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We describe the development of a visual model to represent the implementation 
of an ambitious mathematics program, which serves as an example of a complex 
educational reform. Visual models can be both conceptual and empirical, representing 
aspirational and theoretical perspectives while simultaneously incorporating empirical 
details specific to the context. Integrating conceptual and empirical aspects leads 
to tensions in managing the complexity of the model. Our process began with a 
simple model that guided our empirical work, which involved qualitative analysis. 
As we explored the systems and resources associated with the implementation 
of the ambitious mathematics program, the model took on more detail and 
complexity, both conceptually and empirically. In subsequent iterations of the 
model, we encountered tensions in balancing conceptual and empirical purposes, 
as well as challenges in displaying its emerging complexity.
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Introduction

Representing complex phenomena using visual models offers benefits and poses 
challenges. Visual models, including those emerging from qualitative data analyses, potentially 
generate new insights into phenomena by emphasizing connections and relationships in ways 
that are difficult to show using text alone (Radnofsky, 1996). Radnofsky describes how “visual 
representations facilitate an understanding of complex and conflicting views” (p. 385), adding 
that models are a “set of visual signifiers intended to represent data analyses that are usually 
communicated in narrative form” (p. 386). Henderson and Segal (2013) explained that “visual 
representations of qualitative data can reduce and focus text, providing a structure to identify 
patterns and outliers, or introduce new levels of understanding” (p. 55). In short, visual models 
can reveal relationships and patterns that might remain hidden in narrative form, offering 
valuable perspectives.

Despite these affordances, there are challenges when using visual models to represent 
complex phenomena. First, they have an inferential nature, and thus do not necessarily 
mimic an objective reality. This leads to questions about the balance between inference 
and objective detail. Furthermore, there is not a singular or direct approach to developing 
a visual model (Radnofsky, 1996). Instead, models are developed iteratively, with a 
reflexive relationship between conceptual perspectives and empirical analyses. 
Radnofsky states:
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Indeed, models are not so much made as they are developed, 
undergoing various stages-and part of the process must perforce 
be empirical; one can hardly construct a highly complex model 
(especially from multiple data sources) purely as a mental image, 
and then flawlessly put it down on paper or draw it on a computer 
screen. In this process, then, the researcher is forced to question 
assumptions, relationships, and connections. (p. 393)

Radnofsky compares the process of model development to the 
constant comparison process described by Strauss (1987), in which 
theory and empirical analysis are iteratively put into contact with each 
other to explain a phenomenon. In addition to the challenges of 
attending to both theory and empirical data when developing a model, 
there is the tension between parsimony and complexity. Henderson 
and Segal (2013) state that a “challenge is adding structure to the data 
without oversimplifying or misrepresenting them and without losing 
the subtle meanings or emotions rooted in them” (p. 56). Thus, in the 
process of iteratively developing a model, a tension arises related to 
representing the emergent complexity of the phenomenon.

The problem we  addressed in this study was how to visually 
represent a complex educational phenomenon, which in this case was 
the implementation of an ambitious mathematics program based in a 
high need school. We began with a relatively simple model that was well 
established in the literature, that of the instructional triangle (Ball and 
Forzani, 2009; Cohen and Ball, 1999; Cohen et al., 2003). Using that 
model as a guide, we collected and analyzed data from the research site. 
We  then used our empirical findings and additional conceptual 
development around ambitious mathematics teaching to iteratively 
develop the visual model. As we did so, we encountered tensions related 
to balancing conceptual and empirical aspects and maintaining 
parsimony while adding important detail. The statement of the 
educational problem addressed in this study is: how can we visually 
represent the implementation of an ambitious mathematics program while 
managing the tensions between the conceptual / empirical and between 
complexity / parsimony? In this article, we focus primarily on visually 
representing the phenomena that occurred inside of mathematics 
classrooms rather than the broader school and community context.

This article has three purposes. First, we hope to contribute to the 
field’s understanding of ambitious mathematics teaching and 
conditions and resources that support its implementation. We hope 
our representation can be used to spark productive conversation for 
educators who wish to implement ambitious mathematics teaching. 
Second, we hope our study is an illustrative case of the tensions that 
arise when building a visual model of an ambitious educational 
reform. Third, we hope to contribute to efforts to build visual models 
emerging from qualitative data analysis.

Below, we describe the study site and our conceptions of ambitious 
mathematics teaching to provide context for the development of the 
model. We then describe earlier versions of the instructional triangle 
before explaining our processes for generating iterations of a 
visual model.

