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Background: Deep learning (DL), a subset of machine learning and artificial

intelligence (AI), is transforming engineering by addressing complex problems

with innovative solutions. Despite its growing influence, a comprehensive

review of current trends, applications, and research gaps in engineering

disciplines is essential to understand its full potential, limitations, and potential

educational implications.

Purpose: This study systematically explores the state, trends, and future

directions of deep learning applications in engineering, and potential educational

implications. The primary research question is: “What are the current

applications, trends, and research gaps in the use of deep learning across

engineering disciplines, and how can these insights guide future innovations in

engineering practice?”

Method: A systematic literature review (SLR) was conducted in three phases:

identification, screening, and synthesis. Articles were retrieved using the

search term “deep learning + engineering” from databases like IEEE Xplore,

Web of Science, and Google Scholar. After removing duplicates from an

initial pool of 346 articles, abstracts and full texts were screened based on

predefined exclusion criteria, narrowing the selection to 101 relevant studies. The

synthesis categorized data into four themes: strategic methodologies, practical

implementation, system optimization, and emerging applications.

Results: The analysis revealed DL’s significant impact on engineering disciplines,

especially mechanical and electrical engineering, with applications such as

predictive maintenance and automated grid management. Key trends include

strategic deep learning model development, practical evaluation frameworks,

and the optimization of e�ciency. However, research gaps remain in scalability,

model interpretability, and real-world implementation.

Conclusions: This study underscores DL’s transformative potential in

engineering while identifying critical research gaps and opportunities. It

provides a framework for future research and industry applications, emphasizing

the importance of strategic innovation and interdisciplinary collaboration to

advance deep learning in engineering.
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artificial intelligence, deep learning, engineering, systematic literature review, neural
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Introduction

In today’s rapidly evolving technological landscape, deep

learning (DL), a subset of machine learning (ML) and artificial

intelligence (AI), has gained significant traction across multiple

disciplines. Deep learning mimics the way the human brain

processes information, utilizing neural networks to analyze large

and complex datasets with impressive accuracy and efficiency

(Sarker, 2021). This ability has enabled deep learning to excel

in areas like natural language processing and image recognition

(LeCun et al., 2015). However, despite its successes, the application

of deep learning in engineering fields has yet to be fully explored,

leaving room for deeper analysis.

While DL’s role in fields such as mechanical and electrical

engineering is growing, existing literature often lacks the specificity

or depth needed to capture the evolving nature of deep learning

in these disciplines. Previous reviews of AI in engineering focus

on general approaches, often leaving out the distinct challenges

and innovations brought about by deep learning technologies. This

gap highlights the need for a comprehensive review of how deep

learning is currently being applied in engineering, as well as the

future directions for its use in this field.

While this study focuses on deep learning applications

in engineering, it is important to recognize that other AI-

driven approaches, such as reinforcement learning and natural

language processing, have also been applied in educational and

engineering contexts. However, deep learning stands out for its

ability to automatically extract hierarchical features from complex

datasets without the need for manual feature engineering, offering

advantages in fields like image analysis, predictive modeling,

and automated decision-making. This capability distinguishes DL

from traditional AI methods that often require more explicit

programming and domain-specific heuristics.

This study aims to address this gap by answering the question:

“What are the current applications, trends, and research gaps in

the use of deep learning across engineering disciplines, and how can

these insights guide future innovations in engineering practice?”

Understanding deep learning’s evolving role in engineering is

critical for advancing innovation, improving system efficiencies,

and solving complex real-world challenges across diverse

disciplines. Specifically, this research will explore the algorithms,

frameworks, and designs employed in deep learning studies, as

well as the methods used for data collection and analysis. It will

also identify key research gaps and propose potential directions

for future investigations. The significance of this research lies in

its potential to influence both academic and practical applications

of deep learning in engineering. By providing an overview of

the current landscape, this study aims to contribute to a deeper

understanding of how deep learning can enhance problem-solving,

innovation, and efficiency in various engineering fields.

Methods

This study’s research framework was adapted from the model

proposed by Borrego et al. (2014). The research process was divided

into three phases (Identification, Screening, and Analysis), outlined

in Figure 1 and as follows:

FIGURE 1

Systematic literature review article selection process.

Identification

In the first phase, relevant articles were retrieved

from multiple databases using the search term: “deep

learning + engineering”. The databases utilized included

Xplore Library, Compendex, Scopus, Google Scholar,

Wiley Online Library, Web of Science, and ERIC.

Retrieved articles were merged into a single dataset,

and any duplicates were removed to create a distinct

pool of publications for further analysis. A total of

345 articles were initially retrieved using these search

terms, and this number was reduced to 316 after

removing duplicates.

Screening

Following the identification phase, articles were screened

to determine their relevance to the research topic. Abstracts
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were initially reviewed against a set of exclusion criteria

to filter out irrelevant publications. These eight exclusion

criteria are:

• EC1: Articles published before 2014 were excluded, as this year

marked a major shift in deep learning with the rise of modern

architectures like CNNs. Limiting the scope ensures relevance

to current DL practices.

