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Introduction: Educational Data Mining (EDM) involves analysing educational 
data to identify patterns and trends. By uncovering these insights, educators 
can better understand student learning, optimise teaching methods, and refine 
curriculum. One of the main tasks in educational data mining is predicting 
the student’s academic performance because it makes it possible to provide 
appropriate interventions supporting students’ achievements. Predicting the 
student’s academic performance also helps to identify at-risk students and 
explore the possibility of providing intervention techniques.

Methods: In this paper, a deep learning model using a Bi-LSTM network is 
introduced to predict second term GPA.

Results: The model had an average accuracy of 88.23% and was statistically 
better than traditional machine learning algorithms such as CatBoost, XGBoost, 
Hist Gradient Boosting, and LightGBM for accuracy, precision, recall, or F1-
score metrics. The results are also analysed with the help of SHAP values for 
model interpretability to understand feature contributions, making the proposed 
framework more transparent. The performance of models is also compared 
using various statistical tests.

Discussion: The results demonstrate that BI-LSTM performance is significantly 
different from other models. Hence, the proposed model provides a way to 
prevent student dropouts and improve academic achievements.
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1 Introduction

Student academic performance is a key factor when evaluating the outcome of global 
education systems. Our civilisation depends heavily on education, which is a crucial 
component. Research in many areas, particularly education, has been impacted by information 
and communication technology. For instance, the recent COVID-19 pandemic forced many 
countries to adopt various e-learning platforms (Albreiki et al., 2021). Higher education 
institutions prioritise student academic achievement as a key indicator of quality education. 
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However, identifying the factors that significantly impact student 
success early in their academic journey is a complex challenge. Several 
useful strategies have been employed to address the academic 
performance issues of the students (Bravo-Agapito et al., 2021; Alamri 
and Alharbi, 2021; Hamsa et  al., 2016). These resources may not 
be  easily implemented everywhere. Also, while technology has 
improved student performance prediction, further work is necessary 
to achieve higher accuracy through new data and techniques. 
Additionally, clustering and classification techniques are presented to 
identify the impact of students’ performance early on the GPA. Grade 
Point Average, commonly known as GPA, is the widely used and 
accepted criterion for determining student academic performance. It 
is a very significant component of the overall academic evaluation 
process. However, there is a need to predict GPA initially to easily 
track and address any student who is most likely to drop out during 
their academic period. To address this challenge, this study applies 
modern computational techniques.

Student performance is a major component of the learning 
process. Predicting student performance is necessary to identify those 
most likely to experience poor academic accomplishment in the 
future. The data may be helpful and utilised to make predictions if it 
has been converted into knowledge. Therefore, the information could 
help students reach their academic goals and enhance the quality of 
education and learning. This study, Educational Data Mining (EDM), 
analyses data from educational backgrounds using data mining 
techniques (Kaunang and Rotikan, 2018; Yağcı, 2022). EDM 
application also assists in preparing action plans for enhancing student 
performance. This will ultimately lead to improved teaching, learning, 
and the overall student experience within the institution (Ajibade 
et al., 2022; Nabil et al., 2021). Analysing academic data with machine 
learning has shown promising results in identifying learning patterns 
and predicting student performance (Hussain and Khan, 2023). 
Through the application of ML algorithms, an assessment of student 
outcomes can be made due to the identification of patterns that exist 
within the data (Dabhade et al., 2021). While machine learning offers 
potential for academic data analysis, traditional model-building 
methods are inadequate. They suffer from issues such as lack of 
interpretability, vulnerability to overfitting in imbalanced datasets, 
and difficulty managing feature interdependencies (Alam and 
Mohanty, 2022). These limitations, in turn, make it difficult for those 
who apply the models to make important decisions based on the 
provided information by the models. Deep Learning (DL) has 
emerged as a promising solution to address the limitations of 
traditional machine learning models (Rodríguez-Hernández et al., 
2021). However, even with DL, handling the complexities and 
non-linear relationships found in academic datasets remains a 
significant challenge (Waheed et al., 2020; Lee et al., 2021; Al-Azazi 
and Ghurab, 2023; Shen, 2024; Sateesh et al., 2023; Manigandan et al., 
2024). Moreover, DL’s capability of handling big data will enhance the 
prediction accuracy of GPA if integrated with workflows of handling 
imbalanced data and the feature importance workflow, as shown in 
Figure 1.

Academic achievement is significant since it is closely related to 
the favourable results that we  appreciate. Students’ academic 
achievement in college or university is one of the aspects that 
contribute to academic success. Every college or university’s 
performance is still determined by the total academic achievement of 
its students. To enhance our analysis and prediction of academic 

achievement, we can incorporate variables like aptitude test results, 
high school GPAs, and the student’s graduating high school. We think 
that a student’s success during their first year of college can be used as 
a predictor of how well they will perform during the remaining years 
of their education. These elements enable students to receive early 
feedback and take steps to enhance their performance. The main 
purpose of this study is to achieve early classification of at-risk 
students and the prediction of their GPA to allow timely intervention 
by educators and other policymakers. That is why recognising 
potential dropouts can help an institution improve dropout and 
retention rates. The three key objectives of this research are:

 • To predict the at-risk students using classification so that the 
teachers and policymakers can stop the possible dropout of 
these students.

 • To find the best classifiers among different classifiers to predict 
the at-risk students that may be applied to similar datasets of 
other Universities.

 • To utilise SHAP (Shapley Additive exPlanations) to interpret the 
results, providing stakeholders with insights into the key features 
influencing predictions and reinforcing the principles of 
Explainable AI (XAI).

 • To compute the performance of the best classifier with others, a 
statistical analysis such as the mean, median, standard deviation, 
t-test–test, bootstrap confidence levels, Friedman test, Effect Sizes 
(Cohen’s d) and Tukey’s HSD Test are employed on the four 
performance metrics.

This study aims to improve predictive accuracy while providing 
comprehensible and practical recommendations to educational 
stakeholders using deep learning methodologies and interpretability 
tools like SHAP. The proposed framework offers a reference model for 
early GPA prediction, contributing to better academic outcomes and 
fewer student dropouts.

The rest of the paper is organised as follows. Section 2 describes 
the related works, while Section 3 depicts the methodology section. 
Results and discussions were described in Section 4, and Section 5 is 
the conclusion.