Study site

We situated our study in a high-need secondary school in 
New York State. The John Lewis School (a pseudonym) served 1,061 
students in grades 6–12. The school was divided into a Lower School 

(grades 6 to 8) and an Upper School (grades 10–12), with a 9th grade 
academy bridging the two. The city where the school is located is 
considered an urban-emergent area (Milner, 2012) because its 
population is under one million. Though cities of this size have less 
intensive problems than larger cities, they still face problems such as 
scarcity of resources and concentrated poverty. 94.5% of students 
were classified as economically disadvantaged, 54.8% as Black or 
African American, and 34.7% as Hispanic or Latino. In addition, 16% 
of students were labeled as Students with Disabilities, and 13% of 
students were labeled as English Language Learners. In 2014, 
New York State threatened to close the John Lewis School because of 
chronically poor performance on a range of metrics; so, starting in 
the 2015–16 school year, the University of Landover (a pseudonym) 
partnered with the Fullerton City School District (a pseudonym) and 
the Fullerton School Board (a pseudonym) to form an Educational 
Partnership Organization (EPO). The EPO was a partnership between 
the school district, the community, and the university that garnered 
considerable local and national attention for the scale of effort, quality 
of reforms, and sustainability (Larson and Nelms, 2021). In the first 
few years of implementation, the EPO showed improvement in 
several areas, including increases in student achievement on high-
stakes tests, enrollment in advanced mathematics coursework, and 
graduation rates in addition to decreases in suspension rates. The 
EPO effort included a sustained implementation of an ambitious 
mathematics program, which we studied beginning in spring 2020. 
Below, we  articulate our conception of ambitious mathematics 
teaching to ground the subsequent discussion and then describe the 
development of the visual model.

Conception of ambitious mathematics 
teaching

Ambitious mathematics teaching is a constellation of practices 
whose purpose is to engage students in mathematical activities that 
involve core mathematical ideas and that incorporate participation 
structures and pedagogy that position students as important and 
competent intellectual contributors (Choppin et al., 2024; Lampert 
et  al., 2010; Singer-Gabella et  al., 2016). Mathematics educators 
describe ambitious mathematics teaching as instruction that actively 
engages students in mathematical sensemaking in ways that broaden 
participation in mathematical discourses (Boaler and Staples, 2008) 
and position students as mathematically competent (Kelley-
Peterson, 2010). Initial formulations of ambitious teaching 
emphasized disciplinary practices, such as solving complex 
problems, reasoning about mathematics (Bieda et al., 2020), and 
listening for and responding to others’ intellectual contributions 
(Lampert et al., 2010; Jacobs et al., 2010; van Es and Sherin, 2008). 
Recent formulations of ambitious mathematics teaching call for a 
focus on equity, including the importance of aligning instruction 
with students’ social, linguistic, and cultural resources (cf. NCTM 
Research Committee, 2018).

We identified four key components of ambitious mathematics 
teaching that informed the development of the model: eliciting and 
responding to student thinking; developing student autonomy and 
recognizing competence; using complex, authentic, high-demand 
tasks; and emphasizing multiple dimensions of equity. We  briefly 
summarize these four elements below.
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Eliciting and responding to student 
thinking

In ambitious mathematics, teachers are expected to elicit student 
explanations to understand student reasoning and to make that 
thinking public (Boston, 2012; Franke et al., 2007). Anthony et al. 
(2015) state that eliciting student reasoning helps the teacher to know:

What the student is thinking about and what is important about 
it; how the student is interacting with a task; what interests and 
motivates a student; how the student’s understanding is 
developing; what makes the ideas difficult and what does that 
student already know that might offer a bridge, and so on. (p. 7-8)

In addition to helping the teacher develop an understanding of 
student thinking, moves that probe student reasoning “often sustain 
teacher-student discourse” and “provide other students the 
opportunity to hear peers’ reasoning or justification” (Boston and 
Candela, 2018, p. 431).

Developing student autonomy and 
recognizing competence

An important outcome of eliciting and responding to student 
thinking is the development of student autonomy and positioning 
students as mathematical authorities. The focus on student autonomy 
rests on the assumption that students possess mathematical 
competencies on which to develop key disciplinary content; thus, 
AMT coincides with asset-based perspectives (e.g., NCTM Research 
Committee, 2018). An asset-based approach “is grounded in the belief 
that students’, families’, and communities’ ways of knowing, including 
their language and culture, serve as intellectual resources and 
contribute greatly to the teaching and learning of high-quality 
mathematics” (NCTM Research Committee, 2018, p.  375). An 
implication of assuming student competence is that students’ struggles 
are seen through the lens of opportunities to learn rather than seen as 
stemming from deficits in students (Horn, 2012).

Using complex, authentic, high-demand 
tasks

Eliciting and building from student thinking requires the presence 
of mathematical tasks that incorporate “big ideas” that allow for 
connections between sets of mathematical experiences; focusing on 
important, broad ideas in mathematics provides opportunities for 
students to invent strategies and approaches that emerge from their 
intuitive and everyday ways of thinking and acting in the world (cf. 
Gravemeijer and Doorman, 1999; Moschkovich and Brenner, 2002).

Emphasizing multiple dimensions of equity

Ambitious mathematics teaching has increasingly been described 
in terms of equitable opportunities for students to learn mathematics. 
Broadly speaking, the focus on equity has positioned teaching 
practices in terms of culturally responsive instruction. We interpret 

this to mean attending to the lived experiences of students, 
incorporating multiple modes of participation, and recognizing and 
building from students’ social, linguistic, and cultural resources (cf. 
Moschkovich, 1999).

