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ChatGPT’s perspectives on real
numbers, straight lines, and
probability—A quantitative study
on the influence of prompting

Frederik Dilling*

Mathematics Education, University of Siegen, Siegen, Germany

Large language models like ChatGPT are currently a hot topic in mathematics

education research. Various analyses are available on the correctness of

mathematical responses and on performance in problem solving or proving

contexts. However, the adequate representation of mathematical content in

the responses has not yet been su�ciently considered in research. This

article addresses this desideratum using the approach of belief systems

about mathematics. For this purpose, four perspectives on mathematics are

distinguished—the formal-abstract, the empirical-concrete, the application

and the toolbox perspective. A qualitative content analysis of 450 ChatGPT

responses to the mathematical concepts of real numbers, straight lines and

probability and the subsequent quantitative evaluation with chi-square tests

showed that the empirical-concrete perspective occurs much more frequently

than the other perspectives and the formal-abstract perspective is found

very rarely in comparison. The use of appropriate prompts can significantly

increase or decrease the occurrence of perspectives. There are also significant

di�erences between themathematical concepts. The concept of a straight line is

significantlymore often defined in terms of the empirical-concrete and less often

in terms of the formal-abstract perspective compared to the other concepts.

KEYWORDS

artificial intelligence, beliefs aboutmathematics, ChatGPT, generative AI, large language
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1 Introduction

The use of generative artificial intelligence (AI) in education is currently a hotly

debated topic. In particular, large language models (LLMs) such as ChatGPT, Google

Gemini or Microsoft Copilot are the focus of attention. LLMs are linguistic models that

have been trained with a huge amount of text data and are intended to simulate natural

communication via text.With the help of probability trees, answers (so-called responses) to

user requests (so-called prompts) are generated. For this purpose, probabilities are assigned

to the various words and smaller text parts, which describe the relation to the other words

and text parts from the prompt and the responses already generated. Although the system

was trained for linguistic knowledge, it can also contain rational knowledge from the

training data (Petroni et al., 2019). Nevertheless, knowledge databases are not accessed

directly for the responses; the knowledge comes solely from the trained linguistic model,

which can also result in the output of incorrect information.

The AI-technology is expected to have a significant impact on education, with some

authors even predicting a revolution (Wardat et al., 2023; Vandamme and Kaczmarski,

2023). Kasneci et al. (2023) describe the opportunities and challenges that they see arising
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from the new technology. On the one hand, there is the

enhancement of assessment and evaluation, lesson planning,

language learning, research and writing, and professional

development of teachers. On the other hand, there are challenges

such as copyright issues, bias and fairness, and the possibility that

teachers and students become too reliant on generative AI. The use

of generative AI is also being considered in mathematics education

research, although the research is still in its early stages. However, it

has been shown in various tests and studies that LLMs can generate

mathematically correct responses in many cases and that this

can be influenced by prompting (e.g., Wei, 2024; Schorcht et al.,

2024). The rapid technical development in this sector suggests that

mathematical errors will further decrease in future.

The mathematical correctness of the responses is certainly a

prerequisite for LLMs to become an adequate tool for teaching

mathematics. This issue did not need to be addressed at all

with previous tools such as computer algebra systems, calculators,

spreadsheets or dynamic geometry software. It was obvious,

that these deterministic systems always provide a unique and

mathematically correct solution. In addition to the generation of

potentially incorrect answers, another aspect distinguishes LLMs

from classic digital mathematics tools. The response does not only

provide a solution given in the form of a number, a formula or a

geometric drawing, but it is also interpreted, analyzed, explained

or classified in the context of the prompt. LLMs are not limited

to performing simple calculations or construction tasks; rather,

they can also answer conceptual questions about mathematical

concepts and situations. This means that they are not just a

tool, but also a resource that can teach students new and already

known knowledge, like a schoolbook, online learning videos or

learning websites. In this context, it is also important to always

check whether the information presented ismathematically correct.

However, another crucial component is added with the adequate

presentation of themathematical situation. The samemathematical

content can be presented quite differently in different contexts,

for example, in a rather formal and abstract way in a university

textbook, with a strong reference to the real world in a school

textbook, or prototypically by emphasizing schematic aspects in

an online learning video. All these forms of presentation can be

mathematically correct and yet offer a different perspective on

mathematics. These different perspectives can be described using

the theoretical framework of belief systems about mathematics

(e.g., Schoenfeld, 1985; see Section 2.2).

From this point of view, this article aims to investigate the

perspectives on mathematics provided by the responses of the

well-known LLM ChatGPT. To answer this, the next section

first provides an insight into research on LLMs in mathematics

education and belief systems about mathematics. Subsequently,

an empirical study is presented in which responses to the three

mathematical concepts real numbers, straight line, and probability

are coded with regard to four previously defined perspectives on

mathematics. A quantitative analysis of the codings reveals the

influence of the used prompts and the mathematical concepts,

as well as general differences in the occurrence of the four

perspectives on mathematics. The results are discussed in the

context of the state of research and a conclusion and an outlook

are formulated.

2 Theoretical background

2.1 Large language models in mathematics
education

Research on LLMs in mathematics education is still in its

infancy and has largely emerged in the wake of the release of

ChatGPT 3.5 and the resulting societal hype. However, the use of

AI for mathematical learning has been discussed for several years,

albeit more from the perspective of learning analytics or machine

learning and with a strong developmental focus (Chen et al., 2020;

bin Mohamed et al., 2022). The following discussion is focused

on the use of LLMs and not AI in general. The discussion will be

structured along the familiar model of the didactic tetrahedron.

The didactic tetrahedron has been described in a similar way

by many different authors and used to analyze empirical data

(see the literature review in Ruthven, 2012). It consists of four

corners, which stand for the fundamental elements of mathematics

teaching: teacher, learner, mathematics and technology. Between

these elements, there are many relationships, which are represented

by the edges and triangular surfaces of the tetrahedron.

The theoretical discussions and empirical studies on LLMs

in mathematics education that have been found so far relate

to the use of LLMs by teachers (Technology-Mathematics-

Teacher), the use of LLMs by students (Technology-Mathematics-

Learner) and the analysis of LLMs with regard to mathematical

capabilities (Technology-Mathematics).

Research on teachers’ use of LLMs in mathematics

(Technology-Mathematics-Teacher) focuses on LLMs as a

tool for designing mathematics lessons. It can also be seen that pre-

service teachers have been the focus of attention so far, rather than

in-service teachers. Buchholtz and Huget (2024) have investigated

how pre-service teachers use ChatGPT to develop mathematics

lesson plans. For this purpose, the pre-service teachers were given

initial prompts, which included a framework for planning lessons

in five steps and specific instructions for the interaction between

ChatGPT and the user. The results show that the pre-service

teachers used ChatGPT in very different ways. The spectrum

ranged from simply accepting the generated suggestions to

consciously adapting them and making theoretically well-founded

decisions. The quality of the developed lesson plans depended in

particular on the adaptations made by the pre-service teachers,

since the suggestions generated by ChatGPT mostly corresponded

to a rather standardized teaching approach. The planning

dialogue with ChatGPT was able to trigger reflection processes

among the pre-service teachers in which they reconsidered their

planning decisions.

Baumanns and Pohl (2024) address problem posing as a specific

aspect of lesson planning. In a qualitative study, they examined the

interaction processes of five pre-service teachers when creating a

simple, a moderate and a difficult math problem based on a given

problem on Hasse diagrams. The pre-service teachers worked with

a special megaprompt, so that ChatGPT functioned more as an

assistant and asked targeted impulse questions to the pre-service

teachers. Baumanns and Pohl were able to reconstruct three ways of

using ChatGPT. First, the pre-service teachers used ChatGPT as a

collaboration partner to jointly develop ideas and reflect on them. A
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second way of using it was in discussions in the area of pedagogical

content knowledge, in which ChatGPT asked for subject-specific

justifications. The last reconstructed way of using ChatGPT was to

support the linguistic formulation of the problems, for example by

rephrasing them in simpler language.

Noster et al. (2024a) also studied pre-service teachers creating

tasks. However, their study specifically focused on developing tasks

in which ChatGPT is used as a tool. Although the results show

that different ways of using ChatGPT appear in the tasks (e.g.,

generation of data sets, comparison of fractions, mathematical

modeling), overall, the specific characteristics of the technology are

not adequately considered by the pre-service teachers, e.g., that the

responses of ChatGPT are not always correct.

