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Background: In recent years, the application of machine learning (ML) to predict 
student performance in engineering education has expanded significantly, yet 
questions remain about the consistency, reliability, and generalisability of these 
predictive models.
Objective: This rapid review aimed to systematically examine peer-reviewed 
studies published between January 1, 2019, and December 31, 2024, that applied 
machine learning (ML), artificial intelligence (AI), or deep learning (DL) methods 
to predict or improve academic outcomes in university engineering programs.
Methods: We searched IEEE Xplore, SpringerLink, and PubMed, identifying an 
initial pool of 2,933 records. After screening for eligibility based on pre-defined 
inclusion criteria, we selected 27 peer-reviewed studies for narrative synthesis 
and assessed their methodological quality using the PROBAST framework.
Results: All 27 studies involved undergraduate engineering students and 
demonstrated the capability of diverse ML techniques to enhance various academic 
outcomes. Notably, one study found that a reinforcement learning-based intelligent 
tutoring system significantly improved learning efficiency in digital logic courses. 
Another study using AI-based real-time behavior analysis increased students’ exam 
scores by approximately 8.44 percentage points. An optimised support vector 
machine (SVM) model accurately predicted engineering students’ employability 
with 87.8% accuracy, outperforming traditional predictive approaches. Additionally, 
a longitudinally validated SVM model effectively identified at-risk students, achieving 
83.9% accuracy on hold-out cohorts. Bayesian regression methods also improved 
early-term course grade prediction by 27% over baseline predictors. However, most 
studies relied on single-institution samples and lacked rigorous external validation, 
limiting the generalisability of their findings.
Conclusion: The evidence confirms that ML methods—particularly reinforcement 
learning, deep learning, and optimised predictive algorithms—can substantially 
improve student performance and academic outcomes in engineering education. 
However, methodological shortcomings related to participant selection bias, 
sample sizes, validation practices, and transparency in reporting require further 
attention. Future research should prioritise multi-institutional studies, robust 
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validation techniques, and enhanced methodological transparency to fully leverage 
ML’s potential in engineering education.

KEYWORDS

machine learning, student performance, engineering education, predictive analytics, 
PRISMA

1 Introduction

Machine learning (ML) and artificial intelligence (AI) techniques 
are transforming university education, particularly with the recent 
surge in large deep-learning models. These data-intensive approaches 
allow instructors to analyse large student datasets, recognise complex 
patterns, and predict academic outcomes with steadily increasing 
accuracy (Woolf, 2008; Means et al., 2010; Fahd et al., 2022; Salloum 
et al., 2024). Deep learning, a specialised branch of ML, can model 
non-linear relationships that traditional statistical tools cannot capture 
(Goodfellow et al., 2016). Consequently, predictive systems in higher 
education now integrate behavioral, demographic, and academic 
signals and can trigger real-time interventions for students who are at 
risk of failure (Baker and Inventado, 2014; Tsai et al., 2019).

Engineering programmes present distinctive challenges. Curricula 
are mathematically rigorous, laboratory-intensive, and often associated 
with elevated withdrawal rates. Therefore, Robust early-warning analytics 
play a pivotal role. Conventional dashboards frequently rely on historic 
grade data alone and overlook subtler drivers of success, for example, 
interaction patterns or emotional states (Papamitsiou and Economides, 
2014; García-Machado et al., 2020). In addition, practical adoption of 
ML in engineering education remains uneven. Institutions cite concerns 
about data privacy and governance (Slade and Prinsloo, 2013; Willis 
et al., 2016). Other concerns include limited model transparency and 
challenges in technical integration (Alam, 2023). Issues of algorithmic 
bias and educational equity also require continuous monitoring to ensure 
that predictive tools benefit every learner (Fadel et al., 2019).

Recent literature reviews confirm both the promise and the 
fragmentation of the field. Drugova et al. (2024) reviewed 49 learning 
analytics dashboard studies and noted that rigorous evaluations of 
learning gains were rare. Márquez et al. (2024) surveyed more than 
100 institutional adoption papers and identified 14 organisational and 
ethical enablers. However, the included papers seldom reported 
predictive accuracy. A conference scan by Zhang et  al. (2024) 
concluded that engineering-specific performance-prediction studies 
constitute the next research frontier. Oro et al. (2024) conducted a case 
study in fluid mechanics. They confirmed a correlation between 
platform activity and grades but did not benchmark alternative 
algorithms. These reviews highlight the importance of engagement 
metrics. However, these do not compare the performance of 
contemporary ML or deep-learning models in engineering contexts.

1.1 Rationale and scope

In March 2023, the release of GPT-4 accelerated the diffusion of 
transformer-based tools across higher education (Microsoft Research 
AI4Science, Microsoft Azure Quantum, 2023; Bubeck et al., 2023; Liang 
et al., 2023; OpenAI, 2023). Therefore, after accounting for adoption lag, 
the time frame provides an ideal window to capture the earliest 

peer-reviewed studies that exploited these advances. The present rapid 
review synthesises empirical primary studies published within that period 
that trained ML, deep-learning, or other AI models on student-level data 
to predict or enhance academic outcomes in university engineering 
programmes. The review identifies the algorithms employed, compares 
their predictive accuracy, and analyses the contextual and technical factors 
that shaped successful implementation.

1.2 Research questions

	 1	 Which ML, AI, or deep-learning methods were used in 2024 to 
predict or enhance student performance in university 
engineering programmes?

	 2	 How do these methods compare in predictive accuracy and 
practical effectiveness?

	 3	 Which contextual or technical factors facilitated 
successful deployment?

	 4	 What challenges and ethical issues accompanied adoption, and 
how were they addressed?

1.3 Objectives

	 a	 Synthesise empirical research on ML/DL/AI models that predict 
or enhance student academic performance, engagement, or post-
graduation employability in university engineering programmes.

	 b	 Benchmark their predictive accuracy against traditional or 
baseline methods.

	 c	 Identify contextual and technical enablers of implementation.
	 d	 Highlight gaps and propose directions for future research 

and practice.