Our starting point: the instructional 
triangle

Researchers have drawn on the instructional triangle to explain 
essential aspects of practice in mathematics classrooms. Cohen and 
Ball (1999) proposed a set of relationships between students, teachers, 
and content. They theorized how teacher characteristics (e.g., content 
knowledge, pedagogical content knowledge, ability to notice student 
thinking) mediate their use of materials, their interactions with 
students, and their efforts to build from student thinking. Their 
model further describes how student characteristics impact 
interactions between teachers and students as well as between content 
and students; in addition, students are resources for other students’ 
learning. In the model, instructional materials mediate student 
engagement with disciplinary ideas and thus their learning.

Cohen et al. (2003) revised the model to place greater emphasis 
on the role of student–student interactions, aligning with perspectives 
of the role of interaction and discourse in the learning of mathematics 
[e.g., the social turn in perspectives on the learning of mathematics (cf. 
Lerman, 2001)]. Additionally, there is a greater emphasis on the role 
of the environment, components that reflect situated and sociocultural 
perspectives (e.g., Brown et al., 1989; Wertsch, 1991) that influenced 
thinking in mathematics education research. In this version of the 
model, teachers deploy various forms of knowledge to make content 
accessible to the students; furthermore, students learn by interacting 
with the teachers and classmates. These interactions are mediated by 
influences from the broader environment.

A further revision of the model proposed by Ball and Forzani 
(2009) departs from the first two models by explicitly focusing on 
how teachers take up ambitious instructional practices, which 
requires “a flexible repertoire of high-leverage strategies and 
techniques that can be deployed with good judgment depending 
on the specific situation and context” (p. 503, authors’ italics). Ball 
and Forzani explained how productively utilizing these practices 
requires synchrony with various stakeholders and layers in the 
instructional ecosystem and with educational policies that impact 
that school. This model provides further nuance and complexity 
of teacher practices and the role of context, consistent with the 
increased complexity associated with ambitious forms of 
mathematics teaching and increasing attention to broader systems 
in which classrooms exist.

These models provide increasingly complex depictions of the 
instructional situation in classrooms by incorporating perspectives 
oriented toward social, discursive, and situated views of learning, as 
well as an increased focus on the systems that impact classrooms. 
Furthermore, recent extensions of the instructional triangle have 
proposed distinct roles for a range of artifacts and other influences 
(Rezat and Sträßer, 2012; Ruthven, 2012) as additional mediating 
presences, expanding the triangle to a socio-didactical tetrahedron or 
didactical tetrahedron, respectively. These broadening 
conceptualizations of the instructional triangle point to a movement 
toward a systems-level perspective to study instructional practices.
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Version one: revising the instructional 
triangle to incorporate systemic 
perspectives

To create our first version of a visual model, we reconceptualized the 
nodes of the instructional triangle using an activity system perspective. 
Doing so positions cognition as being collective and distributed (cf. 
Engeström, 2001; Lankshear and Knobel, 2006) rather than belonging 
to individuals. Below, we present our initial representation and explain 
how we reconceptualized each node, see Figure 1.

We describe our conceptualizations of the nodes, beginning with 
the teacher node, then the student node, and then the content node. 
We relabeled these nodes as teacher’s instructional practices, students’ 
mathematical activity, and representations of content, respectively. The 
circle around the triangle signifies that we  constrain ourselves to 
classroom contexts.

Node 1: Instructional practices

The models of the instructional triangle discussed in the literature 
focused on the characteristics and actions of individual teachers. In 
those models, and ours, teachers mediate how students engage with 
content through their instructional practices. However, our model 
emphasizes practices rather than the traits of individual teachers as 
important factors to consider when characterizing classroom practice; 
doing so allows us to consider the goals of the practices and the 
systems that support them. Our model explicitly focuses on how 
teachers’ practices reflect the goals, purposes, and tools of the 
broader system.

Node 2: Students’ mathematical activity

We start with a similar distinction in this node in that the original 
or previous iterations of instructional triangle models focus on the 
characteristics, actions, and cognition of individual students. While 
there are mediating factors between students and content in the prior 
models—including the teacher, the environment, and other students—
the focus foregrounds what happens inside the heads of individual 
students in contrast to a view that emphasizes the activities and 
practices in which the students engage. We  define mathematical 
activity as processes by which students engage with mathematics, 
including following established processes, recalling terminology, 
demonstrating flexible use of tools, applying mathematics to contexts, 
and generating or demonstrating conceptual understanding (Choppin, 
2025). This revised conceptualization emphasizes activity and its 
collective and distributed nature (e.g., Engeström, 2001).

Node 3: Representations of content

Our third distinction focuses on specific representations of 
content rather than abstracted notions of content. We  posit that 
student engagement is mediated by specific representations of content 
and tasks in curriculum materials. Knowledge of the concept of 
linearity, for example, can be said to exist primarily in the contexts in 

which students encounter it rather than in the abstract, though 
we recognize that multiple encounters in different contexts may lead 
to a more abstracted understanding (Vygotsky, 1986). Our model thus 
relies on situated views of learning in which cognition and actions are 
strongly linked to the contexts in which they are developed (Brown 
et al., 1989; Roth and Jornet, 2013). Focusing on representations of 
content allows us to consider the systems and perspectives that 
produced those representations.