2 Related work

The growth and development of a country depend on the 
achievements of students in school. Therefore, various researchers 
work to develop diverse methods for the early prediction of student’s 
academic performance.

Sarker et  al. (2024) conducted a study by applying the EDM 
method to investigate student achievement in higher secondary 
education in Bangladesh. The research focused on categorising 
students into good, average, and poorly performing groups. It 
evaluated their academic performance through four key aspects: 
assessment of probable outcomes, comparison of subject-wise 
performance analysis, performance trends, and internal examination 
pattern parameters. Therefore, a two-year dataset of humanities 
students was used, and five machine learning algorithms were used for 
analysis, such as Naive Bayes (NB), Decision Tree (DT), Random 
Forest (RF), Neural Network (NN), and Nearest Neighbour. The study 
demonstrated a clear correlation between students’ performance 
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during the term and their final grades, and it also identified specific 
subjects that significantly contribute to high academic achievement. 
Such a concept can help college administrations with intervention 
strategies that can be used to help low achievers while motivating 
high achievers.

Kukkar et  al. (2023) proposed a new Student Academic 
Performance Predicting (SAPP) system to enhance the prediction 
accuracy and solve performance prediction issues. The proposed 
system combined 4-layer stacked LSTM with RF and Gradient 
Boosting (GB) algorithms. The system performance was evaluated 
using Accuracy, Precision, F-measure and Recall parameters on a 
newly created emotional dataset with an OULAD dataset. The 
accuracy of the proposed SAPP system was around 96%, which is 
higher than ANN, RNN, CNN, SVM, DT, and NB. These results 
supported its accuracy over other approaches employed in student 
prediction performance.

Mahawar and Rattan (2025) developed a performance prediction 
model using ML models involving demographic, social, psychological, 
and economic indicators. An online survey was performed, and a 
dataset of pre-year undergraduate students was considered for analysis 
using eight different ML classifiers, namely, Logistic Regression (LR), 

RF, Support Vector Machine (SVM), and XGB. The proposed system 
also included nine feature selection techniques, including variance 
threshold and recursive feature elimination. The ensemble DXK 
(DT + XGB + KNN) model achieved 97.83% accuracy with 80:20 data 
proportions, showing better results than traditional classifiers. 
Furthermore, the ACO-DT Model achieved a 98.15% accuracy rate 
and was higher than all the models used. The authors highlighted that 
more research should enhance the performance of more accurate and 
faster predictions.

Another analysis was done by Liang et  al. (2024) using five 
machine learning models to predict academic performance in an 
engineering mechanics course with inputs as online learning 
behaviours and comprehensive performance and outputs as final exam 
scores (FESs). The best performance was achieved by GB Regression 
(GBR) with RMSE (9.3595) and a correlation coefficient of (0.7558). 
Thus, they found that the Intellectual Education Score (IES) was the 
most important performance indicator affecting the change in the 
scores. Live viewing rate (LVR), replay viewing rate (RVR), and 
number of completed assignments (NOCA) were critical for FESs. 
They presented practical information for educators who could 
incorporate or modify particular practices to help a student at risk.

FIGURE 1

A flowchart of the ML & DL process with the constraints and transition stages.
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Huang and Zeng (2024) developed a novel academic 
performance prediction model leveraging dual graph NN to utilise 
both interaction-based structural information and attribute feature 
spaces of students. The model included a local academic performance 
representation module obtained from online interaction activities 
and a global representation module constructed from attribute 
features with the help of dynamic graph convolution. These various 
data representations are integrated with a learning module that 
analyses information from individual and overall perspectives to 
predict performance on a test. The experiment outcome showed that 
performance was improved with 83.96% accuracy for pass/fail 
prediction and 90.18% for pass/withdraw prediction in a public 
dataset. Additionally, ablation studies were performed to validate 
these improvements and to showcase that the proposed model 
outperformed the other approaches.

Hussain et al. (2024) implemented an innovative deep learning 
approach that uses the Levenberg Marquardt Algorithm (MLA), 
which solves problems like insufficient attributes and model 
complexity in the current approach. The input data included the 
assignments, class tests, midterm scores, and attendance. This data 
is fed through the NN via four input variables, three hidden layers 
and an output layer. The proposed model obtained an accuracy of 
88.6%, more accurate than previous approaches. The study 
achieved its goal of predicting final grades, which proved beneficial 
for students, teachers, and educational leaders by providing 
actionable information.

Kukkar et  al. (2024) developed a system that analysed the 
sequences and long-dependent structures of OULAD and self-
derived emotional data using RNN and LSTM networks. 
Integrating RF, SVM, NB, and DT with RNN and LSTM improves 
the method’s predictive capability. The proposed model with the 
RNN + LSTM + RF model achieved a high accuracy of 97% as 
compared to the other models: RNN + LSTM + SVM with 90.67%, 
RNN + LSTM + NB with 86.45% and RNN + LSTM + DT with 
84.42%. This method effectively modelled the intricate time-
dependent relationships within the data and outperformed all other 
tested configurations.

Demographic and personality features are combined by Shaninah 
and Mohd Noor (2024) to develop a SAP prediction model. They 
collected the dataset from 305 students studying at Al-Zintan 
University, Libya, through a questionnaire containing 44 questions. 
The proposed approach involved one latent dependent construct, i.e., 
SAP and five independent constructs. Both were tested using 
PLS-SEM, which was more effective in handling smaller samples and 
complex models than CB-SEM. The research outcomes identified 
personality features as the most influential factors that affect 
SAP performance.

The issues faced by DHH students in their education were 
addressed by Raji et al. (2024). They proposed a new ML system with 
LIME and SHAP methods. The proposed system predicted the student 
at risk and weighted the key risk factors like early intervention, family 
deafness history, mode of communication, and type of schooling. 
They generated a new dataset combining 454 DHH student records 
with synthetic and SMOTE datasets. After that, various ML methods 
were applied, among which a stacked model with XGB + RF + Extra 
Trees gained 92.99% accuracy. This system provided practical 
recommendations allowing stakeholders to enhance DHH students’ 
performance.

Kapucu et al. (2024) explored ML and DL approaches to predict 
student performance in science classes. They collected the data from 
445 students in grades 5–8 from a school in Central Anatolia, Turkey, 
during the 2022–2023 academic year. The results revealed that out of 
several factors, the average number of books read per year significantly 
affected performance more than other factors. The DNN model 
achieved the highest accuracy, i.e., 90%.