2 Methodology

2.1 Review design

The review followed rapid-review guidance aimed at delivering 
timely evidence to decision makers while preserving key elements of 
systematic methods (Tricco et al., 2017). We selected a publication 
window from 1 January 2019 to 31 December 2024 to reflect recent 
developments in machine learning (ML), artificial intelligence (AI), 
and deep learning (DL) techniques in engineering education. This 
six-year span allowed for the identification of trends and 
methodological shifts across pre-and post-GPT-4 studies while 
ensuring manageable review scope. The Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses 2020 statement (PRISMA-
2020) supports such time limits when authors provide a transparent 
rationale linked to the review question (Page et al., 2021).
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2.2 Eligibility criteria

2.2.1 Inclusion criteria
We included only peer-reviewed journal articles published in 

English between January 1, 2019, and December 31, 2024, to ensure 
both contemporary relevance and methodological rigour. We selected 
studies that applied a machine learning, artificial intelligence, or deep 
learning model trained or fine-tuned on student-level data, as this 
criterion ensured direct relevance to individual educational 
outcomes. We  limited the target population to undergraduate or 
post-graduate students enrolled in university engineering 
programmes. We  required each study to report at least one 
quantitative outcome related to academic performance, such as 
grades, exam scores, engagement levels, teaching effectiveness, 
dropout or retention rates, or graduate employability. These outcomes 
allowed us to assess the impact of the models on educational 
achievement and post-graduation trajectories.

2.2.2 Exclusion criteria
We excluded conference papers, book chapters, editorials, opinion 

pieces, and preprints because they lacked formal peer review. 
We focused exclusively on higher education in engineering disciplines 
and excluded studies related to primary or secondary education, as well 
as those outside recognised engineering fields. We  also excluded 
studies that used only descriptive analytics without incorporating 
predictive modelling.

2.3 Search strategy

On 31 December 2024, we conducted comprehensive searches 
in IEEE Xplore, SpringerLink, and PubMed for studies published 
from 1 January 2019 to 31 December 2024. This extended search 
window allowed us to capture a wider body of work evaluating ML/
AI/DL techniques applied to engineering education over multiple 
years. We  applied no filters other than publication year and 
publication type to maximise the retrieval of relevant peer-reviewed 
journal articles. We  identified keywords through prior scoping 
searches and refined them in consultation with an information 
specialist. Table  1 presents the final keyword map used in the 
searches. Table 2 reports the raw hit counts retrieved from each 
database. Search strings combined three concept blocks with 
Boolean operators:

(“machine learning” OR “ML” OR “artificial intelligence” OR “AI” OR “deep 

learning” OR “DL” OR “supervised learning” OR “logistic regression” OR “decision 

trees” OR “neural networks” OR “support vector machines”)

AND

(“student performance” OR “academic achievement” OR “learning outcomes” OR 

“dropout prediction” OR “retention rates” OR “student success” OR “at-risk 

students”)

AND

(“engineering education” OR “university engineering” OR “STEM education” OR 

“technical education” OR “higher education” OR “engineering programs”)

2.4 Study selection workflow

	 a	 We conducted the initial search across Springer, PubMed, and 
IEEE Xplore using the finalised search queries, which yielded 
approximately 2,933 records.

	 b	 We removed 137 duplicates using Zotero, resulting in 2796 
unique records for screening.

	 c	 We reviewed the titles and abstracts of these records to assess 
relevance based on the inclusion criteria, which reduced the 
pool to 135 records.

	 d	 We retrieved the full texts of these 135 studies for 
eligibility assessment.

	 e	 We excluded 108 studies at this stage, primarily due to 
non-engineering populations (n = 75), use of non-ML 
interventions (n = 25), or lack of empirical design (n = 8).

	 f	 After full-text screening, we included 27 studies that met all 
criteria in the review.

2.5 Data extraction strategy

We used a structured extraction form comprising 18 fields to 
capture bibliographic information, participant characteristics, study 
design, data sources, machine learning algorithms, hyperparameters, 
validation strategies, performance metrics, comparison models, and 
reported limitations. One reviewer extracted the data, and a second 
reviewer independently verified each entry.

2.6 Data synthesis

We did not conduct statistical pooling due to the heterogeneity of 
study designs, outcomes, and reporting formats. Instead, 
we performed a narrative synthesis. We tabulated quantitative results 
to enable comparison across studies. We used Zotero for reference 
management and Excel for data extraction and tabulation.

TABLE 1  Main concepts and related keywords.

Concept Related keywords

Machine learning Machine learning, ML, artificial intelligence, AI, deep 

learning, DL, supervised learning, logistic regression, 

decision trees, neural networks, support vector machines

Student performance Student performance, academic achievement, learning 

outcomes, dropout prediction, retention rates, student 

success, at-risk students

Engineering 

education

Engineering education, university engineering, STEM 

education, technical education, higher education, 

engineering programs

TABLE 2  Database search results for systematic review.

Database Date accessed Search results

PubMed 31 December 2024 259

IEEE Xplore 31 December 2024 751

SpringerLink 31 December 2024 1923
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3 Results

27 studies met  all eligibility criteria and constitute the 
evidentiary base of this rapid review (Figure 1). These studies 
represent four national contexts and 11 distinct engineering 
sub-disciplines, employing varied machine learning pipelines to 
address a range of educational outcome constructs. Table  3 
contains key study details. The Supplementary Materials contain 
data extraction tables and exclusion records for the 135 
excluded studies.

3.1 Engineering context and level

All 27 eligible studies focused on undergraduate engineering 
students, even though the inclusion criteria also permitted 
postgraduate studies. Despite this flexibility, no postgraduate-focused 
studies met the full set of eligibility criteria. The consistent 
undergraduate focus is pedagogically significant: it aligns with a stage 
of education where early interventions can yield substantial long-
term effects on student learning trajectories, retention, and 
career outcomes.

FIGURE 1

PRISMA guideline flowchart.
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TABLE 3  Summary of included studies.

Reference Purpose Methodology ML techniques Key findings Contributions

Hare et al. (2024) Integrate ITS within a 

serious game to 

enhance learning in 

digital logic

Pre/post experimental 

design with 54 students

Reinforcement learning 

within the PING system

Improved engagement 

and performance with 

PING-enhanced game

Provides a model for 

integrating ITS within serious 

games and insights into game 

design

Hu et al. (2024) Utilise AI for real-time 

behavior analysis to 

enhance teaching 

effectiveness.

Implementation of IEDS 

across eight classes with 413 

students

CNNs with CBAM, 

K-means clustering

AI-assisted teaching 

improved effectiveness 

by 8.44%; veteran 

teachers benefited 

more.

Developed a privacy-

protected AI model for 

behavior analysis, 

demonstrated teaching 

improvement.

Ren and Yu (2024) Introduce LASA for 

long-term student 

performance prediction

Developed LASA using an 

8-year dataset from Tsinghua 

University

LASA (LAM and LTDA), 

SVM, SHAP

LASA outperformed 

ProbSAP and SFERNN 

by 6.8 and 6.4%, 

respectively, and 

provided interpretable 

insights

First method addressing 

heterogeneity and 

distribution shifts, an 

interpretable prediction 

framework

Jayachandran and Joshi 

(2024)

Develop a customised 

SVM model to predict 

the employability of 

engineering students.