Research on students’ use of LLMs (Technology-Mathematics-

Learner) tends to focus on university students and examines

how they use technology in mathematical activities such as

proving. Yoon et al. (2024) conducted three clinical interviews

with undergraduate mathematics students in which the students

were asked to prove six selected mathematical statements using

ChatGPT. They found that the students’ engagement with

ChatGPT was significantly influenced by three factors: the students’

different conceptions of mathematical proofs had particular effects

on the evaluation of the responses and their integration into

the final proof. The conceptions of ChatGPT influenced how

ChatGPT was used (e.g., the revision of prompts). Finally, ethical

considerations were relevant in determining whether and how

ChatGPT should be integrated into the students’ learning process.

Park and Manley (2024) have examined the proof-checking

of university students with the help of ChatGPT. A sample of 29

students first independently developed statements and arguments

to determine the area of a triangle from its side lengths. After

that, the arguments were revised with the help of ChatGPT. By

comparing the original and final arguments and analyzing the

students’ statements about using ChatGPT as a proof assistant, Park

and Manley were able to show that the students mostly agreed

with ChatGPT’s suggestions and revised the arguments accordingly

to improve clarity, provide additional justifications, and show the

generality of their arguments.

Dilling and Herrmann (2024) have also investigated the use

of ChatGPT as a proof assistant in geometry at university. By

analyzing 162 chats of students on the proof of two well-known

geometric theorems, nine different prompting types could be

identified. Most commonly, students asked directly for the proof

or asked follow-up questions to the previous responses. Other

prompts included questions about specific mathematical concepts

or theorems, requests for feedback on their own proof ideas,

requests for a different proof, questions about the premises of the

proof, or the output of a graphic visualization.

Noster et al. (2024b) also came to similar conclusions,

observing 11 pre-service mathematics teachers while they worked

on four mathematical tasks from the fields of arithmetic and

probability theory with ChatGPT. They identified six different

prompting techniques: the students most often formulated zero-

shot prompts, frequently also by directly copying the task as a

prompt. The repeating of prompts (regeneration of a response or

using the same prompt again), the use of ChatGPT as a calculator

for performing simple calculations, and the change of languages

between German and English were also found quite frequently.

Only occasionally, students used few-shot prompts (e.g., similar

tasks with solutions) or asked for feedback on their own solution.

Dilling et al. (2024a) examined the use of ChatGPT by

middle school students when proving the theorem of the sum

of interior angles in a teaching experiment. They were able

to determine various forms of communication and interaction

with and about the LLM. The interaction with the LLM was

used by the students to verify their own conclusions and to ask

for visualizations, and typical for this form of communication

was the regeneration of prompts and the reviewing of previous

responses. The communication between the students about

ChatGPT included reading out of the response, questioning the

response, identifying errors, discussing responses and comparing

the response to previous solutions. The role of the teacher was also

considered in the teaching experiment. He particularly attracted

attention by checking the ChatGPT responses for correctness

and adequacy, highlighting incorrect aspects, and excluding too

difficult mathematical topics that occurred in the chats. Overall,

the teaching experiment showed that although ChatGPT produced

many logical errors in the argumentation, this nevertheless

provided an engaging learning opportunity for the students.

Most of the studies on Large Language Models in the

field of mathematics directly examine the systems’ mathematical

capabilities without involving students or teachers (Technology-

Mathematics). Many of these studies use publicly available tasks

from well-known tests such as national or international final

exams, comparative tests, or admission tests. As an example, the

relatively current study by Wei (2024) should be mentioned here,

which assessed the capabilities of ChatGPT-4 and ChatGPT-4o

in solving mathematics problems from the National Assessment

of Educational Progress (NAEP) in grades 4, 8, and 12. The

results show that ChatGPT-4o performs slightly better overall than

ChatGPT-4, and both systems perform better than the average

U.S. student in the respective grades. Furthermore, the author

notes that the LLMs perform significantly worse in geometry and

measurement than in algebra and that more difficult mathematical

tasks are generally solved worse by the LLMs.

In a systematic evaluation, Dilling (2024a) examined the

potential of ChatGPT-4 as an assessment and feedback tool from

a mathematics education perspective. The analysis of different

sample tasks and solutions in the context of linear algebra and

analytic geometry showed that ChatGPT offers a remarkable

amount of potential for formative assessment and feedback in

this field. All operations that can be performed by a computer

algebra system can also be performed by ChatGPT by connecting to

Python or Wolfram Alpha. Furthermore, the used prompt largely

determines the form and content of the feedback, the correctness

of the assessment and the extent to which the response is adapted

to the feedback receiver. In general, the system was able to provide

correct and didactically useful feedback in many but not all cases.

However, LLMs still have difficulty with more complex

mathematical problem-solving, as can be seen, for example, from

the studies by Getenet (2024) and Schorcht et al. (2024). However,

the process-related and content-related quality could be increased

in the study by Schorcht et al. (2024) by using appropriate

prompting techniques (e.g., chain-of-thought prompting) and
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by using a suitable LLM version (ChatGPT-4 performed better

than ChatGPT-3.5). Beside problem-solving, mathematical proofs

generated by ChatGPT are not reliable and often contain logical

errors (Dilling et al., 2024a; Dilling and Herrmann, 2024).

The mathematical correctness of LLM responses is thus being

examined in detail in research and is also a key concern in the

further development of the established LLMs. For example, in

September 2024, OpenAI released the GPT-4o1 model, which was

specifically trained for complex reasoning and implemented a

chain-of-thought approach (OpenAI, 2024). However, the adequate

presentation of (at best correct) mathematical content in LLM

responses has only been considered in a few studies so far. Dilling

(2024a) considered this aspect as briefly described above from the

perspective of appropriate and individualized feedback. Another

study that addresses appropriate presentation comes from Peters

and Schorcht (2024). They examined how givenmathematical tasks

can be improved with the help of appropriately prompted ChatGPT

agents. They considered the aspects of mathematical content,

linguistic sensitivity, competence orientation, and differentiation.

The tasks created with ChatGPT were evaluated by in-service

teachers as human experts. It was found that AI-generated

problem-based tasks were rated better than the original tasks in

61% of all cases, while tasks requiring basic competencies were

rated better in only 28% of the cases. An important reason why

teachers decided on the original tasks was their short length

and concise presentation of information. Reasons for selecting

the AI-generated tasks included the concrete call for action, the

presentation of solution approaches and the motivational context.

Despite these initial studies, which consider the presentation

of mathematical content in specific contexts such as giving

feedback or generating tasks, there is a research gap in terms of

which perspectives on mathematics and mathematical concepts are

opened up by LLMs. This article aims to approach this fundamental

question from the position of belief systems about mathematics.

2.2 Belief systems about mathematics

In this article, LLMs are analyzed in the context of the approach

of beliefs systems about mathematics. Belief systems can be defined

according to Schoenfeld (1985) as follows:

Belief systems are one’s mathematical world view, the

perspective with which one approaches mathematics and

mathematical tasks. One’s beliefs about mathematics can

determine how one chooses to approach a problem, which

techniques will be used or avoided, how long and how hard one

will work on it, and so on. Beliefs establish the context within

which resources, heuristics and control operate. (Schoenfeld,

1985, p. 45)

Beliefs and belief systems are a central subject of investigation

in mathematics education research and they are assumed to have

a significant influence on mathematical teaching and learning

processes (Goldin et al., 2009). In a normative sense, Green (1971)

considers the shaping of students’ mathematical belief systems to be

one of the key goals of teaching:

Teaching is an activity which has to do, among other

things, with the modification and formation of belief systems.

If belief systems were impervious to change, then teaching, as a

fundamental method of education, would be a fruitful activity.

(Green, 1971, p. 48)

The research literature often emphasizes the importance of

teachers’ beliefs, which significantly influence the development of

students’ beliefs (e.g., Grigutsch et al., 1998). The influence of

teachers’ beliefs on students’ beliefs has been empirically proven

in a number of empirical studies (e.g., Carter and Norwood, 2010;

Muis and Foy, 2010). Other factors, such as the design of teaching

materials, are less easy to measure directly in empirical studies—

nevertheless, a long-term influence can be assumed. If LLMs will

have a significant influence on the learning of mathematics in

and outside the classroom in the future, it is also important to

have a look on the perspectives on mathematics presented by

this technology.