Nurudeen et al. (2024) established the correlation between the 
first-year GPA and the final-year CGPA. Data were collected using an 
ex-post facto design and analysed using Pearson’s correlation and 
regression in Minitab. It was also found that first-year GPA had a 
consistently high correlation (i.e., 0.9334) with the final-year CGPA, 
proving that early academic performance is a major determinant of 
success. However, other demographic characteristics were not 
significantly related to CGPA.

The problem of imbalanced datasets in learning was 
minimised by Wang et  al. (2023). They proposed a ProbSAP 
system for predicting academic performance. The ProbSAP 
incorporated three key modules: a cooperative data enhancement 
sub-module for improving data quality, accessible in large-scale 
metadata clustering sub-module for reducing potential imbalances 
of academic features, and the XGBoost-based prediction 
sub-module for final course mark prediction. The comparative 
assessments revealed that ProbSAP leads to lower mean absolute 
error than the current methods, including CNN, SVR, and 
Catboost-SHAP, and improved on an average by up to 84.76%. It 
provided a sample accuracy above 98%; there is less than 1–9% 
prediction error. Table  1 showcases different state-of-the-art 
studies in this domain.

3 Methodology

In this section, the different methods used in this study for 
second-term GPA prediction are explained in detail. The design, 
implementation, and evaluation of the proposed methodologies and 
their comparison with the conventional machine learning approaches 
are also explained as follows.

3.1 Different methods utilised in the study

This section provides a detailed analysis of seven methods, 
examining their architecture, functionality, and effectiveness in 
predicting second-term GPA. Following this, we  discuss the 
advantages and disadvantages of each method in the context of 
academic performance prediction.

3.1.1 XGBoost
E-Xtreme gradient Boosting is a Machine learning technique 

known for its exceptional predictive performance. It is also 
renowned for its high accuracy, efficiency and speed. It creates a 
sequence of weak learners, and based on this sequence, it develops 
an accurate predictive model. XGBoost minimises the overfitting 
problem by improving generalisation. Mostly, it works on 
classification and regression problems. It can handle missing 
values, which allows the model to handle real-world data with 
missing values without requiring pre-processing. Boost has key 

https://doi.org/10.3389/feduc.2025.1581247
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Kalita et al. 10.3389/feduc.2025.1581247

Frontiers in Education 05 frontiersin.org

TABLE 1 Some of the state-of-the-art studies with their findings and limitations.

Researchers Dataset Attributes Methods Best Method Findings Limitations

Sarker et al. (2024)

2-year dataset 

(Humanities 

students)

Internal exams, 

subject-wise 

performance, trends

NB, DT, RF, NN, 

Nearest Neighbour
RF

The established 

relationship 

between internal 

and end-term 

performance 

identified subjects 

contributing to high 

grades.

Focused only on 

humanities students; 

broader generalisation 

is limited.

Kukkar et al. (2023)
Emotional + OULAD 

datasets

Emotional states, 

academic records

RF, GB, ANN, 

CNN, SVM, DT, 

NB

Stacked LSTM + 

RF + GB

Achieved 96% 

accuracy; enhanced 

prediction over 

traditional methods.

Requires additional 

real-world validation 

for diverse datasets.

Mahawar and Rattan 

(2025)

Online survey (pre-

year undergraduate)

Demographic, social, 

psychological, and 

economic factors

LR, RF, SVM, XGB, 

DXK, ACO-DT

ACO-DT (98.15% 

accuracy)

Identified effective 

features using 

advanced feature 

selection; improved 

accuracy with 

ensemble models.

Limited to pre-year 

undergraduates; 

economic data 

inconsistencies may 

affect generalisation.

Liang et al. (2024)

Engineering 

Mechanics course 

Data

Online behaviours, 

comprehensive 

performance

NB, DT, RF, GBR GBR

Found IES, LVR, 

RVR, and NOCA as 

critical factors; 

RMSE: 9.3595, 

correlation 

coefficient: 0.7558.

Applied only to 

engineering 

mechanics, external 

applicability is 

untested.

Huang and Zeng (2024) OULAD
Interaction activities, 

attribute features
Dual Graph NN

Dual Graph NN 

(90.18% accuracy)

Combined local and 

global student 

features for pass/fail 

predictions; 

validated using 

ablation studies.

Requires more diverse 

datasets for robust 

validation.

Hussain et al. (2024)
BS program 1st-

semester Data

Attendance, 

assignments, midterm 

scores, class tests

MLA
NN + MLA (88.6% 

accuracy)

Successfully 

predicted final 

grades using simple 

input features; 

beneficial for 

educators and 

policy-makers.

Accuracy is slightly 

lower than modern 

ensemble methods.

Kukkar et al. (2023)
Emotional + OULAD 

datasets

Temporal 

dependencies from 

sequence-based data

RNN, LSTM, RF, 

SVM, NB, DT

RNN + LSTM + RF 

(97% accuracy)

Captured complex 

temporal 

dependencies with 

superior 

performance 

compared to other 

combinations.

Needs scalability 

testing for larger 

datasets.

Shaninah and Mohd 

Noor (2024)
305 students (survey)

Personality traits, 

demographics, 

employment factors

PLS-SEM, CB-SEM PLS-SEM

Identified 

personality traits as 

most influential on 

SAP; performed 

well with smaller 

sample sizes.

Limited sample size; 

focused only on 

Libyan universities.

(Continued)
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features; it uses a decision tree as the base learner. To enhance its 
performance, this approach supports parallel processing for 
improved efficiency and scalability and utilises regularisation to 
avoid overfitting. Its advantages are High accuracy, efficiency, 
handling large datasets and interpretability (Chen and 
Guestrin, 2016).