Developed and evaluated a 

customised SVM with 1,647 

students

Feature Selection using 

TLBO, Customised SVM

Customised SVM 

achieved 87.80% 

accuracy, 

outperforming standard 

SVM

Novel feature selection 

approach, significant 

accuracy improvement in 

employability prediction

Rico-Juan et al. (2024) Study the influence of 

personality and LMS 

usage on learning 

performance

Cross-sectional 

observational predictive 

study with 322 students

ARD, Decision Tree, 

Random Forest, 

AdaBoost, SVM

ARD predicted grades 

with RMSE 1.43, 

improving by 27% over 

baseline

Demonstrates the use of LMS 

data and personality traits in 

predicting academic 

performance

Köhler et al. (2023)

Predicting students’ 

success in an 

introductory 

programming course 

using student 

background features

Retrospective cohort study 

with 2,372 undergraduate 

students across 20 

engineering programs in 

Chile

SVM (radial), Multiple 

Linear Regression 

(MLR), Random Forest 

(RF), XGBoost (XGB)

SVM achieved highest 

accuracy (68.6%) using 

academic, 

demographic, and 

program-related 

features

Demonstrated that 

background data can be used 

to predict performance; 

strong validation design 

using large dataset

Algarni et al. (2023)

Identifying at-risk 

students in higher 

education based on 

academic and 

demographic data

Retrospective cohort study 

with 743 undergraduate 

students in Saudi Arabia

Decision Tree, SVM, 

Naive Bayes, Random 

Forest

Best model not 

specified; key predictive 

features were math and 

computer science 

modules

Early prediction using 

institutional student data; 

practical application of risk 

detection via SIS systems

Fahd et al. (2022)

Predicting weighted 

course scores of 

engineering 

mathematics students 

using a novel MARS 

model

Retrospective cohort (5-year 

data)

MARS, Decision Tree 

Regression, KRR, KNN

MARS model 

outperformed others in 

RMSE and R2 metrics

Introduces MARS model 

with long-term data span

Nabizadeh et al. (2022)

Early prediction of 

students’ final grades in 

a gamified engineering-

related course

Retrospective cohort with 

679 students

KNN, Random Forest, 

Naive Bayes

Achieved 78.02% 

accuracy after 4 weeks 

of data

Demonstrates early 

prediction capabilities with 

feature selection and class 

balancing

Poudyal et al. (2022)

Predicting academic 

performance using a 

hybrid 2D CNN 

approach

Cross-sectional study
Hybrid 2D CNN, KNN, 

NB, DT, LR

CNN outperformed all 

baseline models in 

accuracy

Introduces novel image-

based prediction method 

with improved performance

(Continued)
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TABLE 3  (Continued)

Reference Purpose Methodology ML techniques Key findings Contributions

Musaddiq et al. (2022)

Predicting the impact 

of academic and spatial 

behaviors on student 

performance

Cross-sectional with 

experimental validation

LSTM, SVM, RF, NB, 

DT, MLP

LSTM achieved highest 

accuracy (90.9%)

Combines multimodal data 

sources; strong LSTM-based 

results

Al-Ahmad et al. (2022)

Improving 

performance prediction 

of low-expectation 

teams in software 

engineering projects 

using swarm 

intelligence

Retrospective cohort with 74 

teams
PSO-KNN

Accuracy improved 

over baseline models

Captures both product and 

process features from partial 

SDLC data

Opazo et al. (2021)

Comparison of ML 

models to predict 

first-year university 

dropout across two 

Chilean institutions

Retrospective cohort
Gradient Boosting, 

others

Gradient boosting had 

best AUC; others not 

detailed

Highlights feature 

importance differences across 

universities

Nabil et al. (2021)

Predicting course-level 

academic success using 

deep learning and 

traditional ML

Retrospective cohort 

(n = 4,266)

DNN, DT, RF, GB, LR, 

SVC, KNN

DNN achieved 89% 

accuracy; others not 

specified

Uses large dataset; compares 

multiple models and 

sampling techniques

Iatrellis et al. (2021)

Predicting student 

outcomes via a two-

phase clustering + 

classification approach

Observational case study
K-Means, SVM, DT, 

ANN, RF, NB

High accuracy 

reported, but no 

specific metrics

Unsupervised-supervised 

hybrid tailored to student 

subgroups

Manjushree et al. (2021)

Studying impact of 

technical skills on 

employability using ML 

classifiers

Cross-sectional (n = 133)
SVM, NB, LR, DT, RF, 

AdaBoost, ANN

RF: Accuracy 70%, 

F1-score 0.85

Demonstrates use of 

correlation-based feature 

selection

Alturki and Alturki 

(2021)

Predicting academic 

performance and 

awards using 

educational data 

mining

Cross-sectional 

observational (n = 300)

Naïve Bayes, C4.5, 

CART, LADTree, Bayes 

Net, RF

Naïve Bayes = highest 

general accuracy; 

RF = best for honor 

class

Identifies interpretable 

features for early intervention

Jamjoom et al. (2021)

Predicting at-risk 

students using self-

efficacy and ML in 

intro programming

Case study
Decision Tree, kNN, 

Naïve Bayes, SVM

DT and SVM achieved 

99.18% accuracy

Tested multiple classifiers; 

practical focus on self-

efficacy

Kumar and Kavitha 

(2021)

Using ANN + Lion 

Optimization 

Algorithm to predict 

student grades and 

dropout

Experimental design using 

real data

ANN-based regression, 

CNN, SVM, GoogLeNet

MAE: 1.05; RMSE: 1.33; 

MSE: 1.78

Combines hybrid models; 

compares baseline metrics

Adnan et al. (2020)

Creating an intelligent 

and adaptive mobile 

learning model using 

DL

Experimental application 

study (n = 850)
ANN, Random Forest

ANN accuracy ranged 

from 80 to 90.77%

Real-world deployment; 

ANN outperforms traditional 

ML

Naseer et al. (2020a)

Predict coding 

intricacy in team-based 

software engineering 

projects

Experimental study (74 

teams)

Random Forest, 

AdaBoost, LogitBoost
Accuracy: 85.14%

Real project data; highlights 

complexity in team dynamics

(Continued)
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3.1.1 Computer and software engineering
The majority of studies targeted domains within computer or 

software engineering. Rico-Juan et  al. (2024) analyzed first-and 
second-year computer engineering students enrolled in mathematics 
courses, aiming to predict final grades using ensemble machine 
learning. Similarly, Hare et al. (2024) implemented a reinforcement 
learning-based intelligent tutoring system (ITS) within a serious game 
for ECE students enrolled in a digital logic lab, reporting improved 
learning outcomes across mixed-year cohorts.

