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Background: In recent years, the application of machine learning (ML) to predict
student performance in engineering education has expanded significantly, yet
questions remain about the consistency, reliability, and generalisability of these
predictive models.

Objective: This rapid review aimed to systematically examine peer-reviewed
studies published between January 1, 2019, and December 31, 2024, that applied
machine learning (ML), artificial intelligence (Al), or deep learning (DL) methods
to predict or improve academic outcomes in university engineering programs.
Methods: We searched IEEE Xplore, SpringerLink, and PubMed, identifying an
initial pool of 2,933 records. After screening for eligibility based on pre-defined
inclusion criteria, we selected 27 peer-reviewed studies for narrative synthesis
and assessed their methodological quality using the PROBAST framework.
Results: All 27 studies involved undergraduate engineering students and
demonstrated the capability of diverse ML techniques to enhance various academic
outcomes. Notably, one study found that a reinforcement learning-based intelligent
tutoring system significantly improved learning efficiency in digital logic courses.
Another study using Al-based real-time behavior analysis increased students’ exam
scores by approximately 844 percentage points. An optimised support vector
machine (SVM) model accurately predicted engineering students’ employability
with 87.8% accuracy, outperforming traditional predictive approaches. Additionally,
a longitudinally validated SVM model effectively identified at-risk students, achieving
83.9% accuracy on hold-out cohorts. Bayesian regression methods also improved
early-term course grade prediction by 27% over baseline predictors. However, most
studies relied on single-institution samples and lacked rigorous external validation,
limiting the generalisability of their findings.

Conclusion: The evidence confirms that ML methods—particularly reinforcement
learning, deep learning, and optimised predictive algorithms—can substantially
improve student performance and academic outcomes in engineering education.
However, methodological shortcomings related to participant selection bias,
sample sizes, validation practices, and transparency in reporting require further
attention. Future research should prioritise multi-institutional studies, robust
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validation techniques, and enhanced methodological transparency to fully leverage
ML's potential in engineering education.
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machine learning, student performance, engineering education, predictive analytics,

PRISMA

1 Introduction

Machine learning (ML) and artificial intelligence (AI) techniques
are transforming university education, particularly with the recent
surge in large deep-learning models. These data-intensive approaches
allow instructors to analyse large student datasets, recognise complex
patterns, and predict academic outcomes with steadily increasing
accuracy (Woolf, 2008; Means et al., 2010; Fahd et al., 2022; Salloum
et al,, 2024). Deep learning, a specialised branch of ML, can model
non-linear relationships that traditional statistical tools cannot capture
(Goodfellow et al., 2016). Consequently, predictive systems in higher
education now integrate behavioral, demographic, and academic
signals and can trigger real-time interventions for students who are at
risk of failure (Baker and Inventado, 2014; Tsai et al., 2019).

Engineering programmes present distinctive challenges. Curricula
are mathematically rigorous, laboratory-intensive, and often associated
with elevated withdrawal rates. Therefore, Robust early-warning analytics
play a pivotal role. Conventional dashboards frequently rely on historic
grade data alone and overlook subtler drivers of success, for example,
interaction patterns or emotional states (Papamitsiou and Economides,
2014; Garcia-Machado et al., 2020). In addition, practical adoption of
ML in engineering education remains uneven. Institutions cite concerns
about data privacy and governance (Slade and Prinsloo, 2013; Willis
et al., 2016). Other concerns include limited model transparency and
challenges in technical integration (Alam, 2023). Issues of algorithmic
bias and educational equity also require continuous monitoring to ensure
that predictive tools benefit every learner (Fadel et al., 2019).

Recent literature reviews confirm both the promise and the
fragmentation of the field. Drugova et al. (2024) reviewed 49 learning
analytics dashboard studies and noted that rigorous evaluations of
learning gains were rare. Marquez et al. (2024) surveyed more than
100 institutional adoption papers and identified 14 organisational and
ethical enablers. However, the included papers seldom reported
predictive accuracy. A conference scan by Zhang et al. (2024)
concluded that engineering-specific performance-prediction studies
constitute the next research frontier. Oro et al. (2024) conducted a case
study in fluid mechanics. They confirmed a correlation between
platform activity and grades but did not benchmark alternative
algorithms. These reviews highlight the importance of engagement
metrics. However, these do not compare the performance of
contemporary ML or deep-learning models in engineering contexts.

1.1 Rationale and scope

In March 2023, the release of GPT-4 accelerated the diffusion of
transformer-based tools across higher education (Microsoft Research
Al4Science, Microsoft Azure Quantum, 2023; Bubeck et al., 2023; Liang
etal, 2023; OpenAl, 2023). Therefore, after accounting for adoption lag,
the time frame provides an ideal window to capture the earliest
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peer-reviewed studies that exploited these advances. The present rapid
review synthesises empirical primary studies published within that period
that trained ML, deep-learning, or other ATl models on student-level data
to predict or enhance academic outcomes in university engineering
programmes. The review identifies the algorithms employed, compares
their predictive accuracy, and analyses the contextual and technical factors
that shaped successful implementation.

1.2 Research questions

1 Which ML, Al or deep-learning methods were used in 2024 to
predict or enhance student performance in university
engineering programmes?

2 How do these methods compare in predictive accuracy and
practical effectiveness?

3 Which
successful deployment?

contextual or technical factors facilitated
4 What challenges and ethical issues accompanied adoption, and

how were they addressed?

1.3 Objectives

a Synthesise empirical research on ML/DL/AI models that predict
or enhance student academic performance, engagement, or post-
graduation employability in university engineering programmes.

b Benchmark their predictive accuracy against traditional or
baseline methods.

¢ Identify contextual and technical enablers of implementation.

d Highlight gaps and propose directions for future research
and practice.