3.1.2 CatBoost
Yandex develops CatBoost to handle categorical and numerical 

data. CatBoost, or categorical boosting, is an open-source library 
to solve the problem of regression and classification with many 
independent features. It uses Symmetric Weighted Quantile Sketch 
(SWQS) to handle missing values in the dataset and reduce the 
overfitting problem, which improves the performance of the 
dataset. It also applies Ordered Boosting to handle difficulties like 
large cardinality faced by categorical data. CatBoost utilises random 
permutations and gradient-based optimisation, which leads to 
improved performance on large and complex datasets. In each 
iteration of the algorithm, CatBoost define the loss function by 
calculating the negative gradient from the current prediction then, 
this gradient is used to update the prediction by adding a scaled 
gradient to the current prediction. CatBoost uses gradient-based 
optimisation to build decision trees to achieve accurate predictions. 
It then employs Ordered Boosting for faster model convergence 
and improved accuracy, which is particularly beneficial for datasets 
with numerous features. Categorial feature handling, reduced 

overfitting, high performance, interpretability and scalability are 
the advantages of Cat Boost (Prokhorenkova et al., 2018).

Mathematically, CatBoost can be calculated as follows:

 ( ) ( ) ( )= =
= +∑ ∑0 1 1 ,M N

m i im iF x F x f x y  (1)

N is the samples of a Training data set and M features, where each 
sample is defined as ( ,i ix y ), where ix  is a vector of M features and iy  
is the corresponding target variablе, CatBoost try to learn a function 
( )F x  that predicts the target variable y (see Equation 1).

Here,
( )F x is the overall prediction function that CatBoost try to learn. 

It selects an input vector x and predicts the variable y.
( )0F x  is the initial prediction. It is the mean of the target variable 

in the training dataset.

=∑ 1
M
m  defines the summation over the ensemble of trees. M is the 

total number of trees in the ensemble.

=∑ 1
N
i  is the summation over the training samples? N is the total 

number of training samples.
( ),m i if x y  denotes the prediction of the mth tree for the ith 

training sample. In the overall prediction process, each tree within 
the ensemble contributes by leveraging its training sample predictions.

The equation represents that the total prediction ( )F x  is summing 
up the initial guess ( )0F x  with thе predictions of each tree ( ),m i if x y  
for each training sample. This summation is done for all trees (m) and 
all training samples (i).

TABLE 1 (Continued)

Researchers Dataset Attributes Methods Best Method Findings Limitations

Raji et al. (2024)
454 DHH student 

records

Communication 

mode, family deafness 

history, early 

intervention

XGB, RF, Extra 

Trees

Stacked Model 

(92.99% accuracy)

Predicted at-risk 

students and 

identified key risk 

factors affecting 

DHH student 

outcomes.

Focused solely on the 

DHH population, 

applicability to 

broader populations is 

unknown.

Kapucu et al. (2024)
445 students (grades 

5–8)

Number of books read 

per year, midterm 

scores

DNN
DNN (90% 

accuracy)

Determined books 

read per year as a 

significant factor for 

predicting science 

course performance.

Applied only to grades 

5–8; additional factors 

for higher education 

are not included.

Nurudeen et al. (2024)
First- and final-year 

GPAs

Demographics, first-

year GPA

Regression, 

Pearson’s 

Correlation

Regression 

(Correlation: 

0.9334)

Strong correlation 

between first-year 

GPA and final 

CGPA; 

demographic 

variables had no 

significant 

influence.

Focused only on GPA 

progression; external 

factors were not 

considered.

Wang et al. (2023)
Massive educational 

dataset

Academic features, 

metadata clustering

XGBoost, CNN, 

SVR, ProbSAP
ProbSAP

ProbSAP reduced 

MAE by 84.76% and 

achieved 98% 

accuracy in 

predictions with a 

reduced error 

margin (1–9%).

Requires extensive 

computational 

resources for large-

scale datasets.

https://doi.org/10.3389/feduc.2025.1581247
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Kalita et al. 10.3389/feduc.2025.1581247

Frontiers in Education 07 frontiersin.org

3.1.3 Histogram based gradient boosting
Traditional Gradient Boosting is an ensemble decision tree 

algorithm; it is slow to train the model, to minimise this problem, Hist 
Gradient Boosting or Histogram Based Gradient Boosting (HGB) 
concept is introduced. Hist Gradient Boosting is an effective 
implementation of traditional gradient boosting. This boosting technique 
divides data into bins and histograms, reducing the computational 
complexity and memory usage. These bins or histograms are used to find 
the gradient of the loss function and then update the model using the 
calculated gradients. It is an iterative process until it reaches the stopping 
criteria or convergence. Hist Gradient Boosting offers advantages such 
as accelerated gradient computation, scalability for large datasets and 
high-dimensional features, and resilience to outliers and noisy data. The 
common application of Hist Gradient Boosting is classification, 
regression and recommendation systems (Si et al., 2017).

3.1.4 LightGBM
Microsoft’s LightGBM is a fast and efficient gradient-boosting 

framework for high performance. It tackles classification, regression, 
and ranking problems through a tree-structured approach, combining 
weak models into a strong predictor. LightGBM’s focus on large and 
small gradient instances contributes to its accuracy. It is a flexible 
model because it can support various objective functions. Due to its 
support for sparse data, LightGBM is highly memory-efficient. Its 
operation involves initialising a basic model and then calculating 
gradients. LightGBM applies some efficient algorithms to get an 
efficient model by searching the optimal split point in each feature.it 
is an iterative process and updates the model prediction based on split 
point and calculated gradients, continuously adding new decision 
trees until a stopping criterion is met, which may be either a maximum 
no. of trees or minimum improvement in performance. The high 
accuracy, speed, scalability, efficient histogram construction, and low 
memory usage are the advantages of LightGBM (Ke et al., 2017).

The selection of the methodologies depends on the problems, 
datasets and performance matrices because the following methodologies 
also have some demerits. XGBoost gives high accuracy but can suffer 
from overfitting. CatBoost can handle categorical features, but it is 
resilient to outliers. Hist GB is fast and memory-efficient, but it gives 
minimum accuracy. LightGBM is also fast and memory-efficient and 
gives more accuracy but can be less robust to outliers.

3.1.5 BiLSTM
Bi-directional Long Short-Term Memory, commonly known as 

Bi-LSTM, belongs to the recurrent neural networks (RNNs) category. 
It is called a sequence model because it processes sequential data. It has 
two LSTM layers, so it is Bi-directional. The first one is Forward LSTM, 
and the other one is Backward LSTM. Simultaneously, these two LSTM 
layers process the input sequence in forward and backward directions. 

Finally, it combines forward and backward passes to capture past and 
future context. In the forward pass, it can process the input from 
starting to ending and from ending to starting in the backward pass.