Process of iterating from version one 
to version two

We used the model in Figure 1 to inform our data collection and 
analysis. Our data analysis in turn led to a revised version of the 
model, Version Two (see Figure 2). This revised version of the model 
in turn informed our subsequent efforts to revise the model further. 
Our goal for Version Two was to develop a model that maintained the 
conceptual underpinnings of Version One while incorporating aspects 
of the empirical phenomena we observed at the research site. Tensions 
between the aspirational and empirical foundations of the model were 
present throughout the revision process. To reinforce the empirical 
foundations of the model, we used the nodes from Figure 1 to generate 
the following questions:

 1. What instructional practices were emphasized in the 
mathematics program?

 2. What kinds of mathematical activities were emphasized in the 
mathematics program?

 3. What were the characteristics of the curriculum materials?
 a. What kinds of activities were emphasized in the materials?
 b. What views of mathematics were evident in the materials?

These questions guided our data analysis, which identified 
essential elements of classroom activity. Simultaneously, we chose to 
incorporate conceptual elements from the dimensions of AMT, as 
described in our earlier conceptualization of AMT.

FIGURE 1

Version one: the instructional triangle from an activity system 
perspective.
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Data sources and analysis that contributed 
to revisions of the model

We conducted 45 interviews with four teacher leaders, eight other 
teachers, four administrators, and six external consultations who 
supported the mathematics program. The interviews involved 
protocols focused on retrospective accounts of the development of the 
mathematics program, teachers’ perceptions of the mathematics 
program, organizational practices pertaining to the mathematics 
program, and the impact of COVID and the return from COVID. The 
interviews were conducted between fall of 2020 and spring of 2022.

The research team analyzed the interview data using inductive 
qualitative approaches described by Saldaña (2013). The lead 
researcher divided the transcripts into over 900 passages whose 
lengths varied from 50 to 250 words, and then placed each passage 
into categories based on topics discussed in the passages (e.g., 
identification of curriculum programs; instructional philosophy; 
implementation; resources). Passages were focused on a topic or line 
of questioning. When the speakers moved to a new topic or line of 
questioning, we created a passage. We then reduced the data using 
an inductive process. Three researchers created one or more memos 
for each passage. For each passage, the researchers then reconciled 
these memos into a collective memo. For each category, a researcher 
sorted the collective memos into supermemos, each of which had 

between 10 and 30 memos associated with it. The memos and 
supermemos were intended to be low-inference and parsimonious 
paraphrases of the original passages. The 78 supermemos were then 
grouped into 24 themes that represented overviews of the findings 
from the interviews.

The supermemos and themes helped the research team locate data 
specific to a node (e.g., instructional practices) in order to generate 
details for each node. For example, to identify instructional practices, 
we looked at the following supermemos: using routines in inquiry-
based lessons, following the Launch-Explore-Summarize structure, using 
interaction protocols to promote interaction, and modifying tasks and 
problems to make them more accessible for all students. We found over 
70 quotes that referenced the Launch-Explore-Summarize (LES) 
sequence. The sheer quantity of the quotes was reinforced by the 
importance of the LES structure emphasized in the quotes, so 
we decided to include it in the revised model. Similarly, the analysis 
identified participation structures (e.g., independent work time, group 
work, whole class discussions) as central to the vision of instruction, 
so we added participation structures to the model. We identified other 
instructional practices as well, as seen in Figure 2. A similar emphasis 
was noted for modifying tasks and problems to make them more 
culturally relevant, which we  added to the model. An example of 
revising a task to emphasize cultural relevance came from Owens (all 
participant names are pseudonyms), a teacher leader at the Upper 
School, who explained:

FIGURE 2

Version two: revision based on analysis of interview data and definition of AMT.
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Instead of a paragraph explaining what a general store was in the 
Old West as you were going out to California, it was, “Here’s a 
black-owned business in Fullerton that sells all different kinds a 
cereal,” and changed the context of the problem, again, without 
changing the math involved or the level of thinking, trying to 
make it something that people can connect with a little more than 
Old West wagon trips.

In addition, we  added elements of AMT according to our 
conceptions of AMT described above.

Figure  2 shows Version Two. The changes from version one 
include: changing representations of content to curricular materials; 
adding the LES lesson structure to the bottom of the triangle; and 
adding participation structures to the middle of the triangle. The 
placement of these last two elements signifies our ambivalence about 
their relationship to the nodes; while we recognized their importance 
and roles in classroom activity, as reported in the data, they did not 
neatly align with a particular node. We also included an arrow for 
student outcomes to acknowledge that the ultimate purpose of 
classroom activity was student learning of mathematics.