• EC2: Articles not published in English were excluded.

• EC3: Articles that are not peer-reviewed conference or journal

articles were excluded,

• EC4: Articles that focus on other AI technologies such as

traditional machine learning, without specific emphasis on

deep learning, were excluded.

• EC5: Articles that do not explicitly focus on the application of

deep learning in engineering fields were excluded.

• EC6: Articles that do not mention specific deep learning

algorithms or frameworks used in their research

were excluded.

• EC7: Books and theses were excluded to focus on peer-

reviewed studies, ensuring methodological rigor and

consistent empirical validation.

• EC8: Unfinished articles were excluded.

Subsequently, full texts of the remaining articles were examined

and excluded based on the above criteria, further reducing the

number of articles. The total number of articles included in the

study was 101 and these studies were included in the final phase

of the SLR process.

Synthesis

Articles that passed the full-text screening proceeded to the

synthesis phase. During this phase, a comprehensive review of the

final articles was conducted. Key details such as the title, publication

year, research questions, research design, sampling strategies and

sizes, data collection methods, and analysis techniques were

compiled into a document. Initially, this was done manually

by reading through each article and extracting the relevant

information. However, an AI tool called Elicit AI was later used

to assist in the information extraction process (Elicit: The AI

Research Assistant, 2024). By creating targeted extraction prompts,

the tool was able to retrieve detailed and useful information from

each article, providing outputs that were comparable in quality to

the manual process but completed more efficiently. The authors

conducted a manual review of the outputs generated by Elicit

AI to ensure their accuracy and reliability. While this qualitative

synthesis captured key patterns and thematic insights, a formal

bibliometric analysis—such as citation frequency and journal

impact metrics—was conducted. These quantitative techniques

enhance future research by providing a more structured assessment

of scholarly influence and topic evolution. The extracted details

were analyzed to answer the overarching question, “What are the

current applications, trends, and research gaps in the use of deep

learning across engineering disciplines, and how can these insights

guide future innovations in engineering practice?”

Findings

Publication type and publication outlet of
included articles

Among the 101 articles reviewed for this study, 23.3% were

published as conference proceedings, while 76.7% were journal

articles. The conference papers were predominantly published

in IEEE-sponsored conferences, such as the 2019 International

Conference on Deep Learning and Machine Learning in Emerging

Applications (Deep-ML), 2021 International Symposium on

Artificial Intelligence and its Application on Media (ISAIAM),

and 2022 International Conference on Engineering Education and

Information Technology (EEIT). Collectively, these IEEE venues

accounted for 13.6% of the total publications.

The remaining 76.7% of journal articles were distributed across

various outlets, with notable contributions from Computer-Aided

Civil and Infrastructure Engineering (4.9%), IEEE Access (4.9%),

Chemical Engineering Science (2.9%), Neural Networks (2.9%),

and Journal of Neural Engineering (2.9%). Other journals, such as

IEEE Transactions on Cybernetics, Applied Energy, Automation in

Construction, and Sensors, each contributed 1.9–2.9% of the total

reviewed articles. These percentages highlight a strong emphasis on

journal publications, reflecting the in-depth and scholarly nature of

deep learning research in engineering and related fields.

Number of publications in deep learning by
year

From 2014 through 2024, there has been a notable upward

trend in the number of deep learning articles published per year,

with a peak in 2022 (Figure 2). The number of publications started

modestly between 2014 and 2016, followed by a sharp increase

in 2017, indicating a growing interest in deep learning research.

Although there was a slight dip in 2018, the trend continued to

rise steadily from 2019 to 2022, reaching its highest point. In the

subsequent years, a decline is observed in 2023 and 2024, though

publication numbers remain higher than earlier years. This trend

reflects the increased adoption and exploration of deep learning

technologies during the past decade, with a slight tapering off in

recent years. The observed decline in the number of articles in 2024

is attributed to the authors concluding their data collection during

the summer of that year, and it does not fully represent the total

articles published in 2024.

Bibliometric analysis

Figure 3 illustrates the temporal distribution of citations from

2014 to 2025. The data reveals a pronounced peak in 2017, with

11,041 citations, suggesting the publication of several high-impact

studies during that year. Other notable years include 2014 and 2019,

which garnered 6,788 and 3,810 citations respectively, indicating

sustained academic influence. From 2020 onward, a declining

trend in citations is observed, with more recent years such as

2023 and 2024 showing markedly lower citation counts (215 and
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FIGURE 2

Number of deep learning articles published by year.
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FIGURE 3

Number of citations of the sampled articles.

343, respectively), which is expected due to the citation time lag

typically associated with newer publications. The minimal citation

count in 2025 (only 2 citations) further supports this temporal lag.

Interestingly, 2015 registered no citations, potentially indicating

either a gap in publication or indexing for that year. Overall, the

chart highlights the temporal dynamics of scholarly impact, with a

concentration of influential publications between 2014 and 2019.