In Figure 2, the input sequence represents some data like characters 
in a text or words in a sentence, etc., these data points are transformed into 
dense vectors. The Bi-LSTM layer applies its parameter to the vector 
sequence. In the forward pass, information is collected from the past 
(prior time steps), and in the backward pass, information is recorded from 
the future (following time steps). The output of the BiLSTM is the 
combination of the hidden steps from forward and backward directions 
(Graves and Schmidhuber, 2005) (Equation 2).

 = +f b
t ttp p p  (2)

Where.
tp  is the probability record from both the forward and backward 

LSTM network, i.e., the final probability vector;
f
tp  probability vector found from the forward LSTM network.
b
tp probability vector found from the backward LSTM network.

3.1.6 SHAP (Shaply additive explanations)
The concept of cooperative game theory and sharply values is 

the foundation of SHAP (Lundberg and Lee, 2017). The output of 
the ML model is interpreted and explained using the Shapley 
Additive Explanations (SHAP) framework. SHAP values help to 
understand the contribution of each feature in model prediction. 
SHAP values explain the significance of each feature and how it 
affects the output and interaction between features. The positive 
SHAP value of a feature gives a positive impact on model 
prediction, and the negative value gives a negative impact on 
model prediction. The magnitude represents the strength of the 
effect. SHAP uses the training data to measure the contribution of 
each feature, and then a reference value is calculated. This reference 
value helps to represent the average prediction for the dataset. 
SHAP value defines the difference between the predicted value and 
reference value for each SHAP value and is calculated by 
considering all possible feature coalitions. Under considering all 
potential feature coalitions, the SHAP value defines the difference 
between predicted and reference values for each. Finally, SHAP 
values are used to determine how each feature affects the outcome 
and to understand and interpret the result. However, gaining 
insight helps the model to make decisions. Interpretability, model 
explainability and feature selection are the advantages of SHAP.

3.1.7 SMOTE
Synthetic Minority Over Sampling Technique (SMOTE) is 

known to handle imbalanced datasets of machine learning models 

FIGURE 2

Structure of BiLSTM.
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(Chawla et  al., 2002). SMOTE helps solve oversampling, 
undersampling and threshold moving issues. The underrepresented 
minority class causes the majority class to dominate the class 
distribution. Therefore, SMOTE handles these imbalanced issues 
by generating a sample of minority classes. SMOTE identifies some 
minority class instances from the imbalanced dataset. Once 
minority instances are identified, find their K-nearest neighbours 
and generate synthetic samples by interpolating between each 
minority instance and its K-nearest neighbours. SMOTE repeats 
these steps to get a more balanced dataset.

3.2 Data pre-processing to model 
evaluation

In this work, we followed a systematic methodology starting 
with data pre-processing, which involved data preparation, 
transformation, and oversampling to address class imbalance 
issues. The raw dataset was cleaned and transformed into a suitable 
format, and oversampling techniques were applied to balance the 
data. This resulted in a refined new dataset, which was then used 
for model development and evaluation to assess the performance 
and accuracy of the proposed approach. Figure 3 describes the 
steps of our model.

3.2.1 Dataset description
The dataset was collected from a Middle Western University, 

USA. The dataset comprised sex, age, high school grade point 

average (HSGPA), American College Testing (ACT) composite score, 
and grade point averages for the first (FTGPA) and second terms 
(STGPA). STGPA is our target variable. The dataset consisted of 
three cohorts of students’ records (N = 6,500) on six variables 
(features).

3.2.2 Data pre-processing
The dataset underwent a systematic preparation process to 

ensure its reliability and accuracy. Data cleaning was a critical step 
involving the identification and removal of missing values, as well 
as the elimination of duplicate records to maintain data consistency. 
These measures were essential to produce a clean and error-free 
dataset, providing a robust foundation for subsequent 
analytical tasks.

In addition to data cleaning, data augmentation was applied 
to enhance the dataset. This process involved generating new data 
points by introducing small random perturbations to key features, 
such as HSGPA, ACT, and FTGPA. Adding subtle variations to the 
data increased its diversity, better reflecting real-world variability. 
This data augmentation expanded the dataset and enhanced the 
model’s general ability, leading to more robust analyses. Figure 4 
shows the distribution of classes before the data 
augmentation process.

To further address the class imbalance, SMOTE (Synthetic 
Minority Over-Sampling Technique) was applied. SMOTE 
generates synthetic data points for the minority classes, ensuring a 
more balanced data distribution across all classes. This balance is 
critical for training machine learning models, as it prevents bias 

FIGURE 3

Structure of proposed model.
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toward any particular class and ensures that the model is equally 
exposed to all possible outcomes, improving its overall 
performance and generalisation ability. The final balanced 
distribution is shown in Figure 5.

3.2.3 Model architecture
The model implemented is a Recurrent Neural Network (RNN) 

architecture utilising Bidirectional Long Short-Term Memory 
(Bi-LSTM) and Bidirectional Gated Recurrent Units (Bi-GRU) layers 
to capture sequential patterns in the data (Figure 6 shows the proposed 
model architecture).

 • Input Pre-processing:
 • The input features are reshaped to a 3D tensor of shape 

(samples, time steps, features). Here:
 • samples correspond to the number of training/

testing samples.
 • time steps are set to 1, signifying a single time step.
 • features represent the number of input features.

 • Recurrent Layers:
 • The core of the model leverages a combination of BiLSTM and 

BiGRU layers:
 • 1st Layer: A Bidirectional LSTM layer with 512 units and 

return_sequences = True, allowing the output sequence to 
be passed to the next layer.

 • 2nd Layer: A Bidirectional GRU layer with 256 units 
configured to output sequences for further processing.

 • 3rd Layer: Another Bidirectional LSTM layer with 256 units, 
reducing the sequence to a single vector representation.

 • Dense Layers:
 • A stack of fully connected layers captures complex, high-level 

representations of the processed sequential data:
 • Dense(64) → Dense(32) → BatchNormalization → 

Dense(16) → Dense(8) layers refine the feature space.
 • Batch normalisation ensures stability and mitigates the risk 

of vanishing/exploding gradients.

 • Dropout:
 • Dropout layers introduce regularisation, preventing 

overfitting by randomly setting a fraction of units to zero 
during training.