Process of iterating from version two 
to version three

To add additional conceptual and empirical detail in the next 
iteration, we sought feedback from three focus groups. Two of the 
focus groups consisted of educators from the research site and the 
third was a group of mathematics educators based in the San Diego 
area. The first focus group, held in November 2022, consisted of 
mathematics teachers and teacher leaders at the EPO while the second 
focus group, held in January 2023, consisted of teacher leaders and 
administrators at the EPO. These groups suggested adding elements 
such as: a list of essential curriculum outcomes generated via the 
Understanding by Design (UbD) process (Wiggins and McTighe, 
2005); school wide initiatives, such as restorative justice practices, that 
impacted all aspects of the school; the support systems provided for 
students; and the role of relationships in supporting student risk 
taking in mathematics classrooms. The focus groups also mentioned 
that parts of the model were too specific or were incomplete. For 
example, they noted that the LES structure was not monolithic. 
Sometimes the structure spanned multiple class sessions and 
sometimes there were multiple LES cycles within a lesson. 
We conducted the third focus group in February 2023 with a group of 
educators from the San Diego area to understand how the model’s 
intent and utility was perceived by an outside group of educators. The 
feedback from this group mentioned missing elements that were 
similar to those of the EPO focus groups, notably the UbD transfer 
goals, the role of relationships, and the support provided for students. 
Our initial response to the focus group feedback was to add an 
element called Caring Relationships and to clarify aspects of the LES 
structure. The other suggestions pertained to things that emphasized 
phenomena that took place outside of the classroom; these suggestions 
were included in a model we were developing to represent the broader 
EPO efforts, including those that existed outside of mathematics 
classrooms. In addition, the conversations in the focus groups 
provided a broad impetus to continue revising version two.

The focus group feedback spurred the research groups to search 
for more conceptual and empirical detail. This led to the creation of 
two groups from the project team. The first group consisted of a 
postdoctoral fellow, a doctoral research assistant and one of the 
university-based external consultants who had supported the Upper 
School mathematics department since the inception of the EPO and 
was familiar with the design of the mathematics program. This group 
was charged with providing more conceptual detail to the model by 
articulating practices aligned with our conceptualization of AMT as 
well as practices articulated by EPO documents that guided the design 
of the mathematics program. We called this team the Conceptual 
Group. The second group, consisting of two doctoral research 
assistants, comprehensively scoured the data to generate empirical 
detail for the model and to align that detail with the elements 
identified by the Conceptual Group. We called this team the Empirical 
Group. Below, we describe the work from each of the groups.

Adding conceptual detail to the model

The primary work of the Conceptual Group was to provide more 
conceptual detail about how the EPO aspired to implement AMT and 
how these efforts related to the dimensions of AMT presented above. 
The group reviewed documents from the EPO (e.g., A Vision for 
Culturally Relevant and Responsive Pedagogy (CRRP), the Lesson 
Quality Checklist, and the Expeditionary Learning Appendix for 
Protocols and Resources) and explored the results of interviews with 
mathematics educators and instructional leaders that the Empirical 
Group provided. They changed the node name of students’ 
mathematical activity to student engagement because the focus group 
teachers at John Lewis perceived that the term mathematical activity 
referred to mathematical tasks rather than to the kinds of mathematical 
practices in which students engaged. The group created a list of over 
60 practices associated with the dimensions of AMT with respect to 
the instructional triangle nodes (Instructional Practices, Curricular 
Materials, and Student Engagement). Initially, the Conceptual Group 
treated equity as a separate dimension of AMT. Through ongoing 
discussions in which they examined and connected specific practices 
within particular aspects of the instructional triangle, the group 
recognized the need to better capture the interwoven relationship 
between equity and the other AMT dimensions. The group thus 
incorporated multiple dimensions of equity into all three dimensions 
of AMT in recognition that equity is essential to all aspects of AMT. In 
addition, they created seven practices related to LES and 15 related to 
Caring Relationships. For reasons of space, we focus below on the 
nodes of the instructional triangle and omit discussion of LES and 
Caring Relationships.

To map the connections between the dimensions of AMT and the 
nodes of the instructional triangle, the Conceptual Group created a 
matrix. To capture the interconnectedness of equity to the other three 
dimensions, they created equity rows that were potentially distributed 
across the other dimensions of AMT. See Figure 3 for an example 
related to the Instructional Practice node. In Figure 4, the gray cells 
list the three dimensions of AMT. The bolded text represents 
instructional practices specifically related to equity. In some cases, 
these practices spanned multiple dimensions of AMT, which is why 
some rows are distributed across multiple columns. The non-bolded 
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text involves practices the Conceptual Group deemed as not explicitly 
related to equity.