A basic assumption of research on belief systems about

mathematics is that the belief systems of different individuals can

be described as sufficiently similar and can therefore be categorized

accordingly. Goldin (2002) uses the phrase “socially or culturally

shared belief systems” (p. 64). Based on this assumption, theoretical

and empirical approaches have been developed to categorize

possible types of mathematical belief systems, each of which focuses

on different characteristics.

Building on the research on the categorization of prototypical

belief systems about mathematics, four perspectives will be

described in more detail here (Dilling et al., 2024b; Dilling, 2024b).

This is explicitly not an exhaustive description—many other belief

systems or perspectives can be described by looking at other

characteristics. Furthermore, the belief systems and perspectives are

not mutually exclusive and combinations can occur.

The formal-abstract perspective (FA) corresponds to the

commonly accepted scientific way of practicing and understanding

mathematics. It is characterized by a strictly deductive and

abstract approach. In addition, there is a complete separation

of mathematics and reality, which can be achieved through the

formulation of axioms as propositional patterns. The formal-

abstract perspective can be found in particular at universities

and was established with the work of David Hilbert on the

foundations of geometry. A similar characterization of a formal-

abstract belief system can be found in various places in the

literature. For example, Schoenfeld (1985) compared the beliefs

of mathematicians and students when solving problems, whereby

the belief system of the mathematician describes the formal-

abstract perspective. Grigutsch et al. (1998) characterized the

formalism aspect with 12 different items and identified it as

a frequently encountered perspective in a survey of teachers.

Dionne (1984) distinguishes three views of mathematics on a

theoretical basis, including the formalistic view, in which doing

mathematics means developing rigorous proofs, using precise and

exact terminology and standardizing concepts. In his framework of

the three worlds of mathematics, Tall (2013) describes the world of

axiomatic-formalism as “building formal knowledge in axiomatic

systems specified by set-theoretic definition, whose properties are

deduced by mathematical proof” (p. 133). Dilling (2022), Stoffels
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(2020), and Witzke and Spies (2016) emphasize the separation of

mathematics from reality as a characteristic feature of a formal-

abstract belief system.

The empirical-concrete perspective (EC) is a kind of opposite

to the formal-abstract perspective. In this perspective, the objects

of investigation in mathematics originate from empiricism (e.g.,

function graphs, drawing sheet figures, dice experiments) and the

mathematical theory is ontologically bound to these. Mathematical

propositions can be described within a theory, but the axioms and

definitions refer directly to empirical objects. According to recent

studies (e.g., Witzke and Spies, 2016), students at school and at

the beginning of their university studies often hold such a belief

system about mathematics, which can be attributed to the way

mathematics is taught at school. In Schoenfeld’s (1985) problem-

solving case studies, the students’ belief system corresponds to

an empirical perspective on mathematics. However, Schoenfeld

speaks of “pure empiricists,” as he did not observe any logical

deductions or genuine theorizations. In Tall’s (2013) three worlds

framework, there is a world of conceptual embodiment, which

describes the development of mathematical knowledge “building

on human perceptions and actions” (p. 133). Dilling (2022), Stoffels

(2020), and Witzke and Spies (2016) also describe an empirical-

concrete belief system, which is about substantial mathematical

theory development based on empirical objects.

The application perspective (A) is about the application of

mathematical concepts and theorems in reality. This takes place,

for instance, in applied sciences, but also in everyday life. Grigutsch

et al. (1998) describe this in the so-called application aspect with

items such as “Mathematics helps to solve everyday tasks and

problems” or “Mathematics has a general, fundamental benefit for

society” (p. 17). Witzke and Spies (2016) describe the application

orientation, which focuses on extra-mathematical applications and

mathematical modeling. As an anchor example, they cite the answer

of a student who describes the concept of the inflection point in

calculus with reference to the water level in a reservoir.

The toolbox perspective emphasizes the application of rules,

formulas and procedures in a schematic way. Ernest (1989)

describes this as the instrumentalist view (“mathematics is a useful

but unrelated collection of facts, rules and skills”, p. 21)—Dionne

(1984) uses the term traditional view. In the study by Grigutsch

et al. (1998), the schema aspect is characterized, for example, with

the item “Mathematics is a collection of procedures and rules that

specify exactly how to solve tasks” (p. 19). Witzke and Spies (2016)

cite the derivation of functions using derivation rules as an example

of the toolbox orientation.

Brief descriptions of the four perspectives on mathematics,

which also appear as definitions of the categories in the later

analysis, can be seen in Table 1.

At first glance, it may seem somewhat unusual to apply a

psychological concept such as that of beliefs to the study of a

technology like LLMs. It is not assumed that an LLM—such as

ChatGPT in the present case—possesses human characteristics

or an actual belief system. Rather, the premise is that certain

perspectives are conveyed through its responses: the LLM

represents mathematical concepts in a specific manner, for example

by formulating axioms or referencing real-world situations.

Whether this representation is consistent is one of the key questions

addressed in this study.

TABLE 1 Definition of the four perspectives on mathematics considered

in the empirical study.

Perspective Definition

Formal-abstract Mathematical concepts are based solely on axioms and are

strictly separated from reality.

Empirical-

concrete

Mathematical concepts are defined with reference to

empirical mathematical objects, e.g., function graphs or

drawing sheet figures.

Application Mathematical concepts are used to describe real world

phenomena, e.g., in applied sciences or in everyday life.

Toolbox Mathematics is about applying rules, formulas, and

procedures in a schematic way.

This gives rise to the hypothesis that individuals who

interact with the LLM in mathematical contexts (e.g., students

in mathematics education) may develop or be supported in

developing certain conceptions of mathematics. These, in turn,

form the basis for the development or further development of

their belief systems about mathematics. The concept of beliefs—

extensively studied and well-established in mathematics education

research—provides a useful framework for distinguishing between

different perspectives on mathematics and for making them

accessible to empirical investigation.

2.3 Research questions

On the basis of the literature review on LLMs in mathematics

education, a research gap was identified with regard to the

presentation of mathematical content, which can be addressed with

the approach of belief systems about mathematics (see Table 1).

Against this background, the following main research question is

explored in this article:

Main RQ: Which perspectives on mathematics are presented

in ChatGPT responses?

This research question can be subdivided into three sub-

questions. First, differences in the occurrence of the four

perspectives should be identified:

RQ 1: Are there significant differences in the occurrence of

the perspectives on mathematics in ChatGPT responses?

This question is interesting because various empirical studies

have examined the occurrence of typical belief systems in certain

groups of individuals. For example, Grigutsch et al. (1998) found

that teachers on average identify more strongly with the application

perspective (or application aspect) and less with the toolbox

perspective (or schema aspect). At the same time, they found

that the toolbox perspective is often associated with a formalistic

approach to mathematics, while the application perspective is

associated with a process-oriented approach. Concerning students

in school and early university studies, Dilling (2022), Stoffels

(2020), and Witzke and Spies (2016) primarily identified the

presence of the empirical-concrete perspective.

Another aspect to be investigated in this study is the influence

of prompting on the occurrence of perspectives:

RQ 2:What influence do different prompt formulations have

on the occurrence of perspectives on mathematics?
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The literature review in Section 2.1 showed that prompting

and the use of prompting techniques have a decisive influence

on the responses generated by an LLM, for example in terms

of mathematical correctness (e.g., Schorcht et al., 2024; Dilling,

2024a). In addition, research to date shows that students have so far

only used very simple prompting strategies and that there is a great

need for the development of meaningful prompting strategies for

mathematics education (e.g., Dilling and Herrmann, 2024; Noster

et al., 2024b).

Finally, the extent to which perspectives on mathematics

differ in responses to different mathematical concepts will also

be investigated:

RQ 3: What influence do different mathematical concepts

have on the occurrence of perspectives on mathematics?

Since LLMs were primarily developed for communication in

text form and are also mainly based on text data, it can be

hypothesized that symbolically represented mathematical content

can be processed more easily by LLMs. Actually, the study by

Wei (2024) shows that ChatGPT performs significantly better on

tasks in the field of algebra than in geometry and measurement.