Naseer et  al. (2020a, 2020b) conducted empirical studies on 
software engineering teams, emphasizing coding intricacy prediction 
and early performance evaluation. Both studies leveraged real-world 
project data from 74 undergraduate teams, providing a rare look into 
collaborative dynamics and performance variation in team-
based learning.

Al-Ahmad et al. (2022) focused on software engineering team 
projects as well, but extended the scope by applying swarm intelligence 
(PSO-KNN) to low-performing teams, emphasizing prediction in 
early stages of the Software Development Life Cycle (SDLC).

3.1.2 General and multidisciplinary engineering 
cohorts

Several studies examined broader or multidisciplinary engineering 
cohorts. Jayachandran and Joshi (2024) developed a customized SVM 
model for predicting employability using data from five engineering 
departments in India. Likewise, Köhler et  al. (2023) explored 
predictors of programming success using data from 2,372 students 
across 20 engineering programs in Chile, providing strong external 
validity through large-scale, multi-program sampling.

Jayachandran and Joshi’s work emphasized the relationship 
between academic performance, skill indicators, and employability 
outcomes, a concern echoed in studies such as Manjushree et  al. 

(2021) and Adnan et  al. (2020), who explored employability and 
m-learning performance, respectively.

3.1.3 Electrical and computer engineering (ECE)
Ren and Yu (2024) focused on second-year electrical engineering 

students in circuits courses and introduced LASA, a novel framework 
addressing long-term performance prediction using an eight-year 
dataset from Tsinghua University. The approach was notable for handling 
distribution shifts and model interpretability through SHAP explanations.

Poudyal et al. (2022) and Algarni et al. (2023) also addressed ECE 
students, with the former using a hybrid 2D CNN and the latter 
identifying at-risk learners based on academic modules such as 
mathematics and computer science.

3.1.4 Engineering design and applied learning
Hu et  al. (2024) addressed the engineering design context by 

deploying an AI-enhanced classroom monitoring system across eight 
cohorts. Their focus on real-time behavioral data and differential 
impacts across teacher profiles provides insights into applied pedagogy 
in design education.

Alturki and Alturki (2021) explored predictors of both academic 
performance and honors award eligibility, blending technical and 
behavioral metrics, while Freitas et  al. (2020) and Lottering et  al. 
(2020) extended this focus to institutional dropout prediction using 
large datasets and socioeconomic factors.

3.1.5 National and institutional decision-making 
contexts

While most studies targeted classroom or course-level outcomes, 
Nieto et al. (2019) and Sultana et al. (2019) broadened the scope to 
institutional and national concerns. Their use of institutional data 
(e.g., graduation rates, LMS logs) and focus on strategic 

TABLE 3  (Continued)

Reference Purpose Methodology ML techniques Key findings Contributions

Freitas et al. (2020)

Dropout prediction via 

IoT + ML using 

socioeconomic data

Retrospective cohort 

(n = 1,549)

DT, LR, SVM, KNN, 

MLP, DL

Accuracy: 99.34%, 

Recall: 100%, Precision: 

98.69%

High predictive power with 

practical IoT implementation

Lottering et al. (2020)

Identify at-risk 

students using 

academic/biographical 

data

Retrospective cohort 

(n = 4,419)

RF, SVM, DT, NB, KNN, 

LR
RF Accuracy: 94.14%

Multi-model comparison on 

large dataset

Naseer et al. (2020a)

Predict team project 

performance early in 

software course

Case study (380 students, 74 

teams)

J48, NB, ANN, LR, SLR, 

RIPPER, SMO

Accuracy: 89% (J48 

best)

Focus on early prediction in 

team settings

Adnan et al. (2020)

Improve m-learning 

outcomes using 

weighted DL models

Experimental Deep ANN, RF, others
ANN & RF best; exact 

metrics not specified

Adaptive learning model with 

behavioral feature input

Nieto et al. (2019)

Use ML to support 

institutional decision-

making

Observational case study DT, LR, RF
RF = best performance 

(ROC, accuracy)

Institutional policy insights 

using real data

Sultana et al. (2019)

Predict academic 

performance using 

deep learning

Experimental DNN, DT, SVM, RF, NB
High accuracy; DNN, 

DT best

Uses LMS and academic logs; 

strong comparative ML study
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decision-making highlights the emerging role of machine learning in 
educational policy and administration within engineering education.

3.2 Study design and sample size

The study designs across the 27 included papers varied 
considerably, each selected to suit the specific research objectives, data 
availability, and institutional context. This methodological diversity 
reflects the broader landscape of engineering education research, 
where both predictive modeling and intervention assessment are 
explored using machine learning approaches. Sample sizes ranged 
from small-scale experimental groups of under 100 participants to 
large institutional datasets exceeding 4,000 students, enhancing the 
generalizability of some findings while preserving the depth of others.

3.2.1 Experimental and quasi-experimental 
designs

Pre-and post-test experimental designs were employed by studies 
such as Hare et  al. (2024), who investigated the integration of an 
intelligent tutoring system into a serious game with a sample of 54 
students. Similarly, Adnan et al. (2020) evaluated a deep learning-
based mobile learning application in an experimental study with 850 
students, while Kumar and Kavitha (2021) conducted an experimental 
application using real data to assess dropout prediction with hybrid 
ANN-CNN methods.

Quasi-experimental approaches also emerged. Hu et al. (2024) 
implemented the Intelligent Engineering Design System (IEDS) across 
eight classes, involving 413 students. Musaddiq et al. (2022) validated 
the predictive performance of academic and spatial behavior models 
using a cross-sectional design augmented by experimental validation.

3.2.2 Retrospective cohort designs
Retrospective cohort designs were the most frequently employed 

study type. These included Jayachandran and Joshi (2024), who 
analyzed data from 1,647 students over multiple years, and Köhler 
et al. (2023), whose large dataset spanned 2,372 students across 20 
engineering programs in Chile. Other notable examples include 
Algarni et  al. (2023) (n = 743), Al-Ahmad et  al. (2022) (5-year 
dataset), Nabizadeh et  al. (2022) (n = 679), Freitas et  al. (2020) 
(n = 1,549), and Lottering et  al. (2020) (n = 4,419). These designs 
leveraged institutional records to model dropout risks, grade 
predictions, and course success using machine learning algorithms.