The descriptions of the practices included language that 
incorporated aspirations of the mathematics program rather than 
strictly actionable language. An example of a Student Engagement 
practice written in aspirational terms was Students engage in 
reasoning and sense-making, wrestling with important mathematical 
ideas, through interaction with high-demand tasks. This practice was 
associated with the AMT dimension Using complex, authentic, high-
demand tasks. This practice aligned with the project definition of 
AMT, which stated that students should focus on important, broad 
ideas in mathematics [to provide opportunities] for students to invent 
strategies and approaches that emerge from their intuitive and 
everyday ways of thinking and acting in the world. The wording of 
this practice aligns the dimensions of AMT established by the 
project, EPO documents, and aspirations identified by the external 
consultant working with the Conceptual Group. The phrasing 
engages in reasoning and sense-making and wrestling with important 
mathematical ideas represents aspirations for student thinking 
rather than an actionable instructional practice. A second example 
of an instructional practice generated by this group was Students 
use a social justice oriented perspective with respect to mathematics 
that empowers them to critique the status quo and resist oppression 
and injustice. This practice was developed from the project’s 
working definition of AMT and the vision expressed in the EPO 

document A Vision for Culturally Relevant and Responsive Pedagogy. 
The working definition of AMT described the connection between 
the development of students’ positive mathematical identity and 
mathematics instruction that attends to students’ lived experiences, 
cultural forms of practice, and funds of knowledge. The vision of 
culturally relevant and responsive pedagogy adopted by John Lewis 
included the following two dimensions: Complex and Critical 
Thinking; and Empowerment, Self-Efficacy, and Initiative. These 
dimensions emphasize empowering students to critique the status 
quo, and resist oppression and injustice. We considered this practice 
as aspirational given the challenges of enacting it on a regular basis 
in mathematics classrooms. Overall, the 60 practices consisted of a 
mix of actionable and aspirational language that provided 
additional conceptual detail to what was represented in 
Version Two.

Adding empirical detail to the model

The empirical group was tasked with finding empirical support for 
the practices listed in Version Two and the additional practices 
generated by the conceptual group. We wanted to provide as much 
empirical detail to the model to inform others endeavoring similar 
efforts and to ensure that the model accurately represented the 
practices of the mathematics program at the EPO. The empirical 

FIGURE 3

Version three—three layer model.
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support we sought was from interviews from mathematics educators 
and instructional leaders at the EPO, rather than from direct 
observation. Due to the simultaneous onset of COVID with the 
funding of our study, direct observation of the mathematics program 
was impacted in ways that made us cautious about using observational 
data. Much of our data consists of retrospective accounts of the 
development and implementation of the mathematics program over 
the first five years of the EPO. Consequently, even our empirical detail 
had an aspirational element in that participants may have described 
the goals and intentions of the program and not necessarily what 
occurred on a daily basis in classrooms.

The Empirical Group created a spreadsheet in which they listed 
the five elements of the revised model (Instructional Practices, 
Student Engagement, Curriculum Materials, Caring Relationships, 
and Launch-Explore-Summary) in the first column, the dimensions 
of AMT in the second column, and the specific practices in the 
third column. This allowed the group to map the specific practices 
to nodes in the instructional triangle and to dimensions of 
AMT. For each of the practices, the Empirical Group identified 
quotes from the interviews that related to the practices, with a range 
of zero to seven quotes for each practice. The research team decided 
that the proper grain size for which to document empirical support 
was the combination of instructional triangle node and dimension 
of AMT rather than specific practices given the sheer number of 
practices. Table 1 shows the number of practices there were for each 
of the instructional triangle node-AMT dimension combinations, 
and how many quotes the Empirical Group identified for 
each combination.

We provide examples to illustrate how quotes corresponded to 
the different instructional triangle node-AMT dimension 
combinations. The first example is the Instructional Practice / 

Eliciting and Responding to Student Thinking combination, which 
had three practices associated with it (posing questions during each 
part of the lesson that assess and advance mathematical ideas; 
formatively assessing student thinking and provide feedback to students 
throughout the lesson; and developing students’ capacity to engage in 
mathematical argumentation and classroom discussions through the 
intentional use of discursive moves), with a total of 11 quotes 
identified for those practices. An example of a quote for this 
combination is:

What types of questions that [I’m] asking them as I'm going 
around the room? I don't want to stop at a table and they're stuck 
and I don't want to ask them a bunch of leading questions so that 
they can get the right answer. Right. I really need to think about 
how I can ask them questions to push their thinking, but not 
necessarily lead them to a particular answer that I want. (Bridges, 
Upper School teacher)

In the quote, Bridges emphasized how she focused on asking 
questions that pushed students’ thinking without giving away too 
much information. Two other quotes for this combination 
mentioned the interaction protocols teachers used to support 
students to engage in mathematical discourse. Shepherd, a 9th 
Grade Academy teacher, explained that she gave “support for 
academic discourse through the words walls and the language 
target and the sentence frames.” Matthews, an Upper School 
teacher leader, stated that he wanted “students to be able to explain 
their thinking, providing evidence at the appropriate 
sophistication for their grade level.”

A second example of an instructional node /dimension of the 
AMT combination is Student Engagement / Positioning Students as 

FIGURE 4

Instructional practices matrix showing connections to AMT and integration of equity.
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Sources of Mathematical Authority, which had six associated practices, 
which we do not list here for reasons of space, with a total of 15 quotes 
identified for those practices. Tewilliger, an Upper School teacher, 
described how students reflected on their mathematical understanding 
in class discussions:

We're putting much more emphasis on not—much more emphasis 
on explaining your answer. You're finding the solution or you're 
finding the statistics, but a huge emphasis has been put on 
explaining what that statistic tells you or what the relative risk tells 
you and making a claim about that.