Therefore, with regard to perspectives on mathematics, one could

also assume that these differ in different mathematical fields or for

different mathematical concepts.

3 Methodology

3.1 Data sampling

A systematic analysis of the LLM ChatGPT-4 was carried out in

February 2024 in order to investigate the above research questions.

For data collection, a total of 450 inputs were made in English using

15 different prompts. The prompts were sent to ChatGPT within 3

days using three different ChatGPT accounts—no information was

stored as metaprompts in the settings of the accounts. Each prompt

was sent in a separate chat to avoid references to previous input. At

the time the data was collected, ChatGPT was unable to reference

or link information across separate chat sessions.

The 15 different prompts referred to three different

mathematical concepts—real numbers, straight lines and

probability. The use of basic concepts is a common approach in

beliefs research, as these are particularly suitable for distinguishing

between belief systems (see, e.g., Witzke and Spies, 2016).

Furthermore, the three concepts come from different mathematical

fields and thus represent a certain range of mathematics. The

three basic prompts were formed by the questions: “What are/is

a real number/straight line/probability in mathematics?” In

subsequent entries, the basic prompts were expanded with four

distinct additions, each designed to evoke one of the perspectives

on mathematics, e.g., “rigorously formal” or “graphically.” The

complete list of prompts can be seen in Table 2. Each of these

prompts was entered 10 times by each account, which corresponds

to 450 prompts. In the chats, there are 450 ChatGPT responses

as answers to these prompts, which formed the database for the

analysis. However, due to data losses, only 446 responses were

accessible for the analysis.

TABLE 2 List of prompts used for data collection.

0.1: What are real numbers in mathematics?

0.2: What is a straight line in mathematics?

0.3: What is a probability in mathematics?

1.1: How can real numbers be defined rigorously formal in mathematics?

1.2: How can straight lines be defined rigorously formal in mathematics?

1.3: How can probability be defined rigorously formal in mathematics?

2.1: How can real numbers be defined graphically in mathematics?

2.2: How can straight lines be defined graphically in mathematics?

2.3: How can probability be defined graphically in mathematics?

3.1: How can real numbers from mathematics be applied in reality?

3.2: How can straight lines from mathematics be applied in reality?

3.3: How can probability from mathematics be applied in reality?

4.1: What are formulas and rules for real numbers in mathematics?

4.2: What are formulas and rules for straight lines in mathematics?

4.3: What are formulas and rules for probabilities in mathematics?

3.2 Data evaluation

The data was analyzed using the deductive qualitative content

analysis according to Mayring (2000). This method starts with

the definition of research questions and the context of the

study. This also includes the definition of the unit of analysis,

which in the study presented here is a complete response. Based

on the theoretical considerations, categories are distinguished

and defined (see Sections 2.2, 2.3, and 3.1). Subsequently,

characterizing examples are selected from the data material and,

if necessary, further coding rules are developed to specify them.

The examination of the data material can also lead to fundamental

changes in the categories, but this was not the case in the presented

study. With the final category system, the entire data material is

coded once again.

Excerpts from ChatGPT responses to the three mathematical

concepts, which are examples of the four perspectives on

mathematics, can be seen in Table 3. The qualitative content

analysis showed that all four perspectives occurred in relation to

all three mathematical concepts in the data (Dilling, 2024b).

As described earlier, the perspectives are not mutually exclusive

and combinations can occur within one response. Therefore,

in the deductive qualitative content analysis, a separate rating

was made for each response in relation to each of the four

perspectives. An example in which all four perspectives occur

and which was rated accordingly for the data set can be seen in

Figure 1.

The entire data material consisting of 446 responses was coded

independently by two experienced and specifically trained raters.

The inter-rater reliabilities for the different perspectives range from

substantial to almost perfect agreement (FA: κ= 0.92; EC: κ= 0.69;

A: κ= 0.82; T: κ= 0.93). Based on these ratings, a quantitative study

was conducted to examine the research questions. For this purpose,

a code was only included in the analysis if both raters had evaluated
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TABLE 3 Examples from the ChatGPT responses for the four perspectives and the three mathematical concepts.

Formal-abstract (FA) Empirical-concrete (EC) Application (A) Toolbox (T)

“In mathematics, real numbers are defined rigorously

through several formal constructions, with the most

common being the Dedekind Cuts and the Cauchy

Sequences approaches. Both methods provide a

foundation for the real numbers (R) in terms of more

primitive notions such as rational numbers (Q).”

“Real numbers can be thought of as

points on an infinitely long line

called the real number line, where

each point corresponds to a unique

real number.”

“This set of numbers is

important because it provides a

way to describe and understand

quantities and measurements in

the physical world, such as

distance, area, volume, and

temperature.”

“Here are some of the key formulas

and rules that govern real numbers:

Addition:

Commutative: a+b= b+a

Associative: (a+b)+c= a+(b+c)

Identity element: a+0= a”

“In Hilbert’s formalistic theory, a straight line is not

defined by its properties or by a visual or physical

representation, as might be common in classical

geometry. Instead, it is defined through a set of axioms

that describe how lines behave and interact with other

geometric entities such as points and planes.”

“A straight line is the shortest path

between two points. This definition

aligns with the intuitive notion of a

line you might draw with a ruler on

a piece of paper.”

“They serve as the basis for

defining shapes, plotting graphs,

and modeling physical

phenomena.”

“Ax+By= C, where A, B, and C are

constants. This form is useful for

analyzing lines in a more general

context and can easily be

manipulated to find the slope and

intercepts.”

“In this framework, probabilities are assigned to sets in

a way that satisfies certain properties or axioms, such as

non-negativity, normalization (the probability of the

whole sample space is 1), and countable additivity.”

“Empirical probability (or relative

frequency probability): based on

observations or experiments.”

“Have applications in various

fields including finance,

insurance, science, engineering,

and everyday decision-making”

“The probability of an event is

calculated as the ratio of the number

of favorable outcomes to the total

number of possible outcomes.”

FIGURE 1

ChatGPT response to the prompt “What is a probability in mathematics?”.

a response with regard to one of the perspectives in the same way,

i.e., either both decided that the perspective occurs or does not

occur. As an illustrative example, the response to the prompt “How

can real numbers be defined rigorously formal in mathematics?”

from Figure 2 is considered. Both raters assigned the response

to the formal-abstract and empirical-concrete perspectives. They

also concurred that the application perspective was not present.

Thus, the response was included in the analysis for these three

perspectives. However, there was a discrepancy regarding the

toolbox perspective: Rater 1 identified it—perhaps due to the
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FIGURE 2

ChatGPT response to the prompt “How can real numbers be defined rigorously formal in mathematics?” as an example for intercoder disagreement.

TABLE 4 Frequencies of occurrence of the four perspectives on

mathematics.

Perspectives Observed Not
observed

Sum

Formal-abstract (FA) 163 267 430

Empirical-concrete (EC) 373 41 414

Application (A) 260 148 408

Toolbox (T) 240 190 430

Sum 1,036 646 1,682

explicit construction rule for a decimal number in point 3—

while Rater 2 did not consider it applicable. Consequently, the

response from Figure 2 was excluded from the analysis of the

toolbox perspective.

This procedure was adopted to minimize subjective

interpretations and potential coding errors, especially in light

of the large number of ChatGPT responses analyzed. This leads to

different frequencies of coded responses in the four perspectives

(Table 4 and following) although the number of inputs have been

the same. The resulting frequency tables were then analyzed using

a chi-square test. A significance level of p < 0.01 was selected for

the chi-square tests. Cohen’s ω was determined using the observed

relative frequencies bi,j and the expected relative frequencies ei,j as

a measure of the effect size:

ω =

√

√

√

√

∑

i,j

(

bi,j − ei,j
)2

ei,j

According to Cohen (1988), ω ≥ 0.5 characterize large effects,

0.5 > ω ≥ 0.3 medium effects, and 0.3 > ω ≥ 0.1 small effects.

These thresholds are adopted for the present study, as there are no

context-related recommendations for interpretation.

4 Results of the study

RQ 1: Perspectives on mathematics

The first research question deals with differences in the

occurrence of the four perspectives on mathematics. A total of 1682
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TABLE 5 Number of responses with exactly one (diagonal) or exactly two

identified perspectives.