2 Methodology
2.1 Review design

The review followed rapid-review guidance aimed at delivering
timely evidence to decision makers while preserving key elements of
systematic methods (Tricco et al., 2017). We selected a publication
window from 1 January 2019 to 31 December 2024 to reflect recent
developments in machine learning (ML), artificial intelligence (AI),
and deep learning (DL) techniques in engineering education. This
six-year span allowed for the identification of trends and
methodological shifts across pre-and post-GPT-4 studies while
ensuring manageable review scope. The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses 2020 statement (PRISMA-
2020) supports such time limits when authors provide a transparent
rationale linked to the review question (Page et al., 2021).
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2.2 Eligibility criteria

2.2.1 Inclusion criteria

We included only peer-reviewed journal articles published in
English between January 1, 2019, and December 31, 2024, to ensure
both contemporary relevance and methodological rigour. We selected
studies that applied a machine learning, artificial intelligence, or deep
learning model trained or fine-tuned on student-level data, as this
criterion ensured direct relevance to individual educational
outcomes. We limited the target population to undergraduate or
post-graduate students enrolled in university engineering
programmes. We required each study to report at least one
quantitative outcome related to academic performance, such as
grades, exam scores, engagement levels, teaching effectiveness,
dropout or retention rates, or graduate employability. These outcomes
allowed us to assess the impact of the models on educational

achievement and post-graduation trajectories.

2.2.2 Exclusion criteria

We excluded conference papers, book chapters, editorials, opinion
pieces, and preprints because they lacked formal peer review.
We focused exclusively on higher education in engineering disciplines
and excluded studies related to primary or secondary education, as well
as those outside recognised engineering fields. We also excluded
studies that used only descriptive analytics without incorporating
predictive modelling.

2.3 Search strategy

On 31 December 2024, we conducted comprehensive searches
in IEEE Xplore, SpringerLink, and PubMed for studies published
from 1 January 2019 to 31 December 2024. This extended search
window allowed us to capture a wider body of work evaluating ML/
AI/DL techniques applied to engineering education over multiple
years. We applied no filters other than publication year and
publication type to maximise the retrieval of relevant peer-reviewed
journal articles. We identified keywords through prior scoping
searches and refined them in consultation with an information
specialist. Table 1 presents the final keyword map used in the
searches. Table 2 reports the raw hit counts retrieved from each
database. Search strings combined three concept blocks with
Boolean operators:

(“machine learning” OR “ML” OR “artificial intelligence” OR “AI” OR “deep
learning” OR “DL” OR “supervised learning” OR “logistic regression” OR “decision

trees” OR “neural networks” OR “support vector machines”)

AND

(“student performance” OR “academic achievement” OR “learning outcomes” OR
“dropout prediction” OR “retention rates” OR “student success” OR “at-risk

students”)

AND

(“engineering education” OR “university engineering” OR “STEM education” OR

“technical education” OR “higher education” OR “engineering programs”)
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TABLE 1 Main concepts and related keywords.

Concept Related keywords

Machine learning Machine learning, ML, artificial intelligence, A, deep
learning, DL, supervised learning, logistic regression,

decision trees, neural networks, support vector machines

Student performance | Student performance, academic achievement, learning
outcomes, dropout prediction, retention rates, student

success, at-risk students

Engineering Engineering education, university engineering, STEM

education education, technical education, higher education,

engineering programs

TABLE 2 Database search results for systematic review.

Database Date accessed Search results
PubMed 31 December 2024 259
IEEE Xplore 31 December 2024 751
SpringerLink 31 December 2024 1923

2.4 Study selection workflow

a We conducted the initial search across Springer, PubMed, and
IEEE Xplore using the finalised search queries, which yielded
approximately 2,933 records.

b We removed 137 duplicates using Zotero, resulting in 2796
unique records for screening.

¢ We reviewed the titles and abstracts of these records to assess
relevance based on the inclusion criteria, which reduced the
pool to 135 records.

d We retrieved the
eligibility assessment.

full texts of these 135 studies for

e We excluded 108 studies at this stage, primarily due to
non-engineering populations (n=75), use of non-ML
interventions (n = 25), or lack of empirical design (n = 8).

f After full-text screening, we included 27 studies that met all
criteria in the review.

2.5 Data extraction strategy

We used a structured extraction form comprising 18 fields to
capture bibliographic information, participant characteristics, study
design, data sources, machine learning algorithms, hyperparameters,
validation strategies, performance metrics, comparison models, and
reported limitations. One reviewer extracted the data, and a second
reviewer independently verified each entry.

2.6 Data synthesis

We did not conduct statistical pooling due to the heterogeneity of

study designs, outcomes, and reporting formats. Instead,
we performed a narrative synthesis. We tabulated quantitative results
to enable comparison across studies. We used Zotero for reference

management and Excel for data extraction and tabulation.
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3 Results

27 studies met all eligibility criteria and constitute the
evidentiary base of this rapid review (Figure 1). These studies
represent four national contexts and 11 distinct engineering
sub-disciplines, employing varied machine learning pipelines to
address a range of educational outcome constructs. Table 3
contains key study details. The Supplementary Materials contain
data extraction tables and exclusion records for the 135
excluded studies.

10.3389/feduc.2025.1562586

3.1 Engineering context and level

All 27 eligible studies focused on undergraduate engineering
students, even though the inclusion criteria also permitted
postgraduate studies. Despite this flexibility, no postgraduate-focused
studies met the full set of eligibility criteria. The consistent
undergraduate focus is pedagogically significant: it aligns with a stage
of education where early interventions can yield substantial long-
term effects on student learning trajectories, retention, and
career outcomes.

= Records from databases:
= Records removed before the
= (n=2933) )
= »] screening:
E=) Pub Med (n=259) )
g Duplicate records removed (n =137)
= IEEE XPLORE (n=751)
Springer (n=1923)
Records screened (n = 2801) »| Total Articles excluded based on title
and abstract (n=2666)
o8 Reports sought for retrieval
E (n=135) Reports not retrieved (n = 0)
g
7]
Reports assessed for eligibility
(n=135) —>
Reports excluded: (n=108)
l Non-engineering student populations
(n=75)
Non-ML interventions (n =25)
E Studies included in the review (n = 27) Lacked empirical design (n=28)
=
E Reports of included studies (n =27)
[S=i
FIGURE 1
PRISMA guideline flowchart.
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TABLE 3 Summary of included studies.

