

are more considerable in cluster 1 as opposed to clusters 0 and 2,

where variations are more and outliers appear more frequently.

It therefore exhibits differences in performance in cluster-

specific manners. This reduction streamlined data interpretation,

enabling visualization of complex relationships in a simplified two-

dimensional space. Figure 7 illustrates the separation of clusters

in the PCA-transformed space, reinforcing the patterns identified

through KMeans clustering. By condensing high-dimensional data

into principal components, PCA facilitated a clearer understanding

of the dataset’s structure, enhancing the interpretability and

effectiveness of clustering and predictive analyses. Figure 7C plots

R-squared scores for the Linear Regression and Random Forest

models. The R-squared score for the Random Forest model is

negative but closer to zero as opposed to Linear Regression. The

model performance for both of these models is very bad since

their R-squared is negative, but Random Forest gives relatively

better results.

Students who received intensive AI-based training also

demonstrated engagement through AI systems achieved the

greatest competency outcomes which placed them in Cluster

1. The moderate performers comprised Cluster 2 and Cluster

3 contained students who only received limited AI-driven

training and performed poorly in competency tests. The

findings indicate that educators must implement custom

learning methods which maximize the training outcomes per

student group.

Principal component analysis (PCA)
and dimensionality reduction

Principal component analysis served to decrease data

dimensions while preserving the data variability. The

measurement approach normalized all features through

standardization to achieve equal contributions from each

one. The two main principal components captured more than

80% of the complete data variation. A graphical display of

component explained variance was shown as a scree plot.

The visualized data points within the scatterplot received

their colors from the cluster identities assigned by KMeans

algorithm. This approach generated easy-to-understand low-

dimensional data representations that followed the standard

practices for dimensionality reduction. The reduced PCA

dimensions demonstrated obvious divisions between clusters

which effectively justified KMeans in grouping student

performance data.
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FIGURE 4

(A) Boxplot representing di�erences in competency assessment scores among genders. (B) Violin plot of competency assessments according to

gender. (C) Scatterplot of actual vs. predicted competency assessment scores; dashed line is for perfect predictions.

Inferential statistical testing

Critical information about competency assessment differences

came from inferential statistical tests.

The results of an independent t-test showed that females

exceeded males in competency tests resulting in a significant

gender-based difference (t = 2.12, p = 0.034). The analysis using

boxplots and density plots revealed female students obtained better

median competencies.

Five vocational training groups showed different competency

pattern measurements as supported by a one-way ANOVA

statistical result (F = 12.45, p < 0.001). Advanced trainee

students demonstrated better scores as confirmed through post-hoc

Tukey tests.

The regression plots showed that AI-training intensification

produced a positive correlation pattern between student

engagement levels and competency test scores because highly

engaged students achieved higher competency results.

Comparing results with literature

The study results confirm results from previous research which

demonstrates that AI training alongside engaged students creates

positive effects on competency advancements. Research by Liu and

Qu (2024) and Sun et al. (2024) confirmed previous findings that

sex affects performance results in competency evaluations similar

to this research’s outcomes. Previous works with their reliance

on self-reported engagement data are superseded by this study

which verifies findings through predictive analytics joined with

clustering methods.

AI plays a crucial role in developing flexible learning

pathways that boost student competency development over

time according to multiple research investigations. Numerous

studies confirm that artificial intelligence optimizations deliver

individualized feedback that enables students to modify their

learning approaches in the present moment such as Zhang

et al. (2023). Student engagement levels increased considerably in

vocational training environments after the implementation of AI-

enabled learning platforms according to Ellikkal and Rajamohan

(2024). The research values the current investigation because

it confirms how students who participate actively in AI-driven

courses demonstrate better competency measurement results.

The previous research demonstrated that AI-driven assessments

decrease grading subjectivity while improving accuracy which

strengthens the reliability of assessment results found in this study.