Perspectives FA EC A T

FA 5 14 16 13

EC 7 97 55

A 0 0

T 0

codings was found in the study that were rated identically by both

raters and that referred to the totality of the prompts used and the

responses obtained from them. The number of identical ratings is

highest for the formal-abstract and toolbox perspective with 430,

while it is slightly lower for the empirical-concrete and application

perspective with 414 and 408 identical ratings, respectively, which

also explains the different interrater reliabilities.

Looking at the individual categories in more detail, it is striking

that the empirical-concrete perspective appears in 90% of the

responses. The application perspective (64%) and the toolbox

perspective (56%) are represented much less frequently, but still

in a majority of the responses. By contrast, the formal-abstract

perspective is not represented in most of the responses (only 37%).

The chi-square test for the contingency table (Table 4) shows a

significant difference in the occurrence of the perspectives with a

medium effect size (ω = 0.39, p < 0.01).

In addition to the occurrence of the individual perspectives

on mathematics, it should also be examined at this point which

perspectives occur together particularly frequently in a response.

For this purpose, only the portion of responses could be used in

which all four perspectives were assessed equally by both raters.

This reduced the number of evaluable responses to 356, with

the frequencies of occurrence remaining largely the same in the

reduced data set (FA: 35%, EC: 90%, A: 64%, T: 56%). Combinations

of different perspectives within a response occur very frequently.

Only 12 responses were assigned to a single perspective (Table 5),

of which 5 were only assigned to the formal-abstract perspective

and 7 only to the empirical-concrete perspective. Combinations of

two perspectives occurmost frequently with a total of 195 responses

(Table 5), whereby these are largely combinations of the empirical-

concrete perspective with the application perspective (97) or

the toolbox perspective (55). Figure 3 provides an example from

the data illustrating the frequent combination of the empirical-

concrete perspective and the application perspective. The example

illustrates that when fields of application of a mathematical concept

are described, this is usually accompanied by a definition of the

concept that refers to real-world contexts, thereby aligning with

the empirical-concrete perspective. Combinations of the formal-

abstract perspective with one of the other perspectives can each be

found in the low double digits. No response contains a combination

exclusively of the application and toolbox perspectives.

The data clearly shows that the application and toolbox

perspectives never occur alone but always in combination with

the formal-abstract or empirical-concrete perspective. This is not

really surprising, since a concept is either defined with an empirical

reference (empirical-concrete) or without it (formal-abstract).

Combinations of three perspectives can also be found

frequently in the data material. Of the 126 responses with three

identified perspectives, 71 are without the formal-abstract, 35

without the application, 19 without the toolbox and one without the

empirical-concrete perspective. In addition, further 23 responses

show all four perspectives on mathematics, like the one that can

be seen in Figure 1.

RQ 2: Influence of prompt formulations

The second research question was to examine the influence of

the prompt formulations, i.e., the additions to the standard prompt.

These were (1) the question of a rigorously formal definition, (2)

a graphical definition, (3) the applications of the concept and (4)

formulas and rules for the concept.

First, the effects of the prompt formulations on the formal-

abstract perspective (FA) are to be examined (Table 6). It can be

seen that the formal-abstract perspective occurs only very rarely

(12% of responses) with the standard prompt (0), and with a

significantly lower relative frequency than in the totality of all

responses (see Section 4.1). The rigorously-formal prompt (1)

leads to a significant increase in the frequency of occurrence

to 72% of all responses, which corresponds to a significant

difference with a large effect size (ω = 0.60, p < 0.01). An

example of the differences in the responses using the standard

and the rigorously-formal prompt can be seen in Figures 4, 5.

Both responses address the concept of real numbers. In the

standard prompt (Figure 4), there is a clear reference to the

didactic model of the number line—an abstract definition of real

numbers without reference to this visualization cannot be found.

In contrast, the rigorously-formal prompt (Figure 5) clearly leads

to an axiomatic definition without any connection to empirical

aspects—in the section under consideration, this is done using

Dedekind cuts.

The appearance of the response was also significantly increased

to 62% with the formulas prompt (ω = 0.51, p < 0.01). Even with

the graphically prompt (2), the frequency of occurrence can still be

increased to 32%, although this is only a small effect (ω = 0.24, p

< 0.01). The applied prompt (3) slightly reduces the frequency to

9%, although this is not a significant difference compared to the

frequency in the standard prompt.

The empirical-concrete perspective (EC) is clearly different

(Table 7). This occurs in almost all responses (98%) with the

standard prompt (0). Accordingly, the frequency of occurrence can

no longer be significantly increased, which leads to very similar

percentages for the graphically prompt (100% of responses) and for

the applied prompt (97% of responses). For the other two prompt

formulations, the proportion of empirical-concrete responses is

reduced, although in both cases it remains well above half. With

the rigorously-formal prompt (1), the proportion is 72%, and with

the formulas prompt it is 82%, which corresponds to significant

differences with a medium effect (ω = 0.36, p < 0.01) and a small

effect (ω = 0.26, p < 0.01).

The application perspective (A) is represented in 81% of the

responses when the standard prompt (0) is used, and is therefore

present in a large proportion of responses, but not in all of them

(Table 8). Accordingly, it is entirely possible to significantly increase

the frequency of occurrence here. For example, the applied prompt

(3) leads to a proportion of 100%, which means that in this case the
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FIGURE 3

Example for the combination of the application perspective and the empirical-concrete perspective in a ChatGPT response.

FIGURE 4

Part of a response on the standard prompt on real numbers (formal-abstract perspective not coded).

application perspective was rated in all tests. This corresponds to a

significant increase with a medium effect (ω = 0.32, p < 0.01). The

other prompt formulations lead to a reduction in the occurrence

of the application perspective. The effect (ω = 0.58, p < 0.01) is

greatest for the formulas prompt (4), which leads to a proportion

of 23%. For the rigorously-formal prompt (1) and the graphically

prompt (2), the application perspective occurs in about half of the

responses (52% and 54% of the responses, respectively), which is at

the threshold from a small to a medium effect (ω = 0.31 and ω =

0.29, p < 0.01).

The toolbox perspective (P) occurs in 66% of responses to the

standard prompt (0) (Table 9). Accordingly, the occurrence can be

both increased and reduced by prompt formulations. The formulas

prompt ensures a significant increase to 100%, which corresponds

to a medium effect (ω = 0.45 p < 0.01). The graphically prompt

also ensures a moderate increase, although the difference is not

significant. The occurrence of the toolbox perspective can be

reduced to 35% with the rigorously-formal prompt and to 0% with

the applied prompt, which corresponds to a medium (ω = 0.30, p

< 0.01) and a large effect (ω = 0.69, p < 0.01).
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FIGURE 5

Part of a response on the rigorously-formal prompt on real numbers (formal-abstract perspective coded).

TABLE 6 Frequency of the formal-abstract perspective (FA) with di�erent

prompt formulations.

Prompts FA Not FA Sum

0: Standard prompt 11 78 89

1: Rigorously formal prompt 64 25 89

2: Graphically prompt 27 57 84

3: Applied prompt 7 74 81

4: Formulas prompt 54 33 87

Sum 163 267 430

TABLE 7 Frequency of the empirical-concrete perspective (EC) with

di�erent prompt formulations.

Prompts EC Not EC Sum

0: Standard prompt 86 2 88

1: Rigorously formal prompt 61 24 85

2: Graphically prompt 90 0 90

3: Applied prompt 75 2 77

4: Formulas prompt 61 13 74

Sum 373 41 414

RQ 3: Influence of mathematical concepts

The third research question focuses on differences between

the three mathematical concepts real numbers, straight lines

and probability. Regarding the formal-abstract perspective, some

differences arise (Table 10). Most of the attributions of the formal-

abstract perspective occur with a relative frequency of 57% for

probability. The formal-abstract perspective could also be identified

in about half of the responses to real numbers. Almost no

formal-abstract definitions occur with straight lines (only 7%).

The chi-square test showed a significant difference between the

mathematical concepts with a medium effect (ω = 0.46; p < 0.01).

TABLE 8 Frequency of the application perspective (A) in di�erent prompt

formulations.

Prompts A Not A Sum

0: Standard prompt 72 17 89

1: Rigorously formal prompt 38 35 73

2: Graphically prompt 43 37 80

3: Applied prompt 89 0 89

4: Formulas prompt 18 59 77

Sum 260 148 408

TABLE 9 Frequency of the toolbox perspective (T) in di�erent prompt

formulations.