Reference

Hare et al. (2024)

Purpose

Integrate ITS within a

Methodology

Pre/post experimental

ML techniques

Reinforcement learning

Key findings

Improved engagement

10.3389/feduc.2025.1562586

Contributions

Provides a model for

behavior analysis to

across eight classes with 413

K-means clustering

improved effectiveness

serious game to design with 54 students within the PING system and performance with integrating I'TS within serious
enhance learning in PING-enhanced game games and insights into game
digital logic design

Hu et al. (2024) Utilise AI for real-time | Implementation of IEDS CNNs with CBAM, Al-assisted teaching Developed a privacy-

protected AI model for

respectively, and

enhance teaching students by 8.44%; veteran behavior analysis,
effectiveness. teachers benefited demonstrated teaching
more. improvement.
Ren and Yu (2024) Introduce LASA for Developed LASA using an LASA (LAM and LTDA), | LASA outperformed First method addressing
long-term student 8-year dataset from Tsinghua | SVM, SHAP ProbSAP and SFERNN | heterogeneity and
performance prediction | University by 6.8 and 6.4%, distribution shifts, an

interpretable prediction

engineering students.

outperforming standard

SVM

provided interpretable framework
insights
Jayachandran and Joshi | Develop a customised Developed and evaluated a Feature Selection using Customised SVM Novel feature selection
(2024) SVM model to predict customised SVM with 1,647 | TLBO, Customised SVM | achieved 87.80% approach, significant
the employability of students accuracy, accuracy improvement in

employability prediction

Kohler et al. (2023)

success in an
introductory
programming course
using student

background features

with 2,372 undergraduate
students across 20
engineering programs in
Chile

SVM (radial), Multiple
Linear Regression
(MLR), Random Forest
(RF), XGBoost (XGB)

accuracy (68.6%) using
academic,
demographic, and
program-related

features

Rico-Juan et al. (2024) Study the influence of Cross-sectional ARD, Decision Tree, ARD predicted grades Demonstrates the use of LMS
personality and LMS observational predictive Random Forest, with RMSE 1.43, data and personality traits in
usage on learning study with 322 students AdaBoost, SVM improving by 27% over | predicting academic
performance baseline performance
Predicting students’ SVM achieved highest

Retrospective cohort study Demonstrated that

background data can be used
to predict performance;
strong validation design

using large dataset

Algarni et al. (2023)

Identifying at-risk
students in higher
education based on

academic and

Retrospective cohort study
with 743 undergraduate

students in Saudi Arabia

Decision Tree, SVM,
Naive Bayes, Random

Forest

Best model not
specified; key predictive
features were math and

computer science

Early prediction using
institutional student data;
practical application of risk

detection via SIS systems

Fahd et al. (2022)

demographic data modules
Predicting weighted
course scores of

MARS model

engineering

mathematics students

Retrospective cohort (5-year
data)

MARS, Decision Tree
Regression, KRR, KNN

outperformed others in

Introduces MARS model

with long-term data span

Nabizadeh et al. (2022)

RMSE and R* metrics

using a novel MARS

model

Early prediction of Demonstrates early
Achieved 78.02%

students’ final grades in
a gamified engineering-

related course

Retrospective cohort with

679 students

KNN, Random Forest,

Naive Bayes

accuracy after 4 weeks

of data

prediction capabilities with
feature selection and class

balancing

Poudyal et al. (2022)

Predicting academic
performance using a
hybrid 2D CNN
approach

Cross-sectional study

Hybrid 2D CNN, KNN,
NB, DT, LR

CNN outperformed all
baseline models in

accuracy

Introduces novel image-
based prediction method

with improved performance
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TABLE 3 (Continued)

10.3389/feduc.2025.1562586

Reference Purpose Methodology ML techniques Key findings Contributions
Predicting the impact
Combines multimodal data
of academic and spatial | Cross-sectional with LSTM, SVM, RE, NB, LSTM achieved highest
Musaddiq et al. (2022) sources; strong LSTM-based
behaviors on student experimental validation DT, MLP accuracy (90.9%) |
results
performance
Improving

performance prediction

of low-expectation

Retrospective cohort with 74

Accuracy improved

Captures both product and

dropout across two

Chilean institutions

detailed

Al-Ahmad et al. (2022) teams in software PSO-KNN process features from partial
teams over baseline models
engineering projects SDLC data
using swarm
intelligence
Comparison of ML
models to predict Gradient boosting had Highlights feature
Gradient Boosting,
Opazo et al. (2021) first-year university Retrospective cohort b best AUG; others not importance differences across
others

universities

Nabil et al. (2021)

Predicting course-level
academic success using
deep learning and

traditional ML

Retrospective cohort
(1 = 4,266)

DNN, DT, RE, GB, LR,
SVC, KNN

DNN achieved 89%
accuracy; others not

specified

Uses large dataset; compares
multiple models and

sampling techniques

Tatrellis et al. (2021)

Predicting student
outcomes via a two-
phase clustering +

classification approach

Observational case study

K-Means, SVM, DT,
ANN, RE NB

High accuracy
reported, but no

specific metrics

Unsupervised-supervised
hybrid tailored to student

subgroups

Manjushree et al. (2021)

Studying impact of
technical skills on
employability using ML

classifiers

Cross-sectional (n = 133)

SVM, NB, LR, DT, RE,
AdaBoost, ANN

RF: Accuracy 70%,
F1-score 0.85

Demonstrates use of
correlation-based feature

selection

Predicting academic

performance and

Naive Bayes, C4.5,

Naive Bayes = highest

Alturki and Alturki Cross-sectional general accuracy; Identifies interpretable
awards using CART, LADTree, Bayes
(2021) observational (n = 300) RF = best for honor features for early intervention
educational data Net, RF
class
mining
Predicting at-risk
Tested multiple classifiers;
students using self- Decision Tree, kNN, DT and SVM achieved

(2021)

student grades and

dropout

real data

CNN, SVM, GoogLeNet

MSE: 1.78

Jamjoom et al. (2021) Case study practical focus on self-
efficacy and ML in Naive Bayes, SVM 99.18% accuracy
efficacy
intro programming
Using ANN + Lion
Optimization
Kumar and Kavitha Experimental design using ANN-based regression, MAE: 1.05; RMSE: 1.33; | Combines hybrid models;
Algorithm to predict

compares baseline metrics

Adnan et al. (2020)

Creating an intelligent
and adaptive mobile
learning model using

DL

Experimental application

study (n = 850)

ANN, Random Forest

ANN accuracy ranged
from 80 to 90.77%

Real-world deployment;
ANN outperforms traditional
ML

Naseer et al. (2020a)

Predict coding

intricacy in team-based

Experimental study (74

Random Forest,

Accuracy: 85.14%

Real project data; highlights

software engineering teams) AdaBoost, LogitBoost complexity in team dynamics
projects
(Continued)
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TABLE 3 (Continued)

Reference Purpose Methodology
Dropout prediction via
Retrospective cohort
Freitas et al. (2020) IoT + ML using