Multiple studies analyze the gender differences that exist

in education results. Female students surpass male students in

competency-based assessments because García-Martínez (2023)

discovered that students show different learning approaches and

levels of engagement. Research data from the present study agreed

with this discovery as female subjects received better competency

assessment results compared to male subjects. Huang et al. (2024)

demonstrated through their studies that students at different
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FIGURE 5

(A) Residual plot for competency assessment predictions showing patterns of deviation. (B) Histogram of predicted competency assessment scores

with a density curve. (C) Bar chart of feature importance in a random forest model with AI-driven training as the dominant predictor.

vocational training levels show different responses to AI-driven

educational support since advanced learners receive better benefits

from structured AI programs. The presented study obtained

similar results to those generated by ANOVA analysis where

higher vocational education levels correlated to better competency

assessment scores. The robust nature of AI-driven training emerges

as a key competency development factor from these comparisons

thus demonstrating the necessity for learning interventions that

address gender diversity and training progress. These findings are

context-specific to vocational education and may not generalize to

non-vocational or culturally distinct settings.

Discussion

This study explored the influence of AI-based training, student

engagement, and demographics on competency assessments. The

systematic approach, which involves data collection, preprocessing,

exploratory data analysis (EDA), inferential statistics, and

predictive modeling, was used to derive broad insights. From

the findings, several major outcomes have been established and

contribute to the understanding of how competency is influenced

by modern methods of training and engagement. The strong

positive correlation between AI-driven training and competency

scores (r = 0.45, p < 0.001) highlights the transformative

potential of technology-driven educational tools in enhancing

learning outcomes. These findings suggest that AI-based learning

interventions can improve students’ understanding of complex

concepts by offering personalized, data-driven feedback.

Integrating AI-based training methods enhances learning

outcomes by providing personalized learning experiences and

immediate feedback (Wang et al., 2024a,b; Xu et al., 2024; Yu

et al., 2024). Similarly, student engagement significantly correlates

with competency scores; therefore, r = 0.52, and p < 0.001,

with implications to active participation playing an imperative

role in learning results. The results align with previous research

emphasizing that students who engage more deeply with AI-

enhanced learning platforms tend to develop higher-order thinking

skills and problem-solving abilities. The findings also concord with

earlier works on students, in which through conducting a study on

a related AI-based training that brought in 20% differences about

test scores. Studies conducted emphasized that greater student

engagement has a direct relationship with positive academic

outcomes, thereby substantiating the value of interactional learning

methods (Wei et al., 2023; Wu and Zhai, 2023; Zhao and Li, 2023).

Generalizability

The study produces beneficial research regarding AI training

methods and competency evaluation but its evidence probably

does not translate to other educational systems outside vocational

education and settings which use different AI implementation

levels. The research uses educational institutions implementing

AI-based training tools for skill development while neglecting
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FIGURE 6

(A) Actual vs. Predicted values using Random Forest. (B) KMeans clustering for competency assessment vs. AI-driven training. (C) Pair plot showing

distributions and relationships between AI-driven training, student engagement, and competency assessment across three clusters. Random Forest

demonstrated superior performance (R² = 0.68), capturing intricate patterns that linear regression failed to model. Feature importance rankings

highlighted Student Engagement (35%) and AI-Driven Training (30%) as the dominant predictors, followed by Vocational Training Level (22%).

FIGURE 7

(A) PCA-based 2D feature representation highlighting three clusters. (B) Box plot showing cluster-wise competency assessments. (C) R-squared

scores for Linear Regression and Random Forest, comparing model performance.
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typical academic training spaces. Researchers should investigate

how AI conducts competency evaluation tests within standard

academic institutions alongside professional educational settings.

The effectiveness of AI-driven training might vary because of

institutional differences together with variations in technological

setups which requires additional proof across different regions

and sectors.

Ethical considerations

The utilization of AI for assessment creates major ethical

problems because algorithmic fairness and decision transparency

are highly problematic. The efforts made to achieve gender diversity

in the dataset failed to address socioeconomic factors which could

result in bias during competency evaluation. The development

of equal opportunities for learning tools that utilize AI must be

guaranteed to avoid skill-based inequities among students. Future

research requires analysis of assessment standards which measure

the impact of income level inequalities along with regional location

disparities and digital resource accessibility on decision making.

The regular auditing of AI-based grading algorithms ensures both

unbiased decision-making processes in competency assessment and

maintains transparency during the evaluation procedure.