3.2.3 Longitudinal and sequential cohort designs
Ren and Yu (2024) applied an eight-year sequential cohort design 

using data from Tsinghua University to evaluate the LASA framework for 
predicting student performance, addressing distribution shifts and 
heterogeneity in educational trajectories. Similarly, Al-Ahmad et  al. 
(2022) employed a five-year retrospective data stream to train a MARS-
based model for engineering mathematics performance prediction.

3.2.4 Cross-sectional and observational studies
Several studies adopted cross-sectional predictive designs, 

including Rico-Juan et  al. (2024) (n = 322), Poudyal et  al. (2022), 
Manjushree et al. (2021) (n = 133), and Alturki and Alturki (2021) 
(n = 300). These designs offered a snapshot of academic performance 

by linking learner behaviors and background variables with 
performance outcomes.

Observational and case study methods were used by Iatrellis et al. 
(2021) and Nieto et al. (2019), among others, to explore institutional 
decision-making and subgroup classification in academic contexts. 
Additionally, Sultana et al. (2019) and Naseer et al. (2020a, 2020b) used 
observational and case-based setups with deep learning to predict 
academic outcomes and team performance in engineering courses.

3.3 Predicted outcomes

The 27 studies included in this review targeted a wide range of 
educational outcomes, reflecting the diversity of institutional priorities 
and research objectives in engineering education. These outcomes 
spanned cognitive performance, academic persistence, skill 
acquisition, and employability, each chosen based on available data 
sources and the intended use of predictions (e.g., early intervention, 
personalization, or institutional planning).

3.3.1 Course grades and end-of-course 
performance

Many studies focused on predicting students’ final grades or 
end-of-course marks. For instance, Rico-Juan et al. (2024) predicted 
end-of-course marks using LMS usage and personality traits, while 
Köhler et  al. (2023) modeled pass/fail outcomes in programming 
courses using academic history and demographic factors. Similarly, 
Al-Ahmad et al. (2022) used a novel MARS model to predict weighted 
course scores in engineering mathematics, and Nabizadeh et al. (2022) 
achieved 78.02% accuracy in predicting final grades within the first 
four weeks of a gamified course.

3.3.2 Exam outcomes and risk categories
Several studies predicted specific exam-related outcomes. Ren and 

Yu (2024) categorized students into at-risk vs. non-risk groups based 
on long-term trends in electrical engineering exam performance. Hu 
et al. (2024) used AI-driven behavior monitoring to improve and 
predict course exam means, demonstrating significant gains in 
teaching effectiveness. Poudyal et  al. (2022) and Musaddiq et  al. 
(2022) also predicted academic achievement using CNN and LSTM 
models respectively, with the latter reaching 90.9% accuracy.

3.3.3 Academic success and dropout risk
Dropout prediction and general academic success were key targets 

in multiple studies. Freitas et al. (2020) combined IoT and machine 
learning to achieve near-perfect accuracy (99.34%) in identifying 
at-risk students based on socioeconomic data. Lottering et al. (2020) 
used academic and biographical data to predict dropout with 94.14% 
accuracy, while Opazo et al. (2021) highlighted differences in feature 
importance across institutions using gradient boosting.

3.3.4 Employability and job placement
Jayachandran and Joshi (2024) predicted post-graduation 

employability based on academic records, achieving 87.80% accuracy 
with a customized SVM model. Manjushree et  al. (2021) also 
examined employability using multiple classifiers, emphasizing the 
role of technical skills.
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3.3.5 Engagement, problem solving, and learning 
behaviors

Other studies focused on behavioral and affective outcomes. Hare 
et al. (2024) measured engagement and problem-solving gains in a 
digital logic course using reinforcement learning, while Adnan et al. 
(2020) and Kumar and Kavitha (2021) modeled adaptive learning and 
dropout using deep learning architectures. Jamjoom et  al. (2021) 
predicted performance using self-efficacy and introductory 
programming metrics, achieving over 99% accuracy.

3.3.6 Institutional planning and group 
performance

Studies like Nieto et  al. (2019) and Iatrellis et  al. (2021) used 
predictive models to support institutional decision-making and 
student subgroup classification. In parallel, Naseer et  al. (2020a, 
2020b) predicted team project performance in software engineering 
contexts, using real-time product and process data to estimate team 
coding intricacy and project outcomes.

3.4 Predictor sources

The 27 studies reviewed drew on a diverse range of predictor 
sources to model student performance and related outcomes. These 
inputs ranged from behavioral telemetry and academic records to 
socio-demographic data and psychometric traits, enabling 
multifaceted machine learning pipelines suited for various 
educational contexts.

3.4.1 Behavioral telemetry and digital interaction 
data

A subset of studies utilized behavioral telemetry—data collected 
from students’ real-time digital interactions—as a central predictor. 
Hare et al. (2024) integrated reinforcement learning into a serious 
game platform (PING) and tracked detailed user interactions to 
enhance problem-solving in digital logic. Hu et al. (2024) applied 
facial recognition and attention-tracking via CNNs and CBAM 
modules to evaluate and improve real-time teaching effectiveness. Ren 
and Yu (2024) collected student interaction data from Rain Classroom, 
an interactive learning tool used at Tsinghua University, which allowed 
real-time capture of in-class responses and engagement metrics. 
Additional behavioral sources such as LMS activity, mouse movement, 
and time-on-task were frequently paired with academic and 
demographic data to refine predictive accuracy (Musaddiq et al., 2022; 
Rico-Juan et al., 2024).

3.4.2 Academic history and institutional records
Academic history was one of the most consistently employed 

predictor types across studies. It included GPA, course grades, 
assessment scores, or longitudinal performance indicators. For 
instance, Al-Ahmad et al. (2022) and Köhler et al. (2023) used 
historical academic records in mathematics and programming, 
respectively, to predict final course success. Similarly, Jayachandran 
and Joshi (2024) and Ren and Yu (2024) leveraged academic 
performance histories to enhance employability prediction and 
early risk detection. Nabizadeh et  al. (2022) demonstrated the 
value of early grade data—predicting final performance with only 

four weeks of input. In multiple cases, academic records were 
embedded into ensemble models alongside behavior or 
demographic inputs.

3.4.3 Socio-demographic and biographical 
variables

Several studies incorporated socio-demographic predictors 
such as gender, age, income proxy variables (e.g., tuition status), 
parental education, and high school background. These variables 
were instrumental in explaining disparities in educational 
trajectories, especially when combined with academic indicators. 
Jayachandran and Joshi (2024) included age at enrollment and 
family background in their SVM-based employability model. 
Köhler et al. (2023) and Algarni et al. (2023) used demographic 
variables in performance risk assessments. Freitas et  al. (2020) 
achieved extremely high accuracy in dropout prediction using IoT 
data enriched with socioeconomic indicators.