Prompts T Not T Sum

0: Standard prompt 59 31 90

1: Rigorously formal prompt 29 53 82

2: Graphically prompt 65 21 86

3: Applied prompt 0 85 85

4: Formulas prompt 87 0 87

Sum 240 190 430

The empirical-concrete perspective is strongly represented

in the responses on all three concepts (Table 11). The relative

frequencies range from 85% and 87% for real numbers and

probability to 98% for straight lines. The value for the term straight

line is exceptionally high—the perspective was not identified in only

two responses. The difference between the mathematical concepts

is significant with a small effect (ω = 0.19; p < 0.01).

The application perspective occurs in a very similar way for the

three mathematical concepts (Table 12). For responses on straight

lines, there is a relative frequency of 59%, for real numbers this is

65% and for probability it is 67%. The chi-square test could not find

any significant difference.
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TABLE 10 Frequency of the formal-abstract perspective (FA) for di�erent

mathematical concepts.

Concepts FA not FA Total

Real numbers 72 73 145

Straight line 10 134 144

Probability 81 60 141

163 267 430

TABLE 11 Frequency of the empirical-concrete perspective (EC) for

di�erent mathematical concepts.

Concepts EC not EC Total

Real numbers 116 20 136

Straight line 131 2 133

Probability 126 19 145

373 41 414

TABLE 12 Frequency of the application perspective (A) for di�erent

mathematical concepts.

Concepts A not A Total

Real numbers 86 46 132

Straight line 82 56 138

Probability 92 46 138

260 148 408

TABLE 13 Frequency of the toolbox perspective (T) for di�erent

mathematical concepts.

Concepts T not T Total

Real numbers 34 106 140

Straight line 116 30 146

Probability 90 54 144

240 190 430

The frequencies of the toolbox perspective are also quite

different between the three concepts (Table 13). For straight lines,

the toolbox perspective occurs quite frequently with 79% of

responses. The percentage for the concept of probability is also

quite large at 63%. The toolbox perspective occurs rather rarely

with 24% for real numbers. The result of the chi-square test is a

significant difference with a medium effect (ω = 0.46; p < 0.01).

The variation in responses depending on the mathematical concept

addressed is also illustrated in Figures 6, 7, both of which are based

on the standard prompt. In Figure 6, the definition of a straight

line highlights the formulation of linear equations in multiple

forms. This response reflects not only the empirical-concrete and

application perspectives but also includes the toolbox perspective.

In contrast, the response on real numbers in Figure 7, while it

similarly includes a definition aligned with the empirical-concrete

perspective and references fields of application, contains no specific

indications of rules or schemata related to real numbers—thus, the

toolbox perspective is absent.

5 Discussion of the results

The results presented above allow us to answer the research

questions posed at the beginning and thus contribute to our

understanding of how mathematics is presented in LLMs. Research

question 1 examined differences in the occurrence of the four

perspectives on mathematics. Based on the quantitative analysis,

significant differences with a medium effect size can be found. The

empirical-concrete perspective occurs in almost every response,

while the formal-abstract perspective was coded for only a few

responses. The analysis of the combinations of perspectives

showed that the application and toolbox perspectives never

occur alone, but always in combination with the empirical-

concrete or formal-abstract perspective. This is not surprising,

since a concept is always defined either by reference to

empiricism (empirical-concrete) or on an abstract level (formal-

abstract); an application or the presentation of formulas and

rules is not a complete and independent definition and more

an addition.

The frequencies of the perspectives found in the study are not

surprising in light of research on belief systems about mathematics.

For example, Dilling (2022), Stoffels (2020), and Witzke and

Spies (2016) have found in particular empirical-concrete belief

systems among students at school and freshmen at university. The

mathematics teaching at school is predominantly characterized

by an empirical-concrete perspective with many references to

empiricism. The formal-abstract perspective is largely restricted to

university mathematics studies (Grigutsch et al., 1998; Schoenfeld,

1985) and is therefore presumably less common. The results

could indicate that the version of ChatGPT tested is based in

particular on mathematical training data, in which the empirical-

concrete and not the formal-abstract perspective appears. This

would not be surprising, because if you search in the internet

for the mathematical concepts of real numbers, straight lines and

probability, you will find mostly empirical-concrete definitions.

Research question 2 investigated differences in the occurrence

of perspectives between the different prompt formulations.

The effects of the prompts vary greatly depending on the

perspective on mathematics. Since the formal-abstract perspective

is only found in a small number of responses using the

basic prompt, prompting (e.g., rigorously-formal prompt) can

significantly increase its frequency. In contrast, the empirical-

concrete perspective already occurs very frequently when using the

standard prompt, and a significant change can only be made by a

reduction with certain prompts (e.g., with the rigorously-formal

prompt), whereby the empirical-concrete perspective remains

very present in all cases. The frequencies of the application

perspective and the toolbox perspective can be increased or

decreased depending on the prompt formulation. Overall, the

respective prompts lead to the expected change in perspectives

on mathematics presented in the responses, for example an

increase in the formal-abstract perspective with the rigorously-

formal prompt or an increase in the application perspective

with the application prompt. However, even with appropriate

prompting, not all responses contain the respective perspective,

as is particularly evident with the formal-abstract perspective, in

which the proportion with the rigorously-formal prompt is still

only 72%.
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FIGURE 6

Response on the standard prompt on straight lines (toolbox perspective coded).

The results show that prompting can be used to control not

only the correctness of mathematical responses (e.g., Schorcht et al.,

2024; Dilling, 2024a), but also the presentation of mathematical

content, considered in this study in terms of perspectives on

mathematics. However, it also becomes clear that the LLMs do

not always react the same way to the same mathematical prompt.

LLMs are probabilistic systems, so that the responses are generated

differently for each new input. There is no certainty that a given

perspective will appear in the response for a given prompt. This

is quite challenging for the design and implementation of learning

scenarios using LLMs and emphasizes the role of the teacher as a

learning guide who has to check the correctness and adequacy of

the LLM responses (Dilling et al., 2024a).

Research question 3 examines differences in the occurrence of

perspectives between the mathematical concepts of real numbers,

straight lines and probability. When looking at the results, it

becomes clear that the concept of a straight line is only rarely

represented in formal-abstract terms in the responses compared

to the other concepts, and very often in empirical-concrete terms.

The toolbox perspective also occurs most frequently for the

concept of a straight line and very rarely for real numbers. The

application perspective is represented similarly frequently for all

three concepts.

These results are in line with the results of the analysis by

Wei (2024), who found significant differences between the fields of

geometry and algebra regarding mathematical correctness. These

differences also appear to exist with regard to the perspectives on

mathematics. In addition, the strong presence of the empirical-

concrete perspective in geometry can be well-explained by the fact

that, outside of the university, geometry is usually associated with

concrete operations on figures as objects of empiricism (Struve,

1990), while stochastics and calculus are usually described in a

much more symbolic way.

6 Conclusion and outlook

This article has dealt with the presentation of mathematical

content in responses of LLMs. An analysis of the current state

of research on LLMs in mathematics education has shown that
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FIGURE 7

Response on the standard prompt on real numbers (toolbox perspective not coded).

the mathematical correctness of responses and the possible way

of controlling this via prompting has already been investigated in

various places, but that the adequate presentation of mathematics

has so far played a minor role. In view of the implementation

of LLMs in mathematical learning processes, this is a clear

desideratum, which the present article has approached with

the notion of belief systems about mathematics. Based on

research on belief systems, four perspectives on mathematics were

distinguished. In the formal-abstract perspective, mathematical

concepts are based exclusively on axioms and are strictly separated

from reality. In contrast, the empirical-concrete perspective

defines mathematical concepts with reference to empirical

mathematical objects. The application perspective occurs when

mathematical concepts are used to describe reality. The toolbox

perspective involves the schematic application of rules, formulas,

and procedures. These four perspectives on mathematics are

neither exhaustive nor strictly separable, but they provide a

good overview of different approaches to mathematics and

mathematical learning.