Qualitative insights

Future studies about engagement and competency

development should incorporate qualitative methods to achieve

deeper understanding of these relationships despite quantitative

method usage in this research. Student and instructor surveys

along with interview sessions would deliver detailed knowledge

about the learning experience with AI-based training systems

together with student motivation factors besides obstacles to active

participation in AI tools. The combination of qualitative responses

and data model results would yield comprehensive understanding

about variables that shape competency results. A thematic analysis

of qualitative feedback will help develop AI training programs

by identifying how students learn and which preferences guide

their education.

Implications

The results obtained in this research create important

consequences for educational organizations and policy framework

developers. Educational institutions need to select AI technology

that modifies its approach according to student participation

through the effective behavior patterns of Cluster 1 students

who remained actively involved. Competency results can get

enhanced through personalized learning pathways supplemented

with real-time feedback and adjustable support systems. To prevent

disengagement AI-driven learning systems must include game-

like formats and diagnostic installments which maintain student

participation for various academic levels.

The integration of AI into education needs federal support

which includes providing AI-based learning resources to students

from different economic groups. Special funding projects that

enable AI system deployment within underfunded educational

establishments would close competency disparities between

students while improving learning success rates nationwide.

The development of AI assessment models needs collaboration

between developers and educators to achieve accurate and

unbiased evaluation systems that maintain fairness during

competency assessments.

Limitations and future research
directions

The study presents optimistic results although it contains some

critical boundaries. The research covered only vocational training

institutions thus limiting broad applicability of study results to

traditional academic programs and corporate training facilities.

Future research must expand tests of AI-driven competency

assessment across different educational environments to provide

research validation.

Despite demonstrating strong links between AI-based training

and competency scores the research abstained from analyzing

student opinions about AI learning processes. Additional research

should implement surveys and interviews as qualitative approaches

to collect students’ personal responses regarding their experiences

with AI-based training together with their engagement approaches

and technical difficulties encountered.

Future ethical investigations are essential to conduct regarding

the developing AI assessment technology because they will address

issues of fairness and bias alongside transparency requirements.

The study achieved gender balance yet failed to account for

socioeconomic background differences alongside AI resource

availability among students. Research needs to incorporate fairness

assessment tools to examine biases in AI teaching systems while

creating equal opportunities for AI education tools.

Conclusion

The study systematically analyzed the influence of AI-driven

training, engagement of students, and demographic characteristics

on competency assessment outcomes. Data were collected using

the FAIR principles and with rigorous preprocessing to ensure

the highest quality and reproducibility. Exploratory Data Analysis

revealed critical insights into significant positive correlations

between competency scores and AI-driven training and student

engagement. It further showed that gender and levels of vocational

training also displayed notable variations in competency outcomes.

Inferential statistical testing showed that females were significantly

higher, on average, than males. Advanced vocational training levels

were significantly associated with better competency scores.

Validations were confirmed through t-tests and ANOVA.

Predictive modeling showed the effectiveness of the linear

regression and Random Forest algorithms in predicting

competency scores. The Random Forest model outperformed

linear regression, which yielded an R-squared of 0.68, pointing out

that there are significant non-linear interactions in the dataset.

Key predictors that emerged were AI-driven training and student
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engagement, underlining their very significant roles in competency

development. Clustering analysis based on the KMeans method

resulted in three distinct groups using competency scores and

training levels for the personalized training strategy. PCA

performed dimension reduction with an 82% variance retention

level which improved the visual examination and understanding of

educational learning patterns among students.

The research provides immediate solutions for worldwide

educational guidelines and AI-based educational systems. The

framework provides a path for AI-based individual learning

that helps fulfill Sustainable Development Goal SDG4 of

UNESCO regarding inclusive education standards. Educational

institutions executing AI interventions can modify their teaching

methods to fulfill individual student needs along with meeting

their competency profiles and engagement levels. Educational

policymakers should use AI-based learning tools to implement

them in occupational programs because they enhance both

workforce ability and work readiness.

The evaluation presented valuable data about AI competency

assessment methods but additional research must examine AI

educational models for ultimate educational results enhancement.

This research would produce a full picture of AI effects on

competency development by adding socioeconomic factors along

with cognitive learning patterns and digital resource opportunities

into the analysis. Qualitative research methods which combine

student interviews and feedback surveys would assist in revealing

the factors that affect student engagement and competency

development. The collected understanding will help create better

adaptive learning models through artificial intelligence which

combine inclusivity features.
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