Tewilliger described explaining reasoning as a form of student 
engagement in which students take responsibility for supporting 
claims in their statistics unit. Another quote for this combination is 
from Carter, an Upper School teacher, similarly stated, “we are making 
kids construct their own understanding. We’re making kids explain 
the process in their own words to each other and in writing. Then 
we  are formalizing at the end.” Jones, an Upper School teacher, 
similarly reported that he emphasized students “talking to each other 
and having them struggle, and make meaning together, and writing 
their ideas down, bringing someone’s partial idea to the class, making 
it better by themselves and then sharing”.

Franklin, a Lower School teacher, recounted a student 
conversation, saying “yesterday we  had an amazing discussion, 
we were matching graphs, and they disagreed on which one matched, 
then they had, like, a 10-min conversation about it”.

A third example of an instructional node /dimension of the AMT 
combination is Curricular Materials/ Using complex, authentic, high-
demand tasks. This combination had four associated practices with a 
total of four supportive quotes. Matthews, an Upper School teacher 
leader, explained:

There's a lot of valuable thinking and growth that you go through 
in these kinds of problems and these kinds of discussions we have 
surrounding these problems. There’s also lots of times a lot more 
than one right way to solve a problem as opposed to the rote 
approach where it’s typically I  think, “Here’s the method 
that works.”

Other teachers expressed similar perspectives of the curriculum, 
sometimes adding that the complexity of tasks required them to 
provide additional scaffolding to students.

The Empirical Group also identified quotes associated with the 
equity dimension of AMT for each of the nodes of the instructional 
triangle. For the 11 practices associated with the Instructional 

Practice/Equity combination there were 33 quotes, for the Student 
Engagement/Equity combination there were 11 practices and 14 
quotes, and for the Curriculum Material / Equity combination there 
were 10 practices and 11 quotes. The equity dimension had 
considerable variation with respect to which practices had empirical 
support. The practice of encouraging broad forms of participation using 
classroom protocols (word walls, entry tickets, notice and wonder, 
sentence frames, catch and release), for example, had five quotes 
supporting it, while other practices, such as creating and nurturing 
relationships with community leaders that incorporate problem-solving 
through mathematics, had none.

The work of both groups added considerable complexity to the 
model, creating challenges to visually represent all of its elements. As 
a result, we  made a decision to create layers for Version Three, a 
process we describe below.

Adding layers to the model

To add the additional empirical and conceptual details, 
we  made a design decision to add layers to the model. 
We developed a Prezi version of the model that allowed us to place 
hyperlinks to navigate from one layer to the next. This meant 
creating a landing page for the instructional triangle that had 
hyperlinks for each of the elements on the landing page to 
navigate to the next layer. We called the landing page Layer One, 
with two subsequent layers. Layer Two for each element of Layer 
One added additional detail regarding the components of that 
element, while Layer Three consisted of data from EPO documents 
and the interviews compiled by the Empirical Group that 
pertained to the specific elements in Layer Two. See Figure 4 for 
an example of the three layers. Adding layers allowed us to resolve 
the granularity issue we encountered in Version Two and helped 
us to include both aspirational and empirical elements to the 
model, though it increased the complexity of displaying the model.

To generate feedback for the next iteration of the model, we shared 
the Prezi version of the model with three focus groups in fall 2023. 
These focus groups consisted of groups of mathematics educators 
from a range of mostly western US states. These focus groups consisted 
of teachers, instructional leaders, independent consultants, university 
teacher educators, and university researchers. We asked them a series 
of questions to understand how they interpreted the model and to 
gather feedback on making it more effective for catalyzing 
conversations in districts implementing ambitious mathematics 
programs. We used this feedback to inform the next iteration of the 
model, discussed below.

TABLE 1 Number of practices for each combination of instructional triangle node and dimension of AMT, with the number of quotes for each 
combination in parentheses.

Instructional practices Student engagement Curricular materials

Eliciting and responding to student thinking 3 (11) 2 (8) 4 (8)

Positioning students as a source of mathematical authority 6 (25) 6 (15) 4 (6)

Using complex, authentic, high-demand tasks 2 (2) 3 (3) 4 (4)

Equity dimension 11 (33) 11 (14) 10 (11)

Total 22 (71) 22 (40) 22 (29)
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Continuing revisions of the model

The original project proposal included funding for a web 
developer to generate the final version of the model; consequently, 
we contracted with a web developer who had extensive experience 
creating websites for innovative educational projects. We used the 
Prezi as the basis for the design of the web version of the model, using 
the feedback from the focus groups to revise the content in the Prezi. 
The web version of the model provided more flexibility for displaying 
content in each layer of the model and made it easier to navigate 
within and across layers. In addition, the web version allowed for 
buttons to display quotes related to specific practices listed in lower 
layers of the model.

A feature of the web version of the model was the ability to create 
repositories of materials that complement the conceptual and 
empirical features of the model. Notably, we archived materials from 
several hundred mathematics lessons and linked them to assessments 
and essential goals articulated through the UbD process (Wiggins 
and McTighe, 2005). This added feature provided resources for 
educators who wished to study artifacts generated by the ambitious 
mathematics program. See Figure 5 for an example of a page from the 
web version of the model. Note that we changed the term student 
engagement to scholarly engagement to reflect terminology used by 
the EPO.