The empirical study in this article examined ChatGPT-

4 responses to 15 different mathematical prompts. Coding

and subsequent quantitative analysis revealed that all four

perspectives on mathematics were found in responses. This

is not surprising, since ChatGPT is based on a wide range

of different training data and is a conglomeration of the

perspectives on mathematics described in it. The empirical-

concrete perspective occurs particularly frequently, while the

formal-abstract perspective is rather rare. The different perspectives

can be effectively created or avoided by using suitable prompts—

but there is no 100% certainty in the control, so that unexpected

perspectives on mathematics can also appear for relatively targeted

prompts. The study also revealed differences in the emergence of

perspectives between different mathematical concepts. The concept

of a straight line, which was used as an example in the study for the

field of geometry, is more often defined in empirical-concrete terms

and less often in formal-abstract terms in the responses compared

to the concepts of real numbers and probability.

These results represent important initial findings on how

mathematics is represented in LLM responses and how it

can be controlled by prompting. For mathematics teaching,

it is particularly noteworthy that ChatGPT responses to

minimally specified prompts often offer multiple perspectives

on mathematics. In this way, students are made aware of the

breadth of aspects that mathematics encompasses. The strong

presence of the empirical-concrete perspective suggests that

mathematics, as represented in LLMs, is closely tied to real-

world representations and concrete experiences—an alignment

that resonates especially well with the goals of mathematics

education in the early learning stages. At more advanced levels,

however, students should also be introduced to a formal-abstract

perspective. The findings show that in order to achieve this,

educators must use LLMs strategically by crafting prompts that

deliberately elicit the formal-abstract perspective. This can support

the implementation of meta-level discussions about the nature

of mathematics in the classroom and foster the development

of more balanced belief systems about the discipline. From a
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curricular standpoint, the results suggest that explicit discussions

and reflections on multiple mathematical perspectives should

be embedded into instruction. This enables students to explore

the potentials and limitations of different definitions of concepts

such as real numbers, straight lines, or probability as they

appear in AI-generated responses but also other mathematical

resources. Teacher education programs should prepare pre-service

teachers to identify and interpret the nature of mathematical

conceptualizations and provide them with effective prompting

strategies to guide AI tools toward responses that align with

specific learning goals. Another crucial aspect is the ability to

engage in reflective discussions about the epistemic framing of

AI-generated content, in order to promote a critical and more

strategic use of generative AI in mathematics classrooms by

the students.

However, the study has several limitations, which

should be reflected at this point. First, only three different

mathematical concepts were considered in the study. To conduct a

comprehensive study of ChatGPT’s mathematical understanding,

further mathematical concepts should also be included. A second

limitation is that the current methodology does not allow for any

conclusions to be drawn about the consistency and mathematical

correctness of responses when the same prompt is used—an

important factor for both the informative value of the results and

their applicability in teaching. For example, Ling (2023) identified

numerous inconsistencies and mathematical errors in ChatGPT

responses. The third limitation is the restriction to the LLM

ChatGPT-4. Although this was the most common LLM at the time

of the survey and the other common LLMs are based on similar

fundamental mechanisms, differences in the responses in terms of

perspectives on mathematics cannot be ruled out. Furthermore,

due to the rapid developments of large language models (LLMs),

results may quickly become outdated. Another limitation lies

in cultural and linguistic biases—mathematical terms may carry

different connotations across languages or cultures, and diverse

conceptualizations and procedures may be used. These differences

could be reflected in the training data and, consequently, in the

generated responses. Moreover, the analysis was limited to textual

responses, even though generative AI is now capable of producing

other forms of representation. This is a relevant restriction, as the

multimodality of mathematical representations is a core principle

of mathematics education, especially from an empirical-concrete

perspective. Probably the most crucial limitation lies in the very

simple design of the prompts used. Only one-shot prompts were

used in separate chats, and there were no variations of prompt

techniques or multi-step dialogues, which actually characterize

LLM technology. This issue will be addressed in further studies

by developing a survey tool that incorporates more complex and

appropriate prompting. Moreover, the further studies will not

only consider perspectives that occur indirectly in descriptions of

mathematical concepts, but will also compare these with explicit

descriptions of different perspectives on mathematics by LLMs.

These explicit descriptions also provide students with an engaging

learning opportunity in the sense of a mathematical nature of

science education (see Lederman, 2013).

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

FD: Conceptualization, Formal analysis, Methodology, Writing

– original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Acknowledgments

I would like to thank Benedikt Heer and Lina-Marie

Schlechting for participating in the rater training and coding the

responses. I also wish to thank the reviewers of this article for their

constructive feedback.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Gen AI was used in the creation

of this manuscript. Generative AI was used solely for language

refinement of the manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Education 15 frontiersin.org

https://doi.org/10.3389/feduc.2025.1577322
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Dilling 10.3389/feduc.2025.1577322

References

Baumanns, L., and Pohl, M. (2024). “Leveraging ChatGPT for problem posing: an
exploratory study of pre-service teachers’ professional use of AI,” in Proceedings of the
17th ERME Topic Conference MEDA 4, eds. E. Faggiano, A. Clark-Wilson, M. Tabach,
and H.-G. Weigand (Bari: University of Bari Aldo Moro), 57–64.

bin Mohamed, M. Z., Hidayat, R., binti Suhaizi, N. N., bin Mahmud, M.
K. H., and binti Baharuddin, S. N. (2022). Artificial intelligence in mathematics
education: a systematic literature review. Int. Electronic J. Math. Educ. 17:em0694.
doi: 10.29333/iejme/12132

Buchholtz, N., and Huget, J. (2024). “ChatGPT as a reflection tool to promote the
lesson planning competencies of pre-service teachers,” in Proceedings of the 17th ERME
Topic Conference MEDA 4, eds. E. Faggiano, A. Clark-Wilson, M. Tabach, and H.-G.
Weigand (Bari: University of Bari Aldo Moro), 129–136.

Carter, G., and Norwood, K. S. (2010). The relationship between
teacher and student beliefs about mathematics. Sch. Sci. Math. 97, 62–67.
doi: 10.1111/j.1949-8594.1997.tb17344.x

Chen, L., Chen, P., and Lin, Z. (2020). Artificial intelligence in education: a review.
IEEE Access 8, 75264–75278. doi: 10.1109/ACCESS.2020.2988510

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillside, NJ:
Lawrence Erlbaum Associates.

Dilling, F. (2022). Begründungsprozesse im Kontext von (digitalen) Medien
im Mathematikunterricht [Reasoning Processes in the Context of (Digital)
Technologies in Mathematics Education]. Wiesbaden: Springer Spektrum.
doi: 10.1007/978-3-658-36636-0

Dilling, F. (2024a, accepted). “Large language models as formative assessment and
feedback tools? – a systematic report,” in FAME 2024-Proceedings (Utrecht: University
of Utrecht).

Dilling, F. (2024b). “What is ChatGPT’s belief system about math?” in Proceedings
of the 17th ERME Topic Conference MEDA 4, eds. E. Faggiano, A. Clark-Wilson, M.
Tabach, and H.-G. Weigand (Bari: University of Bari Aldo Moro), 137–144.

Dilling, F., and Herrmann, M. (2024). Using large language models to support
pre-service teachers mathematical reasoning. Front. Artif. Intell. 7, 1460337.
doi: 10.3389/frai.2024.1460337

Dilling, F., Herrmann, M., Müller, J., Pielsticker, F., and Witzke, I. (2024a).
“Initiating interaction with and about ChatGPT – an exploratory study on the angle
sum in triangles,” in Proceedings of the 17th ERME Topic Conference MEDA 4, eds. E.
Faggiano, A. Clark-Wilson, M. Tabach, and H.-G. Weigand (Bari: University of Bari
Aldo Moro), 145–152.

Dilling, F., Stoffels, G., and Witzke, I. (2024b). Beliefs-oriented subject-matter
didactics. Design of a seminar and a book on calculus education. LUMAT Int. J. Math
Sci. Technol. Educ. 12, 4–14. doi: 10.31129/LUMAT.12.1.2125

Dionne, J. (1984). “The perception of mathematics among elementary school
teachers,” in Proceedings of the 6th AnnualMeeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education (PME), ed. J. Moser
(Wisconsin: University of Wisconsin), 223–228.