 • Output Layer:
 • A Dense layer with four units and a sigmoid activation 

function outputs class probabilities for the four classes.

The model was trained for up to 200 epochs with a batch size of 128, 
while early stopping was applied to prevent overfitting. Early stopping 
monitored the validation loss and halted training if no improvement 
was observed for 15 consecutive epochs, restoring the best model 
weights to ensure optimal performance. Dropout was applied with a rate 
of 0.2 in the fully connected layers to reduce overfitting by randomly 
deactivating some units during training. The model was compiled using 
the Adam optimiser, which is efficient and adaptive, and the categorical 
cross-entropy loss function, suitable for multi-class classification tasks. 

FIGURE 4

Distribution of classes before the data augmentation process.

FIGURE 5

Distribution of classes after the data augmentation process.
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The accuracy metric was used to evaluate the model’s performance 
during training and validation (Figure 7).

4 Results and discussion

In this section, we will describe the results obtained from comparing 
the performance of various machine learning algorithms. The evaluation 
was based on several key metrics, including accuracy, precision, recall, 

and F1-score, which help assess the performance of the models in 
predicting the target variable, STGPA. The algorithms used in the 
comparison include CatBoost, XGBoost, HistGradientBoosting, and 
LightGBM (Figure 8).

For each algorithm, the following metrics were calculated based 
on the values of True Positives (TP), False Positives (FP), True 
Negatives (TN), and False Negatives (FN)

 1 Accuracy: This metric measures the proportion of correct 
predictions made by the model relative to the total number of 

FIGURE 6

Model architecture.
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predictions (see Equation 3). Higher accuracy indicates better 
overall performance.

 
+

=
+ + +
TP TNAccuracy

TP TN FP FN  
(3)

 2 Precision: This metric measures the proportion of true positive 
predictions among all positive predictions made by the model 

(see Equation 4). This is particularly crucial when incorrect 
positive predictions have significant negative consequences.

 
=

+
TPPrecision

TP FP  
(4)

 3 Recall: This metric indicates how well the model identifies all 
relevant instances of the positive class (see Equation 5). It is 
critical when false negatives are costly.

FIGURE 7

Training and validation accuracy over epochs.

FIGURE 8

Training and validation loss over epochs.
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=

+
TPRecall

TP FN  
(5)

 4 F1-score: This is the harmonic mean of precision and recall, 
offering a balance between the two (see Equation 6). A high F1 
score indicates that the model performs well in precision and recall.

 

∗
= ∗

+
F1Score 2 Recall precision

Recall precision  
(6)

4.1 Model performance

The training process consisted of 200 epochs, and throughout this 
period, the model exhibited a significant increase in performance. 
Starting with a training accuracy of 63%, it gradually increases to 91%, 
while validation accuracy stabilises above 87%, demonstrating strong 
generalisation. The cross-entropy loss decreases consistently for training 
and validation sets, indicating effective optimisation. Early stopping is 
applied to monitor the validation loss and prevent overfitting; the 
training halts when the validation loss ceases to improve for a predefined 
number of epochs. This approach ensures the model achieves optimal 
performance without overfitting the training data.

4.2 Model evaluation

The research developed a deep learning approach with Bi-LSTM 
for predicting academic performance of students by using GPA as the 
main metric. The proposed model underwent an evaluation test 
where it competed with CatBoost, XGBoost, HistGradientBoosting, 
and LightGBM through a classification methodology based on 
accuracy, precision, recall, and F1-score metrics. The Bi-LSTM model 
receives SHAP (SHapley Additive Explanations) interpretation to 
achieve transparency and trustworthiness for its global and 
local output.

4.2.1 Comparative model performance
Table 2 paired with Figure 9 showed that the Bi-LSTM model 

outperformed other models in all performance metrics. Among 
the ML models, XGBoost achieves the highest accuracy (87.14%), 
precision (86.94%), recall (87.18%), and F1-score (86.98%), 
demonstrating its superior performance. The deep learning 
model, Bi-LSTM, outperforms all others with the highest accuracy 
(88%) and significantly higher precision (92.02%), recall (92.11%), 
and F1-score (91.98%), indicating its effectiveness in capturing 
complex patterns and achieving better overall results. The 
performance metrics from Figure  9 demonstrated Bi-LSTM 
exceeds all other models particularly with respect to precision and 
recall levels where it displays substantial superiority over baseline 
evaluations. For instance, the higher precision means Bi-LSTM is 

FIGURE 9

Performance models by metrics.

TABLE 2 Models’ performance comparison.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

CatBoost 86.61 86.38 86.65 86.42

XGBoost 87.14 86.94 87.18 86.98

HistGradientBoosting 86.63 86.42 86.68 86.43

LightGBM 86.03 85.79 86.07 85.82

Deep Learning (Bi-LSTM) 88.23 92.02 92.11 91.98

Bold values indicate that the method has high accuracy.
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more accurate in identifying students who are truly at risk of 
underperforming, reducing false interventions. The recall 
mechanism protected the identification of most students who 
need attention. The F1-score demonstrated that Bi-LSTM achieves 
better overall performance through its single balanced metric 
reflecting both precision gains and recall enhancement. The 
information presented here becomes vital for educators who need 
systems that perform detection and intervention activities without 
making errors. The significant margin demonstrated an important 
increase in the trustworthiness of models particularly when 
applied to real-world academic tasks.

4.2.2 Feature importance via SHAP values
The opacity of DL models required the use of SHAP to explain 

Bi-LSTM output and validate its predictions. SHAP attributes 

numerical values to each attribute to identify how much they impact 
prediction results. The obtained insights from SHAP evaluations can 
be seen in Figure 10 of the SHAP Violin Summary Plot and Figure 11 
of the SHAP Heatmap Plot.

4.2.2.1 SHAP violin plot
Figure 9 revealed that: Among all predictive factors, FTGPA 

(First Term GPA) showed the greatest impact because its data 
distribution extends the furthest toward zero from the x-axis. 
Student performance in first term and high school together with 
ACT scores demonstrated similar importance levels which capture 
their academic development and standardised testing abilities. Data 
from the model indicated that AGE and SEX variables had only 
small predictive power due to their negligible impact. The graphical 
representation proved academic historical data supersedes 

FIGURE 11

Heatmap plot based on SHAP values.