(n=1,549)
socioeconomic data

10.3389/feduc.2025.1562586

ML techniques Key findings Contributions
Accuracy: 99.34%,

Recall: 100%, Precision:

DT, LR, SVM, KNN,
MLP, DL

High predictive power with

practical IoT implementation
98.69%

Identify at-risk
students using Retrospective cohort

Lottering et al. (2020)
(n = 4,419)

academic/biographical

data

RE, SVM, DT, NB, KNN, Multi-model comparison on
RF Accuracy: 94.14%

LR large dataset

Predict team project
Case study (380 students, 74

Naseer et al. (2020a) performance early in

J48, NB, ANN, LR, SLR, Accuracy: 89% (J48 Focus on early prediction in

Nieto et al. (2019) institutional decision- Observational case study

making

teams) RIPPER, SMO best) team settings
software course
Improve m-learning
ANN & RF best; exact Adaptive learning model with
Adnan et al. (2020) outcomes using Experimental Deep ANN, RE others
metrics not specified behavioral feature input
weighted DL models
Use ML to support

RF = best performance

(ROGC, accuracy)

Institutional policy insights
DT, LR, RF
using real data

Predict academic

Sultana et al. (2019) performance using Experimental

deep learning

High accuracy; DNN,
DT best

Uses LMS and academic logs;
DNN, DT, SVM, RE, NB
strong comparative ML study

3.1.1 Computer and software engineering

The majority of studies targeted domains within computer or
software engineering. Rico-Juan et al. (2024) analyzed first-and
second-year computer engineering students enrolled in mathematics
courses, aiming to predict final grades using ensemble machine
learning. Similarly, Hare et al. (2024) implemented a reinforcement
learning-based intelligent tutoring system (ITS) within a serious game
for ECE students enrolled in a digital logic lab, reporting improved
learning outcomes across mixed-year cohorts.

Naseer et al. (2020a, 2020b) conducted empirical studies on
software engineering teams, emphasizing coding intricacy prediction
and early performance evaluation. Both studies leveraged real-world
project data from 74 undergraduate teams, providing a rare look into
collaborative dynamics and performance variation in team-
based learning.

Al-Ahmad et al. (2022) focused on software engineering team
projects as well, but extended the scope by applying swarm intelligence
(PSO-KNN) to low-performing teams, emphasizing prediction in
early stages of the Software Development Life Cycle (SDLC).

3.1.2 General and multidisciplinary engineering
cohorts

Several studies examined broader or multidisciplinary engineering
cohorts. Jayachandran and Joshi (2024) developed a customized SVM
model for predicting employability using data from five engineering
departments in India. Likewise, Kohler et al. (2023) explored
predictors of programming success using data from 2,372 students
across 20 engineering programs in Chile, providing strong external
validity through large-scale, multi-program sampling.

Jayachandran and Joshis work emphasized the relationship
between academic performance, skill indicators, and employability
outcomes, a concern echoed in studies such as Manjushree et al.

Frontiers in Education

(2021) and Adnan et al. (2020), who explored employability and
m-learning performance, respectively.

3.1.3 Electrical and computer engineering (ECE)

Ren and Yu (2024) focused on second-year electrical engineering
students in circuits courses and introduced LASA, a novel framework
addressing long-term performance prediction using an eight-year
dataset from Tsinghua University. The approach was notable for handling
distribution shifts and model interpretability through SHAP explanations.

Poudyal et al. (2022) and Algarni et al. (2023) also addressed ECE
students, with the former using a hybrid 2D CNN and the latter
identifying at-risk learners based on academic modules such as
mathematics and computer science.

3.1.4 Engineering design and applied learning

Hu et al. (2024) addressed the engineering design context by
deploying an Al-enhanced classroom monitoring system across eight
cohorts. Their focus on real-time behavioral data and differential
impacts across teacher profiles provides insights into applied pedagogy
in design education.

Alturki and Alturki (2021) explored predictors of both academic
performance and honors award eligibility, blending technical and
behavioral metrics, while Freitas et al. (2020) and Lottering et al.
(2020) extended this focus to institutional dropout prediction using
large datasets and socioeconomic factors.

3.1.5 National and institutional decision-making
contexts

While most studies targeted classroom or course-level outcomes,
Nieto et al. (2019) and Sultana et al. (2019) broadened the scope to
institutional and national concerns. Their use of institutional data
(e.g., graduation rates, LMS logs) and focus on strategic
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decision-making highlights the emerging role of machine learning in
educational policy and administration within engineering education.

3.2 Study design and sample size

The study designs across the 27 included papers varied
considerably, each selected to suit the specific research objectives, data
availability, and institutional context. This methodological diversity
reflects the broader landscape of engineering education research,
where both predictive modeling and intervention assessment are
explored using machine learning approaches. Sample sizes ranged
from small-scale experimental groups of under 100 participants to
large institutional datasets exceeding 4,000 students, enhancing the
generalizability of some findings while preserving the depth of others.

3.2.1 Experimental and quasi-experimental
designs

Pre-and post-test experimental designs were employed by studies
such as Hare et al. (2024), who investigated the integration of an
intelligent tutoring system into a serious game with a sample of 54
students. Similarly, Adnan et al. (2020) evaluated a deep learning-
based mobile learning application in an experimental study with 850
students, while Kumar and Kavitha (2021) conducted an experimental
application using real data to assess dropout prediction with hybrid
ANN-CNN methods.

Quasi-experimental approaches also emerged. Hu et al. (2024)
implemented the Intelligent Engineering Design System (IEDS) across
eight classes, involving 413 students. Musaddiq et al. (2022) validated
the predictive performance of academic and spatial behavior models
using a cross-sectional design augmented by experimental validation.

3.2.2 Retrospective cohort designs

Retrospective cohort designs were the most frequently employed
study type. These included Jayachandran and Joshi (2024), who
analyzed data from 1,647 students over multiple years, and Kohler
et al. (2023), whose large dataset spanned 2,372 students across 20
engineering programs in Chile. Other notable examples include
Algarni et al. (2023) (n=743), Al-Ahmad et al. (2022) (5-year
dataset), Nabizadeh et al. (2022) (n=679), Freitas et al. (2020)
(n=1,549), and Lottering et al. (2020) (n =4,419). These designs
leveraged institutional records to model dropout risks, grade
predictions, and course success using machine learning algorithms.