Ernest, P. (1989). The knowledge, beliefs and attitudes of the mathematics teacher:
a model. J. Educ. Teach. 15, 12–33. doi: 10.1080/0260747890150102

Getenet, S. (2024). Pre-service teachers and ChatGPT in multistrategy problem-
solving: implications for mathematics teaching in primary schools. Int. Electronic J.
Math. Educ. 19:em0766. doi: 10.29333/iejme/14141

Goldin, G. (2002). “Affect, meta-affect, and mathematical belief structures,”
in Beliefs: A Hidden Variable in Mathematics Education, eds. G. C. Leder, E.
Pehkonen, and G. Törner (Dordrecht: Kluwer Academics Publishers), 59–72.
doi: 10.1007/0-306-47958-3_4

Goldin, G., Rösken, B., and Törner, G. (2009). “Beliefs – no longer a hidden
variable in mathematical teaching and learning processes,” in Beliefs and Attitudes
in Mathematics Education: New Research Results, eds. J. Maaß, and W. Schlöglmann
(Rotterdam: Sense Publishers), 1–18. doi: 10.1163/9789087907235_002

Green, T. F. (1971). The Activities of Teaching. New York, NY: McGraw-Hill.

Grigutsch, S., Raatz, U., and Törner, G. (1998). Einstellungen gegenüber
Mathematik bei Ma-thematiklehrern [Attitudes towards mathematics among
mathematics teachers]. J. Mathematik-Didaktik 19, 3–45. doi: 10.1007/BF03338859

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D.,
Fischer, F., et al. (2023). ChatGPT for good? On opportunities and challenges
of large language models for education. Learn. Individ. Differ. 103:102274.
doi: 10.1016/j.lindif.2023.102274

Lederman, N. G. (2013). “Nature of science: past, present, and future,” inHandbook
of Research on Science Education, eds. S. K. Abell and G. Lederman (New York, NY:
Routledge), 831–879. doi: 10.4324/9780203097267

Ling, M. H. T. (2023). ChatGPT (Feb 13 version) is a chinese room. Novel Res.
Sci. 14. doi: 10.48550/arXiv.2304.12411

Mayring, P. (2000). Qualitative content analysis. Forum Qualitative Soc. Res.
1:Art. 20. doi: 10.17169/fqs-1.2.1089

Muis, K. R., and Foy, M. J. (2010). “The effects of teachers’ beliefs on
elementary students’ beliefs, motivation, and achievement in mathematics,” in Personal
Epistemology in the Classroom: Theory, Research, and Implications for Practice, eds. L.
D. Bendixen and F. C. Feucht (Cambridge: Cambridge University Press), 435–469.
doi: 10.1017/CBO9780511691904.014

Noster, N., Gerber, S., and Siller, H.-S. (2024a). “Tasks incorporating the use of
ChatGPT in mathematics education – designed by pre-service teachers,” in Proceedings
of the 17th ERME Topic Conference MEDA 4, eds. E. Faggiano, A. Clark-Wilson, M.
Tabach, and H.-G. Weigand (Bari: University of Bari Aldo Moro), 303–310.

Noster, N., Gerber, S., and Siller, H.-S. (2024b). Pre-service Teachers’ Approaches in
Solving Mathematics Tasks with ChatGPT – A Qualitative Analysis of the Current Status
Quo. doi: 10.21203/rs.3.rs-4182920/v1

OpenAI (2024). Learning to Reason with LLMs. Available online at: https://openai.
com/index/learning-to-reason-with-llms/ (Accessed January 01, 2025).

Park, H., and Manley, E. D. (2024). Using ChatGPT as a proof
assistant in a mathematics pathways course. Math. Educ. 63, 139–163.
doi: 10.63311/mathedu.2024.63.2.139

Peters, F., and Schorcht, S. (2024). “AI-supported mathematical task design with a
GPT agent network,” in Proceedings of the 17th ERME Topic Conference MEDA 4, eds.
E. Faggiano, A. Clark-Wilson, M. Tabach, and H.-G. Weigand (Bari: University of Bari
Aldo Moro), 327–334.

Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., et al.
(2019). Language models as knowledge bases? arXiv Preprint, arXiv:1909.01066.
doi: 10.18653/v1/D19-1250

Ruthven, K. (2012). The didactical tetrahedron as a heuristic for analysing
the incorporation of digital technologies into classroom practice in support of
investigative approaches to teaching mathematics. ZDM Math. Educ. 44, 627–640.
doi: 10.1007/s11858-011-0376-8

Schoenfeld, A. H. (1985). Mathematical Problem Solving. Cambridge, MA:
Academic Press.

Schorcht, S., Buchholtz, N., and Baumanns, L. (2024). Prompt the
problem – investigating the mathematics educational quality of AI-supported
problem solving by comparing prompt techniques. Front. Educ. 9:1386075.
doi: 10.3389/feduc.2024.1386075

Stoffels, G. (2020). (Re-)Konstruktion von Erfahrungsbereichen bei Übergängen von
empirisch-gegenständlichen zu formal-abstrakten Auffassungen [(Re-)construction of
Domains of Experience in the Transition from Empirical-Concrete to Formal-Abstract
Belief Systems]. Siegen: Universi.

Struve, H. (1990). Grundlagen einer Geometriedidaktik [Foundations of Geometry
Education]. Leipzig: Bibliographisches Institut.

Tall, D. (2013). How Humans Learn to Think Mathematically. Exploring
the Three Worlds of Mathematics. Cambridge: Cambridge University Press.
doi: 10.1017/CBO9781139565202

Vandamme, F., and Kaczmarski, P. (2023). ChatGPT: a tool towards
an education revolution? Scientia Paedagogica Experimentalis 60, 95–135.
doi: 10.57028/S60-095-Z1035

Wardat, Y., Tashtoush, M. A., AlAli, R., and Jarrah, A. M. (2023). ChatGPT: a
revolutionary tool for teaching and learningmathematics. Eurasia J. Math. Sci. Technol.
Educ. 19:em2286. doi: 10.29333/ejmste/13272

Wei, X. (2024). Evaluating chatGPT-4 and chatGPT-4o: performance
insights from NAEP mathematics problem solving. Front. Educ. 9:1452570.
doi: 10.3389/feduc.2024.1452570

Witzke, I., and Spies, S. (2016). Domain-specific beliefs of school
calculus. J. Mathematik-Didaktik 37, 131–161. doi: 10.1007/s13138-016-0
106-4

Yoon, H., Hwang, J., Lee, K., Roh, K. H., and Kwon, O. N. (2024). Students’ use
of generative artificial intelligence for proving mathematical statements. ZDM Math.
Educ. 56, 1531–1551. doi: 10.1007/s11858-024-01629-0

Frontiers in Education 16 frontiersin.org

https://doi.org/10.3389/feduc.2025.1577322
https://doi.org/10.29333/iejme/12132
https://doi.org/10.1111/j.1949-8594.1997.tb17344.x
https://doi.org/10.1109/ACCESS.2020.2988510
https://doi.org/10.1007/978-3-658-36636-0
https://doi.org/10.3389/frai.2024.1460337
https://doi.org/10.31129/LUMAT.12.1.2125
https://doi.org/10.1080/0260747890150102
https://doi.org/10.29333/iejme/14141
https://doi.org/10.1007/0-306-47958-3_4
https://doi.org/10.1163/9789087907235_002
https://doi.org/10.1007/BF03338859
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.4324/9780203097267
https://doi.org/10.48550/arXiv.2304.12411
https://doi.org/10.17169/fqs-1.2.1089
https://doi.org/10.1017/CBO9780511691904.014
https://doi.org/10.21203/rs.3.rs-4182920/v1
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.63311/mathedu.2024.63.2.139
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.1007/s11858-011-0376-8
https://doi.org/10.3389/feduc.2024.1386075
https://doi.org/10.1017/CBO9781139565202
https://doi.org/10.57028/S60-095-Z1035
https://doi.org/10.29333/ejmste/13272
https://doi.org/10.3389/feduc.2024.1452570
https://doi.org/10.1007/s13138-016-0106-4
https://doi.org/10.1007/s11858-024-01629-0
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

	ChatGPT's perspectives on real numbers, straight lines, and probability—A quantitative study on the influence of prompting
	1 Introduction
	2 Theoretical background
	2.1 Large language models in mathematics education
	2.2 Belief systems about mathematics
	2.3 Research questions

	3 Methodology
	3.1 Data sampling
	3.2 Data evaluation

	4 Results of the study
	5 Discussion of the results
	6 Conclusion and outlook
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