Discussion

We started from a simple model and progressed to more complex 
and detailed models based on internal and external reflections on the 
model and what it represented. Even as the model gained in complexity, 
we intended for the model to help educators unfamiliar with the study 
site to understand the range of systems and resources associated with 
the reform in ways that might support their own efforts. Additionally, 
we intended for the visual nature of the model to generate insights into 

the components and relationships between components that would 
be difficult to generate if we relied solely on written text.

As we iterated the model, we began to conceptualize notions of 
rigor with respect to constructing visual models. We conceptualized 
rigor in terms of the conceptual and empirical foundations of the 
model. For the conceptual aspects, we conceptualized rigor in terms 
of connecting to external research literature and internal EPO 
documents that explained the broad principles that informed 
curriculum and instruction. To connect to external literature, 
we relied on our previous efforts to define ambitious mathematics 
instruction that encompassed a year-long review of literature in the 
first year of the project (Zahner et al., 2021). The Conceptual Group 
leveraged elements of AMT from our definition to identify practices 
that were then added to the model. In addition, the Conceptual Group 
studied the foundational documents from the EPO to identify core 
principles that informed all aspects of curriculum and instruction at 
the EPO. For the empirical aspects, we conceptualized rigor in terms 
of conducting iterative and comprehensive analysis of the 45 
interviews of educators at the EPO to identify data that related to the 
specific practices noted in Version Two and the additional practices 
provided by the Conceptual Group. To further enhance the rigor of 
these elements, we conducted two EPO-based focus groups to validate 
our list of practices and descriptions of those practices. In sum, 
we conceptualized rigor as engaging in iterative and intensive cycles 
of exploration and validation to ensure that the elements of the model 
were warranted, conceptually and empirically.

As we  iterated the model, we  faced multiple tensions. One 
tension arose in relation to the balance between the aspirational and 
empirical aspects of the model. We wanted the model to represent 
the lived experience at the EPO but recognized that the aspirational 
aspects informed the lived practices, even if the aspirations were not 
achieved. Consequently, we  recognized that models do not 
necessarily objectively represent reality but instead they represent, 
at least partially, idealized visions of a reform. Furthermore, reforms 
are not strictly about achieving outcomes but rather about engaging 

FIGURE 5

Page of the web version of the model.
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in improvement processes. Managing this tension also helped us to 
understand risks in trying to be too conceptual or too empirical 
even when the outcomes are uncertain. The danger in only 
emphasizing idealized outcomes is that most educators will 
be discouraged from attempting reform if the bar is unrealistically 
high. Conversely, if the details in the model are too mundane, 
educators will not be inspired to attempt such efforts. Thus, we were 
tasked with striking a balance between idealized conceptions of the 
reform and the lived reality.

A second tension emerged regarding the increasing complexity as 
we  iterated the model. The feedback we  received from the focus 
groups encouraged us to add more detail in order to better represent 
the vision of the mathematics program and its implementation. 
However, as we  incorporated additional conceptual and empirical 
elements, it became increasingly challenging to display those details 
within a single visual. This led to the decision to add layers, which had 
other benefits in addition to adding detail; we struggled to represent 
the relationships between components as they increased, so creating 
layers provided another means of signaling relationships, both 
horizontally and vertically, between the components. While adding 
layers allowed us to add detail and communicate relationships 
between elements of the model, it detracted from the ability to quickly 
scan the model, which may hamper the intuitive insights the model 
may generate. The increasingly multidimensional and interactive 
nature of the model as it progressed from a single visual to a Prezi and 
then to a website raises questions about what constitutes a model and 
whether spaces such as a Prezi or a website fit the definition of 
a model.

Conclusion

Models are not intended to represent reality but instead serve to 
facilitate thinking about phenomena in new ways or to envision new 
forms of reality. This struggle to communicate a representation of the 
lived experiences of a reform effort and simultaneously its aspirational 
vision means that any model is imperfect. We struggled with finding 
the right balance between empirical and aspirational elements, 
ultimately deciding that doing so provided a means of inspiring a 
direction for reform rather than a prescription for reform.

We strove to visually represent a complex phenomenon. As the 
amount of detail increased, we  had to balance text and visuals, 
parsimony and complexity, and static and interactive functions. When 
models are created through an iterative process of creation, feedback, 
and revision, these balances are difficult to maintain. This raises 
questions about what constitutes the defining features of a model and 
the affordances of models relative to more textual descriptions 
of reforms.

Models should facilitate insights into the relationships between 
the numerous components of complex educational phenomena. A 
question that we are left with is how our model does that. A goal of 
receiving feedback on Version Three from focus groups was to help us 
understand how others understand the model, the phenomenon it 
represents, and how it could inform conversations in their contexts. 

Even after three rounds of focus groups, we still had questions about 
how best to introduce the model and help others to explore it. These 
questions, doubts really, have informed the creation of the web-based 
version to help people make sense of the model.
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