FIGURE 10

Violin summary plot based on SHAP values.
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demographic characteristics in predicting GPA which strengthens 
the model’s application relevance for educational purposes.

4.2.2.2 SHAP Heatmap
Figure 11 demonstrated local explanation through visual presentation 

of how individual student predictions relate to each feature. A positive 
SHAP contribution appears as red while negative SHAP influence shows 
up as blue. For instance: Predicted GPA values are consistently higher 
when the students demonstrate high FTGPA and HSGPA levels which 
appear as red in color. The model uses blue color to identify instances 
when variables have lower values which results in predicted outcomes that 
decrease. The model’s predictions received confidence through this 
approach allowing advisors to identify explanation reasons for each 
prediction so they can deliver tailored guidance.

The stakeholders can identify the students at risk early and deliver 
appropriate exhortation in an auspicious manner. This can help 
prevent students from dropping out of the institution and improve the 
institution’s overall performance.

4.3 Statistical analysis

In this section, the performance of selected ML and DL models 
are compared using the mean, median, standard deviation, t-test–test, 
bootstrap confidence levels, Friedman test, Effect Sizes (Cohen’s d) 
and Tukey’s HSD Test (Penick and Brewer, 1972; Liu and Xu, 2022; 
Carpenter and Bithell, 2000). These statistical measures provide 
crucial information for assessing both the operational efficiency and 
the overall credibility of the models. This section provides further 
insight into evaluating the performance metrics of various models 
using statistical measures such as accuracy, precision, recall, F1-score 
and statistical tests at varying thresholds.

4.3.1 Descriptive statistics
Descriptive statistics provide an overview of the performance of 

each model in terms of the key metrics: accuracy, Precision, Recall, 
and F1-score. The following table summarises the descriptive statistics 
for each metric across all models (Table 3):

 • Mean: the average performance across all models.
 • Standard Deviation: indicates the variability of each 

model’s performance.
 • Min/Max: represents the lowest and highest performance, 

respectively.

 • Percentiles (25, 50, 75%): provide insights into the distribution of 
performance scores.

These descriptive statistics reveal that Bi-LSTM consistently 
outperforms other models in accuracy and F1-score, with a notable 
difference in precision and recall.

4.3.2 Friedman test
The Friedman test for repeated measures is applied to compare the 

models and identify any significant differences in their performance 
across the four metrics. The results are:

 • Chi-squared: 11.1600
 • p-value: 0.0109

Thus, a p-value of 0.0109 gives a sign of difference between the 
models, meaning that Bi-LSTM is statistically different from the 
others when comparing the mean value for the complete combination 
of all aspects.

4.3.3 Bootstrap confidence intervals
To evaluate the uncertainty of the differences between the models, 

the bootstrap  95% confidence intervals are calculated for the 
comparisons of each model against Bi-LSTM. The intervals for the 
difference in performance metrics (e.g., accuracy, precision, recall, and 
F1-score) are as follows:

 • CatBoost vs. Bi-LSTM: (−5.6125, −2.6625)
 • XGBoost vs. Bi-LSTM: (−5.0625, −2.1175)
 • HistGradientBoosting vs. Bi-LSTM: (−5.5900, −2.6400)
 • LightGBM vs. Bi-LSTM: (−6.2075, −3.2475)

The negative values in these intervals support the authors’ 
conclusion that Bi-LSTM performs better than these models in 
accuracy and other measures. The confidence intervals show 
statistically significant differences where Bi-LSTM performs higher 
than other models.

4.3.4 Effect sizes (Cohen’s d)
Cohen’s d is used to measure the difference in performance 

between the models and Bi-LSTM. The following results are obtained:

 • CatBoost vs. Bi-LSTM: −3.9095
 • XGBoost vs. Bi-LSTM: −3.4453

TABLE 3 Results of the descriptive statics test.

Metric Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Count 5 5 5 5

Mean 86.93 87.51 87.74 87.53

Std 0.83 2.55 2.48 2.52

Min 86.03 85.79 86.07 85.82

25% 86.61 86.38 86.65 86.42

50% 86.63 86.42 86.68 86.43

75% 87.14 86.94 87.18 86.98

Max 88.23 92.02 92.11 91.98
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 • HistGradientBoosting vs. Bi-LSTM: −3.8882
 • LightGBM vs. Bi-LSTM: −4.4107

Cohen’s d values indicate large effect sizes and show that the 
Bi-LSTM model was significantly better than the other models. A 
negative Cohen’s d value suggests that Bi-LSTM is more accurate than 
the others.

4.3.5 Tukey’s HSD test
Finally, Tukey’s Honestly Significant Difference (HSD) test is used 

to compare all the models. The proposed model achieves the best 
performance of all the models and is statistically significantly different 
from CatBoost, XGBoost, HistGradientBoosting, and LightGBM with 
a p-value <0.05. From Table 4, it is observed that Bi-LSTM is statistically 
superior in predicting student performance than traditional models.

4.4 Discussion

The research objective focused on creating a DL model (using 
Bi-LSTM) to predict academic performance of students based on 
GPA through an interpretable approach. The model is tested against 
four competitive ML algorithms namely CatBoost, XGBoost, 
HistGradientBoosting, and LightGBM. This research utilised 
comprehensive evaluation standards together with extensive 
statistical examinations that ensured strong model 
performance assessment.

4.4.1 Comparative performance of models
All performance evaluation metrics from Table 2 demonstrate a 

clear superiority of Bi-LSTM compared to ML approaches for all 
precision, recall, accuracy and F1-score measures. In particular:

 • Bi-LSTM achieved 88.23% accuracy, outperforming the next-best 
model, XGBoost, which reached 87.14%.

 • Precision and Recall, both critical for identifying at-risk students, 
reached 92.02 and 92.11%, respectively, for Bi-LSTM. These 
values are significantly higher than those of all ML counterparts 
(which ranged from 85.79 to 87.18%).

 • The F1-score of Bi-LSTM (91.98%) reflects an excellent balance 
between precision and recall, signifying that the model effectively 
minimises both false positives and false negatives.

The research demonstrated that deep learning algorithms such as 
Bi-LSTM exceed traditional ML models when processing educational 
data through sequential and contextual dependency modelling. The 
model employed bidirectional memory to access past and future 
temporal data which proved crucial for understanding 
academic trajectories.