3.2.3 Longitudinal and sequential cohort designs
Ren and Yu (2024) applied an eight-year sequential cohort design
using data from Tsinghua University to evaluate the LASA framework for
predicting student performance, addressing distribution shifts and
heterogeneity in educational trajectories. Similarly, Al-Ahmad et al.
(2022) employed a five-year retrospective data stream to train a MARS-
based model for engineering mathematics performance prediction.

3.2.4 Cross-sectional and observational studies
Several studies adopted cross-sectional predictive designs,
including Rico-Juan et al. (2024) (n =322), Poudyal et al. (2022),
Manjushree et al. (2021) (n = 133), and Alturki and Alturki (2021)
(n = 300). These designs offered a snapshot of academic performance

Frontiers in Education

10.3389/feduc.2025.1562586

by linking learner behaviors and background variables with
performance outcomes.

Observational and case study methods were used by Ilatrellis et al.
(2021) and Nieto et al. (2019), among others, to explore institutional
decision-making and subgroup classification in academic contexts.
Additionally, Sultana et al. (2019) and Naseer et al. (2020a, 2020b) used
observational and case-based setups with deep learning to predict
academic outcomes and team performance in engineering courses.

3.3 Predicted outcomes

The 27 studies included in this review targeted a wide range of
educational outcomes, reflecting the diversity of institutional priorities
and research objectives in engineering education. These outcomes
spanned cognitive performance, academic persistence, skill
acquisition, and employability, each chosen based on available data
sources and the intended use of predictions (e.g., early intervention,
personalization, or institutional planning).

3.3.1 Course grades and end-of-course
performance

Many studies focused on predicting students’ final grades or
end-of-course marks. For instance, Rico-Juan et al. (2024) predicted
end-of-course marks using LMS usage and personality traits, while
Kohler et al. (2023) modeled pass/fail outcomes in programming
courses using academic history and demographic factors. Similarly,
Al-Ahmad et al. (2022) used a novel MARS model to predict weighted
course scores in engineering mathematics, and Nabizadeh et al. (2022)
achieved 78.02% accuracy in predicting final grades within the first
four weeks of a gamified course.

3.3.2 Exam outcomes and risk categories

Several studies predicted specific exam-related outcomes. Ren and
Yu (2024) categorized students into at-risk vs. non-risk groups based
on long-term trends in electrical engineering exam performance. Hu
et al. (2024) used AlI-driven behavior monitoring to improve and
predict course exam means, demonstrating significant gains in
teaching effectiveness. Poudyal et al. (2022) and Musaddiq et al.
(2022) also predicted academic achievement using CNN and LSTM
models respectively, with the latter reaching 90.9% accuracy.

3.3.3 Academic success and dropout risk

Dropout prediction and general academic success were key targets
in multiple studies. Freitas et al. (2020) combined IoT and machine
learning to achieve near-perfect accuracy (99.34%) in identifying
at-risk students based on socioeconomic data. Lottering et al. (2020)
used academic and biographical data to predict dropout with 94.14%
accuracy, while Opazo et al. (2021) highlighted differences in feature
importance across institutions using gradient boosting.

3.3.4 Employability and job placement

Jayachandran and Joshi (2024) predicted post-graduation
employability based on academic records, achieving 87.80% accuracy
with a customized SVM model. Manjushree et al. (2021) also
examined employability using multiple classifiers, emphasizing the
role of technical skills.
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3.3.5 Engagement, problem solving, and learning
behaviors

Other studies focused on behavioral and affective outcomes. Hare
et al. (2024) measured engagement and problem-solving gains in a
digital logic course using reinforcement learning, while Adnan et al.
(2020) and Kumar and Kavitha (2021) modeled adaptive learning and
dropout using deep learning architectures. Jamjoom et al. (2021)
predicted performance using self-efficacy and introductory
programming metrics, achieving over 99% accuracy.

3.3.6 Institutional planning and group
performance

Studies like Nieto et al. (2019) and latrellis et al. (2021) used
predictive models to support institutional decision-making and
student subgroup classification. In parallel, Naseer et al. (2020a,
2020b) predicted team project performance in software engineering
contexts, using real-time product and process data to estimate team
coding intricacy and project outcomes.

3.4 Predictor sources

The 27 studies reviewed drew on a diverse range of predictor
sources to model student performance and related outcomes. These
inputs ranged from behavioral telemetry and academic records to
socio-demographic data and psychometric traits, enabling
multifaceted machine learning pipelines suited for various

educational contexts.

3.4.1 Behavioral telemetry and digital interaction
data

A subset of studies utilized behavioral telemetry—data collected
from students’ real-time digital interactions—as a central predictor.
Hare et al. (2024) integrated reinforcement learning into a serious
game platform (PING) and tracked detailed user interactions to
enhance problem-solving in digital logic. Hu et al. (2024) applied
facial recognition and attention-tracking via CNNs and CBAM
modules to evaluate and improve real-time teaching effectiveness. Ren
and Yu (2024) collected student interaction data from Rain Classroom,
an interactive learning tool used at Tsinghua University, which allowed
real-time capture of in-class responses and engagement metrics.
Additional behavioral sources such as LMS activity, mouse movement,
and time-on-task were frequently paired with academic and
demographic data to refine predictive accuracy (Musaddiq et al., 2022;
Rico-Juan et al., 2024).

3.4.2 Academic history and institutional records
Academic history was one of the most consistently employed
predictor types across studies. It included GPA, course grades,
assessment scores, or longitudinal performance indicators. For
instance, Al-Ahmad et al. (2022) and Kohler et al. (2023) used
historical academic records in mathematics and programming,
respectively, to predict final course success. Similarly, Jayachandran
and Joshi (2024) and Ren and Yu (2024) leveraged academic
performance histories to enhance employability prediction and
early risk detection. Nabizadeh et al. (2022) demonstrated the
value of early grade data—predicting final performance with only
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four weeks of input. In multiple cases, academic records were
embedded into ensemble models alongside behavior or
demographic inputs.

3.4.3 Socio-demographic and biographical
variables

Several studies incorporated socio-demographic predictors
such as gender, age, income proxy variables (e.g., tuition status),
parental education, and high school background. These variables
were instrumental in explaining disparities in educational
trajectories, especially when combined with academic indicators.
Jayachandran and Joshi (2024) included age at enrollment and
family background in their SVM-based employability model.
Kohler et al. (2023) and Algarni et al. (2023) used demographic
variables in performance risk assessments. Freitas et al. (2020)
achieved extremely high accuracy in dropout prediction using IoT
data enriched with socioeconomic indicators.