3.4.4 Psychometric and affective data
Few studies explicitly utilized psychometric data, but those that 

did highlighted its value. Rico-Juan et al. (2024) combined Big Five 
personality trait scores with LMS activity data to predict end-of-
course marks in mathematics, reporting a 27% improvement over 
baseline models. Psychometric measures captured self-regulatory and 
motivational aspects often overlooked by performance metrics alone. 
Additionally, Jamjoom et al. (2021) used self-efficacy beliefs to predict 
success in programming courses, attaining nearly perfect classification 
accuracy. These predictors offered insights into student engagement, 
persistence, and potential for growth beyond observable 
academic behavior.

3.4.5 Combined or hybrid inputs
Several studies adopted multimodal inputs, combining academic, 

behavioral, and socio-demographic data streams into hybrid models. 
For example, Musaddiq et al. (2022) integrated spatial behavior and 
academic activity using LSTM networks, while Adnan et al. (2020) 
employed mobile-based learning logs alongside structured institutional 
data to model personalized learning trajectories. These hybrid 
approaches allowed for a richer modelling of the learning environment, 
particularly where real-time feedback or personalization was a goal.

3.5 Machine-learning pipelines

The reviewed studies adopted diverse machine learning (ML) 
pipelines, with several applying multiple models to strengthen 
predictions and enhance generalisability.

3.5.1 Reinforcement learning (RL)
Hare et al. (2024) integrated a hierarchical reinforcement learning 

(RL) agent named PING into a Unity-based intelligent tutoring system 
for a digital logic game. The agent provided adaptive scaffolding by 
analysing real-time student interactions and responding with targeted 
feedback, which led to improved student engagement and learning 
outcomes. RL enabled the system to dynamically adapt to student 
behavior, making it well-suited for educational contexts that require 
personalised guidance.
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3.5.2 Gradient boosting algorithms
Gradient boosting methods such as XGBoost and AdaBoost 

were employed by Jayachandran and Joshi (2024) to enhance 
employability prediction accuracy. These models were further 
optimised using the Guided Best Sinh–Cosh Optimiser and 
Teaching–Learning-Based Optimisation (TLBO) to select critical 
features. This dual optimisation pipeline significantly improved 
model performance by reducing noise from less relevant predictors, 
particularly in the context of complex socio-academic variables 
affecting employability.

3.5.3 Support vector machines (SVMs)
SVMs were implemented in both Ren and Yu (2024) and 

Jayachandran and Joshi (2024). Ren and Yu employed an RBF-SVM 
model within their LASA framework to maintain predictive accuracy 
under temporal and distributional shifts. Jayachandran and Joshi 
developed a customised RBF-SVM with a radial Euclidean kernel, 
fine-tuning hyperparameters (e.g., C = 100) to balance overfitting and 
generalisation. Both studies demonstrated the robustness of SVMs in 
handling sparse and imbalanced educational datasets.

3.5.4 Bayesian and linear regressors
Rico-Juan et  al. (2024) used the Automatic Relevance 

Determination (ARD) technique, a Bayesian linear regressor that 
assigns weights based on feature importance. This method proved 
particularly useful for high-dimensional and sparse datasets. ARD 
improved predictive performance over traditional baselines and was 
validated using the Wilcoxon signed-rank test, highlighting its 
applicability for early prediction of course outcomes.

3.5.5 Deep convolutional neural networks (CNNs) 
with attention

Hu et al. (2024) implemented a CNN architecture enhanced with 
the Convolutional Block Attention Module (CBAM) to support 
emotion recognition in real time. The system, part of the IEDS 
framework, processed student facial imagery to detect affective states 
and provide responsive feedback during engineering design tasks. This 
attention-based deep learning model improved the responsiveness 
and personalisation of AI-assisted teaching by helping the system 
prioritise emotionally significant features.

3.5.6 Validation and tuning approaches
Validation strategies varied substantially. Rico-Juan et al. (2024) 

applied 10-fold cross-validation to ensure robust generalisation, while 
Ren and Yu (2024) used temporal hold-out validation, training on past 
student cohorts and testing on a 2020 dataset to simulate real-world 
deployment. Hare et al. (2024) employed online validation with live 
student data, and Hu et al. (2024) used pre-trained models validated 
on FERPlus, CK+, and ExpW emotion datasets. Notably, no study 
implemented nested cross-validation for hyperparameter tuning, 
raising the potential for overestimation of performance in some cases.

3.6 Predictive performance

The selected studies report diverse levels of predictive success, 
reflecting variation in modelling techniques, feature selection, and 
validation strategies.

3.6.1 Reinforcement learning in digital logic 
laboratory

Hare et  al. (2024) evaluated a reinforcement learning-based 
intelligent tutoring system (PING) embedded in a serious game for 
digital logic instruction. Across successive cohorts, students using 
PING outperformed those in traditional FPGA labs by an average of 
12 points on post-tests (Cohen’s d = 1.15, p = 0.02). Additionally, the 
number of retries per lab task dropped by two-thirds, indicating 
both improved learning efficiency and conceptual mastery. The 
strong effect size underscores the capacity of reinforcement learning 
to personalise pacing and enhance outcomes in 
engineering education.

3.6.2 Intelligent engineering design and emotion 
recognition

Hu et  al. (2024) deployed the Intelligent Engineering Design 
System (IEDS), which integrates CNNs with the Convolutional Block 
Attention Module (CBAM) and real-time emotion tracking. Students 
instructed via IEDS scored an average of 82.1% on exams, versus 
75.7% under conventional instruction—an improvement of 8.44 
percentage points. The system’s emotion recognition module (ERAM) 
achieved 87.6–94.5% accuracy, processing 1,000 frames in under two 
seconds. While the emotional feedback loop supported teacher 
awareness, performance gains were primarily linked to the 
AI-generated design recommendations.

3.6.3 Employability prediction using 
feature-optimised SVM

Jayachandran and Joshi (2024) optimised a support vector 
machine (SVM) model through Teaching–Learning-Based 
Optimisation (TLBO), selecting a compact 10–10 feature subset. Their 
model achieved 87.8% prediction accuracy (AUC = 0.714), surpassing 
baseline models by 13.4 percentage points. Key features included 
academic metrics, project participation, behavioral indicators, and 
socio-demographic data. The study demonstrated the effectiveness of 
combining domain-specific feature selection with tailored kernel 
functions in career-oriented prediction tasks.