4.4.2 Interpretation of evaluation metrics in 
context

Statistical metrics generate quantitative comparisons yet educators 
need to interpret these metrics in actual educational scenarios.

 • High accuracy ensures the model is generally correct in 
its predictions.

 • High precision reduces false alarms, meaning fewer students are 
incorrectly flagged as at-risk.

 • High recall ensures that truly at-risk students are not overlooked, 
which is critical for timely interventions.

 • High F1-score indicates a balanced and reliable predictive system 
that can be trusted in operational settings.

Academic institutions deploying the Bi-LSTM model can predict 
underperforming students in advance and deploy focused resources 
to prevent failure through early intervention.

4.4.3 Model interpretability and feature relevance
Black-box deep learning methods historically lacked transparency 

which makes explainability vital when student decisions are at stake in 
any educational context. This research uses SHAP as an interpretation 
tool for model predictive output. Through SHAP explanation 
stakeholders can learn about standard influences from features while 
simultaneously gaining case-by-case interpretation ability for specialised 
interventions. The most influential features, as shown in the SHAP 
summary and heatmap plots, include:

 • First-Term GPA (FTGPA): Reflects initial academic performance 
and is a strong early indicator.

 • High School GPA (HSGPA): Captures foundational 
academic preparedness.

 • Standardised Test Scores (ACT): Signifies cognitive aptitude and 
readiness for college-level curriculum.

Research in educational data mining supports a clear connection 
between previous academic performance and future student 
achievement levels. Understanding the connection between data 
points and student outcomes through SHAP analysis makes model 
transparency possible which leads to better adoption by HEIs top 
management and administrators of non-technical backgrounds.

4.4.4 Statistical validation of performance 
superiority

The following statistical techniques were used to validate the 
findings along with their generalizability and credibility levels:

 • The Friedman test, a non-parametric test for comparing multiple 
models over multiple datasets or metrics, revealed a statistically 

TABLE 4 Tukey’s HSD test results.

Model 1 Model 2 Mean difference p-value Reject null hypothesis

Bi-LSTM CatBoost −4.57 0.0000 Yes

Bi-LSTM HistGradientBoosting −4.545 0.0000 Yes

Bi-LSTM LightGBM −5.16 0.0000 Yes

Bi-LSTM XGBoost −4.03 0.0001 Yes
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significant difference (χ2 = 11.16, p = 0.0109) among the models. 
This confirms that the observed performance differences are not 
due to random variation.

 • Bootstrap confidence intervals were calculated to assess the 
uncertainty around the performance gaps. All intervals 
comparing Bi-LSTM with other models (e.g., CatBoost, 
LightGBM) had negative lower and upper bounds, indicating 
Bi-LSTM consistently outperformed its counterparts with 
95% confidence.

 • Cohen’s d effect size provided further confirmation. The 
magnitude of the effect sizes ranged from −3.4 to −4.4, 
representing very large effects. This statistically supports the 
assertion that Bi-LSTM is meaningfully better, not 
just marginally.

 • Tukey’s HSD (Honestly Significant Difference) test 
confirmed pairwise statistical superiority of Bi-LSTM over 
each individual model (p < 0.0001 in all cases), providing 
robust post-hoc evidence to the Friedman results.

Our analysis utilised multiple approaches for validation to 
enhance the credibility of our study’s findings. These evaluations 
create confidence in decision-makers who typically need 
empirical validation to feel comfortable adopting 
AI-based systems.

4.4.5 Relevance for non-technical stakeholders
The technical aspects of this study produce significant 

practical benefits for educational institutions. This statistical 
model generated results which serve practical strategic purposes:

 • HEIs top management and academic advisors can use the 
predictive results, along with SHAP explanations, to engage 
students in informed discussions and recommend tailored 
support plans.

 • Administrators can incorporate the model into early alert 
systems to drive data-informed policies aimed at reducing 
dropout rates and improving overall 
institutional performance.

 • Policymakers can explore this model as a blueprint for 
scalable national or state-level educational interventions, 
especially in systems that are resource-constrained but rich 
in historical academic data.

The Bi-LSTM model provided a unique combination between 
outstanding predictive capabilities and easy interpretability 
which makes it essential for education domains requiring both 
technical brilliance and ethical clarity.

4.4.6 Limitations and future directions
Despite the encouraging results, this study also has several 

limitations such as:

 • Dataset Size: The current dataset worked well for analysis yet 
it may fail to show differences between student populations 
across various institutions and geographic areas. Future 
research should develop a larger research dataset which 
encompasses multiple institutions.

 • Temporal Dynamics: Real-time updates and time-series 
changes have not been included into the present model 
framework. The predictive capabilities and applicability of 
the model will improve by implementing longitudinal 
tracking systems.

 • Holistic Feature Space: Additional metadata about mental 
health and financial stress as well as engagement levels is 
missing from the current model assessment. Future versions 
of the model must incorporate socio-emotional and 
behavioural information to build a predictive instrument 
with a broader scope.

5 Conclusion

In this work, we  proposed a deep learning-based model, 
specifically a Bi-LSTM (Bidirectional Long Short-Term Memory) 
network, to predict the second-term GPA. Our model was 
evaluated against several other algorithms, including CatBoost, 
XGBoost, HistGradientBoosting, and LightGBM, using key 
performance metrics such as accuracy, precision, recall, and 
F1-score. The results demonstrated that our proposed Bi-LSTM 
model outperforms the traditional machine learning algorithms 
in terms of predictive accuracy, highlighting the potential of deep 
learning techniques for academic performance prediction. This 
type of model can be utilised to mitigate student dropout and 
enhance the performance of the students. One of the limitations 
of the study is the size of the dataset. In future, we shall try to 
collect more data to boost the performance of the deep learning 
model. The integration of deep learning strategies and SHAP 
values in a single framework could overcome the challenges of 
the trade-off between the student academic performance model’s 
explainability and intricacy and augment model accuracy and 
transparency. The performance of selected ML and DL models 
are also compared using the mean, median, standard deviation, 
t-test–test, bootstrap confidence levels, Friedman test, Effect 
Sizes (Cohen’s d) and Tukey’s HSD Test. The results demonstrate 
that BI-LSTM performance is significantly different from other 
models. This study could open horizons for other researchers to 
conduct analogous studies in the domain.
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