3.4.4 Psychometric and affective data

Few studies explicitly utilized psychometric data, but those that
did highlighted its value. Rico-Juan et al. (2024) combined Big Five
personality trait scores with LMS activity data to predict end-of-
course marks in mathematics, reporting a 27% improvement over
baseline models. Psychometric measures captured self-regulatory and
motivational aspects often overlooked by performance metrics alone.
Additionally, Jamjoom et al. (2021) used self-efficacy beliefs to predict
success in programming courses, attaining nearly perfect classification
accuracy. These predictors offered insights into student engagement,
persistence,

and potential for growth beyond observable

academic behavior.

3.4.5 Combined or hybrid inputs

Several studies adopted multimodal inputs, combining academic,
behavioral, and socio-demographic data streams into hybrid models.
For example, Musaddiq et al. (2022) integrated spatial behavior and
academic activity using LSTM networks, while Adnan et al. (2020)
employed mobile-based learning logs alongside structured institutional
data to model personalized learning trajectories. These hybrid
approaches allowed for a richer modelling of the learning environment,
particularly where real-time feedback or personalization was a goal.

3.5 Machine-learning pipelines

The reviewed studies adopted diverse machine learning (ML)
pipelines, with several applying multiple models to strengthen
predictions and enhance generalisability.

3.5.1 Reinforcement learning (RL)

Hare et al. (2024) integrated a hierarchical reinforcement learning
(RL) agent named PING into a Unity-based intelligent tutoring system
for a digital logic game. The agent provided adaptive scaffolding by
analysing real-time student interactions and responding with targeted
feedback, which led to improved student engagement and learning
outcomes. RL enabled the system to dynamically adapt to student
behavior, making it well-suited for educational contexts that require
personalised guidance.
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3.5.2 Gradient boosting algorithms

Gradient boosting methods such as XGBoost and AdaBoost
were employed by Jayachandran and Joshi (2024) to enhance
employability prediction accuracy. These models were further
optimised using the Guided Best Sinh-Cosh Optimiser and
Teaching-Learning-Based Optimisation (TLBO) to select critical
features. This dual optimisation pipeline significantly improved
model performance by reducing noise from less relevant predictors,
particularly in the context of complex socio-academic variables
affecting employability.

3.5.3 Support vector machines (SVMs)

SVMs were implemented in both Ren and Yu (2024) and
Jayachandran and Joshi (2024). Ren and Yu employed an RBF-SVM
model within their LASA framework to maintain predictive accuracy
under temporal and distributional shifts. Jayachandran and Joshi
developed a customised RBF-SVM with a radial Euclidean kernel,
fine-tuning hyperparameters (e.g., C = 100) to balance overfitting and
generalisation. Both studies demonstrated the robustness of SVMs in
handling sparse and imbalanced educational datasets.

3.5.4 Bayesian and linear regressors
(2024)
Determination (ARD) technique, a Bayesian linear regressor that

Rico-Juan et al used the Automatic Relevance
assigns weights based on feature importance. This method proved
particularly useful for high-dimensional and sparse datasets. ARD
improved predictive performance over traditional baselines and was
validated using the Wilcoxon signed-rank test, highlighting its
applicability for early prediction of course outcomes.

3.5.5 Deep convolutional neural networks (CNNs)
with attention

Hu et al. (2024) implemented a CNN architecture enhanced with
the Convolutional Block Attention Module (CBAM) to support
emotion recognition in real time. The system, part of the IEDS
framework, processed student facial imagery to detect affective states
and provide responsive feedback during engineering design tasks. This
attention-based deep learning model improved the responsiveness
and personalisation of Al-assisted teaching by helping the system
prioritise emotionally significant features.

3.5.6 Validation and tuning approaches

Validation strategies varied substantially. Rico-Juan et al. (2024)
applied 10-fold cross-validation to ensure robust generalisation, while
Ren and Yu (2024) used temporal hold-out validation, training on past
student cohorts and testing on a 2020 dataset to simulate real-world
deployment. Hare et al. (2024) employed online validation with live
student data, and Hu et al. (2024) used pre-trained models validated
on FERPlus, CK+, and ExpW emotion datasets. Notably, no study
implemented nested cross-validation for hyperparameter tuning,
raising the potential for overestimation of performance in some cases.

3.6 Predictive performance
The selected studies report diverse levels of predictive success,

reflecting variation in modelling techniques, feature selection, and
validation strategies.
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3.6.1 Reinforcement learning in digital logic
laboratory

Hare et al. (2024) evaluated a reinforcement learning-based
intelligent tutoring system (PING) embedded in a serious game for
digital logic instruction. Across successive cohorts, students using
PING outperformed those in traditional FPGA labs by an average of
12 points on post-tests (Cohen’s d = 1.15, p = 0.02). Additionally, the
number of retries per lab task dropped by two-thirds, indicating
both improved learning efficiency and conceptual mastery. The
strong effect size underscores the capacity of reinforcement learning
and enhance outcomes in

to  personalise  pacing

engineering education.

3.6.2 Intelligent engineering design and emotion
recognition

Hu et al. (2024) deployed the Intelligent Engineering Design
System (IEDS), which integrates CNNs with the Convolutional Block
Attention Module (CBAM) and real-time emotion tracking. Students
instructed via IEDS scored an average of 82.1% on exams, versus
75.7% under conventional instruction—an improvement of 8.44
percentage points. The system’s emotion recognition module (ERAM)
achieved 87.6-94.5% accuracy, processing 1,000 frames in under two
seconds. While the emotional feedback loop supported teacher
awareness, performance gains were primarily linked to the
Al-generated design recommendations.

3.6.3 Employability prediction using
feature-optimised SVM

Jayachandran and Joshi (2024) optimised a support vector
(SVM)
Optimisation (TLBO), selecting a compact 10-10 feature subset. Their

machine model through Teaching-Learning-Based
model achieved 87.8% prediction accuracy (AUC = 0.714), surpassing
baseline models by 13.4 percentage points. Key features included
academic metrics, project participation, behavioral indicators, and
socio-demographic data. The study demonstrated the effectiveness of
combining domain-specific feature selection with tailored kernel

functions in career-oriented prediction tasks.