3.6.4 At-risk classification with temporal 
validation

Ren and Yu (2024) validated their LASA framework using a 
temporally split dataset from Tsinghua University. On the 2020 
hold-out cohort, the model achieved 83.9% classification accuracy, 
outperforming the leading baseline (Probsap) by 7.9 percentage 
points. Performance was consistent across eight yearly cohorts, with 
an average accuracy of 80.9%, suggesting strong generalisability 
under distributional shifts and confirming the robustness of the 
approach for early warning systems in large-scale higher 
education settings.

3.6.5 Early grade prediction via ARD regression
Rico-Juan et  al. (2024) used Automatic Relevance 

Determination (ARD), a Bayesian linear regression model, to 
forecast final grades as early as Week 4 of the semester. The model 
achieved an RMSE of 1.43, a 27% reduction from the baseline 
RMSE of 1.95. This improvement underscores the potential of early 
formative assessments to inform real-time academic interventions. 
However, the study lacked confidence intervals and model 
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calibration metrics, limiting its utility in high-stakes prediction 
settings or across different institutions.

3.6.6 Comparative summary
The strongest predictive performance emerged from models that 

incorporated adaptive personalisation (e.g., RL in Hare et al., 2024) 
and temporal generalisability (e.g., LASA in Ren and Yu, 2024). These 
models not only demonstrated high predictive accuracy but also 
revealed actionable insights into student learning behaviors over time.

Support Vector Machines (SVMs), particularly those coupled with 
custom feature optimisation (Jayachandran and Joshi, 2024), proved 
highly effective for employability forecasting, leveraging structured 
academic and demographic features.

Meanwhile, emotion-aware deep learning systems (Hu et  al., 
2024) achieved notable improvements in learning outcomes, although 
the causal role of affect detection remained secondary to the system’s 
AI-driven content support.

Finally, early-warning systems using sparse academic data and 
Bayesian models (Rico-Juan et al., 2024) showed potential for timely 
intervention, though future applications would benefit from improved 
uncertainty quantification and validation transparency.

3.7 Risk of bias assessment (PROBAST)

We applied the PROBAST (Prediction model Risk of Bias 
ASsessment Tool) framework to systematically assess the risk of bias 
in the reviewed studies. Overall, most studies demonstrated low risk 
concerning predictors and outcomes. However, several concerns 
emerged in the participant selection and analysis domains, which 
affected the strength and generalisability of the findings.

In terms of participants, the risk of bias was rated as high in 
three studies: Hare et al. (2024), Hu et al. (2024), and Jayachandran 
and Joshi (2024). These studies relied on single-institution 
convenience samples, which limited the generalisability of their 
findings and introduced potential selection bias. In the cases of 
Ren and Yu (2024) and Rico-Juan et al. (2024), the risk of bias was 
classified as unclear. Although both studies employed sizable 
datasets, they did not report specific details about participant 
selection procedures. Without randomisation or stratification, it 
remains uncertain whether their samples accurately represented 
broader student populations.

Regarding predictors and outcomes, all studies were assessed to 
have a low risk of bias. Predictors were typically collected using 
prospective or automated methods, such as learning management 
system logs, academic records, and survey instruments, which 
reduced the likelihood of measurement error or subjective 
interpretation. The outcomes used in these studies—such as grades, 
exam scores, dropout status, or employability—were objective and 
quantifiable, which further enhanced the reliability of the predictive 
models and minimised potential reporting bias.

The analysis domain exhibited the highest variation in risk. 
Only the study by Ren and Yu (2024) fully addressed potential 
sources of bias in analysis. Their use of an eight-year longitudinal 
dataset combined with temporal hold-out validation and nested 
cross-validation allowed for robust performance estimation while 
avoiding overfitting. In contrast, other studies such as those by 
Hare et al. (2024) and Hu et al. (2024) used relatively small samples 

and lacked rigorous evaluation techniques, increasing the 
likelihood of model overfitting. Several studies did not report key 
analytical details such as hyperparameter settings, while others 
failed to use nested validation techniques to separate model 
selection from performance testing. Additionally, studies that 
involved continuous outcome prediction, such as Rico-Juan et al. 
(2024), did not report calibration metrics or confidence intervals, 
which limits the interpretability and reproducibility of their 
findings. As a result, most studies exhibited at least some risk of 
bias in the analytical process, which should be considered when 
interpreting their predictive performance.

4 Discussion

This discussion synthesises findings from the 27 reviewed studies, 
addressing each of the four research questions (RQs) formulated to 
guide this rapid review. These questions examine the variety and 
effectiveness of machine learning (ML), artificial intelligence (AI), and 
deep learning (DL) techniques applied to enhance or predict student 
performance in university engineering programs from 2019 to 2024.

4.1 RQ1: applied ML/AI/DL techniques

The reviewed studies utilised diverse ML/AI/DL techniques, 
reflecting varied educational contexts and data availability. 
Reinforcement learning (RL), notably demonstrated by Hare et al. 
(2024), offered personalised, adaptive support within serious gaming 
environments, significantly enhancing student engagement and 
problem-solving capabilities. Such adaptive scaffolding is particularly 
beneficial in complex engineering domains where tailored feedback 
directly improves learning outcomes.

Convolutional neural networks (CNNs), augmented with 
attention mechanisms, were effectively employed to interpret 
emotional responses and real-time engagement (Hu et al., 2024). By 
capturing and responding to students’ affective states, these systems 
created responsive educational environments, particularly beneficial 
in interactive, design-oriented engineering classes.

Support vector machines (SVMs), frequently used due to their 
robustness in handling sparse and imbalanced datasets, were further 
enhanced through meta-heuristic optimisation (Jayachandran and 
Joshi, 2024; Ren and Yu, 2024). These studies highlighted the critical 
role of precise feature selection and hyperparameter tuning in 
improving predictive accuracy, particularly when leveraging 
longitudinal data to forecast employability and identify at-risk students.

Gradient boosting algorithms, including XGBoost and AdaBoost, 
demonstrated consistent utility, notably in predicting graduate 
employability. When optimised through techniques such as 
Teaching–Learning-Based Optimisation (TLBO), these algorithms 
significantly outperformed traditional methods, underscoring ML’s 
potential to bridge academic performance with career outcomes.

Bayesian regression methods, such as Automatic Relevance 
Determination (ARD), effectively predicted academic performance 
early in a course, leveraging data from learning management systems 
(LMS) and psychometric assessments (Rico-Juan et al., 2024). Early 
predictive interventions enabled proactive support, crucial for student 
retention and performance improvement.
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Overall, these ML/AI/DL techniques collectively demonstrate 
considerable potential in addressing diverse challenges within 
engineering education, emphasising personalised learning, predictive 
accuracy, and strategic interventions.