3.6.4 At-risk classification with temporal
validation

Ren and Yu (2024) validated their LASA framework using a
temporally split dataset from Tsinghua University. On the 2020
hold-out cohort, the model achieved 83.9% classification accuracy,
outperforming the leading baseline (Probsap) by 7.9 percentage
points. Performance was consistent across eight yearly cohorts, with
an average accuracy of 80.9%, suggesting strong generalisability
under distributional shifts and confirming the robustness of the
approach for early warning systems in large-scale higher
education settings.

3.6.5 Early grade prediction via ARD regression
(2024)
Determination (ARD), a Bayesian linear regression model, to

Rico-Juan et al. used Automatic Relevance
forecast final grades as early as Week 4 of the semester. The model
achieved an RMSE of 1.43, a 27% reduction from the baseline
RMSE of 1.95. This improvement underscores the potential of early
formative assessments to inform real-time academic interventions.

However, the study lacked confidence intervals and model
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calibration metrics, limiting its utility in high-stakes prediction
settings or across different institutions.

3.6.6 Comparative summary

The strongest predictive performance emerged from models that
incorporated adaptive personalisation (e.g., RL in Hare et al., 2024)
and temporal generalisability (e.g., LASA in Ren and Yu, 2024). These
models not only demonstrated high predictive accuracy but also
revealed actionable insights into student learning behaviors over time.

Support Vector Machines (SVMs), particularly those coupled with
custom feature optimisation (Jayachandran and Joshi, 2024), proved
highly effective for employability forecasting, leveraging structured
academic and demographic features.

Meanwhile, emotion-aware deep learning systems (Hu et al.,
2024) achieved notable improvements in learning outcomes, although
the causal role of affect detection remained secondary to the system’s
Al-driven content support.

Finally, early-warning systems using sparse academic data and
Bayesian models (Rico-Juan et al., 2024) showed potential for timely
intervention, though future applications would benefit from improved
uncertainty quantification and validation transparency.

3.7 Risk of bias assessment (PROBAST)

We applied the PROBAST (Prediction model Risk of Bias
ASsessment Tool) framework to systematically assess the risk of bias
in the reviewed studies. Overall, most studies demonstrated low risk
concerning predictors and outcomes. However, several concerns
emerged in the participant selection and analysis domains, which
affected the strength and generalisability of the findings.

In terms of participants, the risk of bias was rated as high in
three studies: Hare et al. (2024), Hu et al. (2024), and Jayachandran
and Joshi (2024). These studies relied on single-institution
convenience samples, which limited the generalisability of their
findings and introduced potential selection bias. In the cases of
Ren and Yu (2024) and Rico-Juan et al. (2024), the risk of bias was
classified as unclear. Although both studies employed sizable
datasets, they did not report specific details about participant
selection procedures. Without randomisation or stratification, it
remains uncertain whether their samples accurately represented
broader student populations.

Regarding predictors and outcomes, all studies were assessed to
have a low risk of bias. Predictors were typically collected using
prospective or automated methods, such as learning management
system logs, academic records, and survey instruments, which
reduced the likelihood of measurement error or subjective
interpretation. The outcomes used in these studies—such as grades,
exam scores, dropout status, or employability—were objective and
quantifiable, which further enhanced the reliability of the predictive
models and minimised potential reporting bias.

The analysis domain exhibited the highest variation in risk.
Only the study by Ren and Yu (2024) fully addressed potential
sources of bias in analysis. Their use of an eight-year longitudinal
dataset combined with temporal hold-out validation and nested
cross-validation allowed for robust performance estimation while
avoiding overfitting. In contrast, other studies such as those by
Hare et al. (2024) and Hu et al. (2024) used relatively small samples
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and lacked rigorous evaluation techniques, increasing the
likelihood of model overfitting. Several studies did not report key
analytical details such as hyperparameter settings, while others
failed to use nested validation techniques to separate model
selection from performance testing. Additionally, studies that
involved continuous outcome prediction, such as Rico-Juan et al.
(2024), did not report calibration metrics or confidence intervals,
which limits the interpretability and reproducibility of their
findings. As a result, most studies exhibited at least some risk of
bias in the analytical process, which should be considered when
interpreting their predictive performance.

4 Discussion

This discussion synthesises findings from the 27 reviewed studies,
addressing each of the four research questions (RQs) formulated to
guide this rapid review. These questions examine the variety and
effectiveness of machine learning (ML), artificial intelligence (AI), and
deep learning (DL) techniques applied to enhance or predict student
performance in university engineering programs from 2019 to 2024.

4.1 RQ1: applied ML/AI/DL techniques

The reviewed studies utilised diverse ML/AI/DL techniques,
reflecting varied educational contexts and data availability.
Reinforcement learning (RL), notably demonstrated by Hare et al.
(2024), offered personalised, adaptive support within serious gaming
environments, significantly enhancing student engagement and
problem-solving capabilities. Such adaptive scaffolding is particularly
beneficial in complex engineering domains where tailored feedback
directly improves learning outcomes.

Convolutional neural networks (CNNs), augmented with
attention mechanisms, were effectively employed to interpret
emotional responses and real-time engagement (Hu et al., 2024). By
capturing and responding to students’ affective states, these systems
created responsive educational environments, particularly beneficial
in interactive, design-oriented engineering classes.

Support vector machines (SVMs), frequently used due to their
robustness in handling sparse and imbalanced datasets, were further
enhanced through meta-heuristic optimisation (Jayachandran and
Joshi, 2024; Ren and Yu, 2024). These studies highlighted the critical
role of precise feature selection and hyperparameter tuning in
improving predictive accuracy, particularly when leveraging
longitudinal data to forecast employability and identify at-risk students.

Gradient boosting algorithms, including XGBoost and AdaBoost,
demonstrated consistent utility, notably in predicting graduate
employability. When optimised through techniques such as
Teaching-Learning-Based Optimisation (TLBO), these algorithms
significantly outperformed traditional methods, underscoring MLs
potential to bridge academic performance with career outcomes.

Bayesian regression methods, such as Automatic Relevance
Determination (ARD), effectively predicted academic performance
early in a course, leveraging data from learning management systems
(LMS) and psychometric assessments (Rico-Juan et al., 2024). Early
predictive interventions enabled proactive support, crucial for student
retention and performance improvement.
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Overall, these ML/AI/DL techniques collectively demonstrate
considerable potential in addressing diverse challenges within
engineering education, emphasising personalised learning, predictive
accuracy, and strategic interventions.

4.2 RQ2: comparative predictive accuracy
and effectiveness

Among the reviewed methods, certain techniques stood out in
terms of predictive accuracy and practical effectiveness. The TLBO-
optimised SVM model by Jayachandran and Joshi (2024), with 87.8%
accuracy in employability prediction, exemplified the highest
effectiveness, benefiting from tailored feature selection and
precise optimisation.

Similarly, the longitudinal LASA framework (Ren and Yu, 2024),
achieving approximately 83.9% accuracy, demonstrated strong
predictive validity for identifying at-risk students across multiple
cohorts. Its temporal hold-out validation method ensured robust,
generalisable outcomes.

The reinforcement learning tutor in Hare et al. (2024) significantly
enhanced learning efficiency (Cohen’s d=1.15), illustrating
considerable practical benefits in highly interactive educational
settings. While impactful, this method’s context-specific nature
somewhat limits broader applicability.

Emotion recognition via CNNs (Hu et al, 2024), despite a
narrower focus, significantly improved class performance, reflecting
the potential value of affective computing in enhancing educational
engagement and outcomes.

ARD regression methods, while effective for early-term
predictions (Rico-Juan et al., 2024), showed moderate improvements
compared to broader ML applications, suggesting a niche yet valuable
role in predictive interventions.

Collectively, these findings suggest that the choice and
implementation of ML methods should closely align with educational
contexts and predictive goals, with metaheuristic optimisation and
longitudinal validation significantly enhancing predictive accuracy
and model generalisability.

4.3 RQ3: contextual and technical enablers
of successful implementation

Several factors facilitated the successful deployment of ML-based
predictive systems. Alignment with existing educational infrastructure
proved crucial; seamless integration with established teaching
workflows and laboratory environments (Hare et al., 2024; Hu et al,,
2024) reduced barriers to adoption.

Metaheuristic tuning frameworks lowered technical barriers,
enabling institutions lacking extensive data science expertise to
implement  sophisticated  predictive models effectively
(Jayachandran and Joshi, 2024). These automated optimisation tools
ensured compact, easily deployable models without extensive
manual tuning.

Explainability and transparency significantly influenced adoption.
Clear visualisation tools such as SHAP values provided stakeholders—
and administrators—with actionable,

educators, advisors,
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interpretable insights, facilitating trust and broader acceptance (Ren
and Yu, 2024; Rico-Juan et al., 2024).

Longitudinal data utilisation enhanced predictive reliability,
addressing inherent variability across cohorts and ensuring robustness
against curriculum changes or demographic shifts (Ren and Yu, 2024).
This approach highlighted the importance of sustained data collection
for long-term predictive validity.

These technical and contextual factors collectively underscore
essential considerations for successfully implementing ML systems
within educational environments, emphasising integration, usability,
transparency, and robust data strategies.

4.4 RQ4: implementation challenges and
mitigations

Despite promising outcomes, several implementation challenges
emerged. Predominantly, studies relied on single-institution,
convenience samples, restricting broader generalisability. Temporal
hold-out validation partially mitigated this issue (Ren and Yu,
2024), but broader multi-institutional validations remain necessary.
difficulties,
particularly evident in computationally intensive applications like

Hardware heterogeneity posed practical
reinforcement learning systems. While some solutions provided
simplified fallback options (Hare et al., 2024), broader hardware
standardisation or flexible system designs are recommended for
future deployments.

Privacy and ethical concerns, especially regarding biometric data,
posed significant barriers. Hu et al. (2024) addressed these using
privacy-preserving data transformations, highlighting the importance
of robust ethical frameworks and informed consent procedures in
educational ML deployments.

Insufficient transparency in hyperparameter reporting across studies
hindered reproducibility. Establishing clearer methodological reporting
standards is essential to ensure external validation and replication.

Finally, external validity limitations, exacerbated by the absence
of macro-contextual data (e.g., economic indicators), demand more
comprehensive validation frameworks and the integration of broader
contextual factors for truly generalisable predictive models.

These challenges illustrate critical areas requiring focused
attention in future research, including multi-institutional
collaboration, ethical standardisation, methodological transparency,

and comprehensive validation frameworks.

4.5 Implications for practice and policy

The integration of ML in engineering education offers substantial
opportunities for improving student outcomes, from personalised
tutoring and real-time interventions to employability predictions.
Practical recommendations include deploying early-warning systems
to identify at-risk students promptly, leveraging existing educational
infrastructure to facilitate integration, and applying ethical best
practices, such as transparent data usage policies and privacy-
preserving technologies.

Policy-wise, institutions should mandate rigorous fairness audits
and ensure transparent, explainable model outputs to foster trust and
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equity. Additionally, policies promoting cross-institutional
collaboration and data sharing would significantly enhance model

validation and generalisability.

4.6 Future directions

Future research should explicitly focus on expanding multi-
institutional studies to overcome limitations of single-institution
biases. Adopting rigorous methodological standards such as nested
cross-validation, transparent hyperparameter tuning, and external
validation on independent datasets is essential. Ethical considerations
must remain central, advocating fairness audits, privacy-preserving
techniques, and clear consent protocols.

Moreover, research into human-centred explainability—ensuring
predictions are actionable and interpretable by educators—is
paramount. Cost-benefit analyses examining the practical
sustainability and accessibility of ML deployments in resource-
limited contexts will further support scalability and
widespread adoption.

In conclusion, while substantial progress has been made in
applying ML techniques to enhance engineering education, continued
methodological refinement, robust ethical standards, and strategic
multi-institutional collaborations remain critical to fully realising MLs

potential in transforming educational outcomes.

5 Conclusion

The rapid review synthesised recent evidence highlighting the
significant potential of machine learning (ML), artificial
intelligence (AI), and deep learning (DL) methods in enhancing
student performance in university engineering education. The
reviewed studies demonstrate substantial benefits, including
personalised learning interventions, precise early identification of
at-risk students, improved course outcomes through adaptive
tutoring systems, and accurate employability predictions.
However, these advantages are tempered by methodological
limitations such as small sample sizes, reliance on single-
institution datasets, inconsistent validation procedures, and
inadequate transparency in reporting analytical methods.
Addressing these challenges by prioritising rigorous multi-
institutional studies, standardised validation protocols,
transparent model development, and robust ethical frameworks
will be essential to achieving broader applicability and fairness.
Overall, the continued refinement and ethical deployment of
ML-driven approaches hold substantial promise for transforming
educational outcomes and fostering greater student success across

diverse engineering contexts.
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