4.2 RQ2: comparative predictive accuracy 
and effectiveness

Among the reviewed methods, certain techniques stood out in 
terms of predictive accuracy and practical effectiveness. The TLBO-
optimised SVM model by Jayachandran and Joshi (2024), with 87.8% 
accuracy in employability prediction, exemplified the highest 
effectiveness, benefiting from tailored feature selection and 
precise optimisation.

Similarly, the longitudinal LASA framework (Ren and Yu, 2024), 
achieving approximately 83.9% accuracy, demonstrated strong 
predictive validity for identifying at-risk students across multiple 
cohorts. Its temporal hold-out validation method ensured robust, 
generalisable outcomes.

The reinforcement learning tutor in Hare et al. (2024) significantly 
enhanced learning efficiency (Cohen’s d = 1.15), illustrating 
considerable practical benefits in highly interactive educational 
settings. While impactful, this method’s context-specific nature 
somewhat limits broader applicability.

Emotion recognition via CNNs (Hu et  al., 2024), despite a 
narrower focus, significantly improved class performance, reflecting 
the potential value of affective computing in enhancing educational 
engagement and outcomes.

ARD regression methods, while effective for early-term 
predictions (Rico-Juan et al., 2024), showed moderate improvements 
compared to broader ML applications, suggesting a niche yet valuable 
role in predictive interventions.

Collectively, these findings suggest that the choice and 
implementation of ML methods should closely align with educational 
contexts and predictive goals, with metaheuristic optimisation and 
longitudinal validation significantly enhancing predictive accuracy 
and model generalisability.

4.3 RQ3: contextual and technical enablers 
of successful implementation

Several factors facilitated the successful deployment of ML-based 
predictive systems. Alignment with existing educational infrastructure 
proved crucial; seamless integration with established teaching 
workflows and laboratory environments (Hare et al., 2024; Hu et al., 
2024) reduced barriers to adoption.

Metaheuristic tuning frameworks lowered technical barriers, 
enabling institutions lacking extensive data science expertise to 
implement sophisticated predictive models effectively 
(Jayachandran and Joshi, 2024). These automated optimisation tools 
ensured compact, easily deployable models without extensive 
manual tuning.

Explainability and transparency significantly influenced adoption. 
Clear visualisation tools such as SHAP values provided stakeholders—
educators, advisors, and administrators—with actionable, 

interpretable insights, facilitating trust and broader acceptance (Ren 
and Yu, 2024; Rico-Juan et al., 2024).

Longitudinal data utilisation enhanced predictive reliability, 
addressing inherent variability across cohorts and ensuring robustness 
against curriculum changes or demographic shifts (Ren and Yu, 2024). 
This approach highlighted the importance of sustained data collection 
for long-term predictive validity.

These technical and contextual factors collectively underscore 
essential considerations for successfully implementing ML systems 
within educational environments, emphasising integration, usability, 
transparency, and robust data strategies.

4.4 RQ4: implementation challenges and 
mitigations

Despite promising outcomes, several implementation challenges 
emerged. Predominantly, studies relied on single-institution, 
convenience samples, restricting broader generalisability. Temporal 
hold-out validation partially mitigated this issue (Ren and Yu, 
2024), but broader multi-institutional validations remain necessary.

Hardware heterogeneity posed practical difficulties, 
particularly evident in computationally intensive applications like 
reinforcement learning systems. While some solutions provided 
simplified fallback options (Hare et al., 2024), broader hardware 
standardisation or flexible system designs are recommended for 
future deployments.

Privacy and ethical concerns, especially regarding biometric data, 
posed significant barriers. Hu et  al. (2024) addressed these using 
privacy-preserving data transformations, highlighting the importance 
of robust ethical frameworks and informed consent procedures in 
educational ML deployments.

Insufficient transparency in hyperparameter reporting across studies 
hindered reproducibility. Establishing clearer methodological reporting 
standards is essential to ensure external validation and replication.

Finally, external validity limitations, exacerbated by the absence 
of macro-contextual data (e.g., economic indicators), demand more 
comprehensive validation frameworks and the integration of broader 
contextual factors for truly generalisable predictive models.

These challenges illustrate critical areas requiring focused 
attention in future research, including multi-institutional 
collaboration, ethical standardisation, methodological transparency, 
and comprehensive validation frameworks.

4.5 Implications for practice and policy

The integration of ML in engineering education offers substantial 
opportunities for improving student outcomes, from personalised 
tutoring and real-time interventions to employability predictions. 
Practical recommendations include deploying early-warning systems 
to identify at-risk students promptly, leveraging existing educational 
infrastructure to facilitate integration, and applying ethical best 
practices, such as transparent data usage policies and privacy-
preserving technologies.

Policy-wise, institutions should mandate rigorous fairness audits 
and ensure transparent, explainable model outputs to foster trust and 
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equity. Additionally, policies promoting cross-institutional 
collaboration and data sharing would significantly enhance model 
validation and generalisability.

4.6 Future directions

Future research should explicitly focus on expanding multi-
institutional studies to overcome limitations of single-institution 
biases. Adopting rigorous methodological standards such as nested 
cross-validation, transparent hyperparameter tuning, and external 
validation on independent datasets is essential. Ethical considerations 
must remain central, advocating fairness audits, privacy-preserving 
techniques, and clear consent protocols.

Moreover, research into human-centred explainability—ensuring 
predictions are actionable and interpretable by educators—is 
paramount. Cost–benefit analyses examining the practical 
sustainability and accessibility of ML deployments in resource-
limited contexts will further support scalability and 
widespread adoption.

In conclusion, while substantial progress has been made in 
applying ML techniques to enhance engineering education, continued 
methodological refinement, robust ethical standards, and strategic 
multi-institutional collaborations remain critical to fully realising ML’s 
potential in transforming educational outcomes.

5 Conclusion

The rapid review synthesised recent evidence highlighting the 
significant potential of machine learning (ML), artificial 
intelligence (AI), and deep learning (DL) methods in enhancing 
student performance in university engineering education. The 
reviewed studies demonstrate substantial benefits, including 
personalised learning interventions, precise early identification of 
at-risk students, improved course outcomes through adaptive 
tutoring systems, and accurate employability predictions. 
However, these advantages are tempered by methodological 
limitations such as small sample sizes, reliance on single-
institution datasets, inconsistent validation procedures, and 
inadequate transparency in reporting analytical methods. 
Addressing these challenges by prioritising rigorous multi-
institutional studies, standardised validation protocols, 
transparent model development, and robust ethical frameworks 
will be essential to achieving broader applicability and fairness. 
Overall, the continued refinement and ethical deployment of 
ML-driven approaches hold substantial promise for transforming 
educational outcomes and fostering greater student success across 
diverse engineering contexts.
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