Table 1 presents the ten most cited articles among the sampled

studies, highlighting key contributions to the application of deep

learning in various engineering domains. The most highly cited

work is by Lv et al. (2014), which focuses on traffic flow prediction

using big data and deep learning, accumulating 3,855 citations.

This is followed by Cha et al. (2017), whose study on crack

damage detection using convolutional neural networks received

3,488 citations. Other notable articles include Chen et al. (2014)

on hyperspectral data classification and Zhao et al. (2017) on short-

term traffic forecasting using LSTM networks, cited 2,933 and 2,050

times, respectively. The list features significant advancements in

structural health monitoring, image classification, EEG analysis,

and cybersecurity, underscoring the diverse applicability and

growing influence of deep learning across disciplines. The high

citation counts reflect the substantial impact these studies have had

in shaping subsequent research and technological development in

their respective fields.

Additionally, the impact factor of the sampled articles

published was in the range from 0.7 to 34.4. A review of the sampled

studies reveals that several high-impact journal publications have

significantly contributed to the scholarly discourse on deep

learning in engineering applications. As summarized in Table

B, at least 18 studies were published in journals with impact

factors exceeding 9.0, underscoring the quality and visibility of

the research. Notably, multiple articles appeared in Computer-

Aided Civil and Infrastructure Engineering and Automation in

Construction, both with an impact factor of 9.6, highlighting their

influence within the civil and structural engineering community.

Additionally, Applied Energy (IF: 11.45), IEEE Journal of Selected

Topics in Signal Processing (IF: 11.48), and Composites Part B:

Engineering (IF: 12.7) featured prominently in energy forecasting,

signal processing, and materials engineering applications of deep

learning. The highest impact factor in the dataset was recorded

for an article published in IEEE Communications Surveys &

Tutorials (IF: 34.4), reflecting the widespread relevance of deep

reinforcement learning in network traffic engineering. Collectively,

these publications demonstrate that deep learning research in

engineering not only spans diverse domains but also garners

attention in top-tier, multidisciplinary journals.

Country a�liation of first author

Table 2 shows that the articles selected for this review featured

first authors from 24 countries. The majority of first authors were

from China (39.6%), followed by the United States (11.9%) and

India (8.9%). Canada and Turkey each contributed 4.95%, while

Korea accounted for 3.96%. Malaysia contributed 2.97%, with

Italy, Denmark, Singapore, and 6 other countries each representing

1.98%. An additional 9 countries accounted for 0.99% each. These

results indicate a significant contribution from China and suggest

that the predominance of articles from English-speaking or widely

published countries may reflect publication trends or accessibility

within our search criteria.

Notably, China and the United States dominate the authorship

landscape, accounting for over 50% of the reviewed articles. This

geographic concentration may influence research priorities, with

China showing a strong focus on infrastructure and materials

applications, while the U.S. contributions emphasize cybersecurity,

automation, and optimization. The comparative scarcity of papers

from other regions suggests a need for more globally inclusive

research and may indicate disparities in funding, access to

technology, or publishing networks.

Deep learning applications by discipline

Table 3 lists the engineering disciplines studied across the

101 articles that explore the application of deep learning

techniques. Civil engineering (21.57%) was the most frequently

studied discipline, followed by electrical engineering (14.71%),

mechanical engineering (11.76%), software engineering (10.78%),

and structural engineering (10.78%). Additional disciplines such

as network engineering (6.86%), materials engineering (5.88%),
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TABLE 1 Top ten cited articles across the sampled articles.

Authors Title N

Lv et al. (2014) Traffic Flow Prediction With Big Data: A Deep Learning Approach 3,855

Cha et al. (2017) Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks 3,488

Chen et al. (2014) Deep Learning-Based Classification of Hyperspectral Data 2,933

Zhao et al. (2017) LSTM network: a deep learning approach for short-term traffic forecast 2,050

Zhong et al. (2017) Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework 1,721

Craik et al. (2019) Deep learning for electroencephalogram (EEG) classification tasks: a review 1,611

Cha et al. (2018) Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. 1,607

Ahmad et al. (2021) Network intrusion detection system: A systematic study of machine learning and deep learning approaches 1,189

Zhang et al. (2017) Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network 1,029

Tabar and Halici (2016) A novel deep learning approach for classification of EEG motor imagery signals 984

TABLE 2 Distribution of first author a�liations by country.

# Country N %

1 China 40 39.60

2 United States 12 11.88

3 India 9 8.91

4 Canada 5 4.95

5 Turkey 5 4.95

6 Korea 4 3.96

7 Malaysia 3 2.97

8 Italy 2 1.98

9 Denmark 2 1.98

10 Singapore 2 1.98

11 United Kingdom 2 1.98

12 Austria 2 1.98

13 Pakistan 2 1.98

14 Japan 2 1.98

15 Germany 1 0.99

16 Israel 1 0.99

17 Vietnam 1 0.99

18 Taiwan 1 0.99

19 South Korea 1 0.99

21 Greece 1 0.99

22 United Arab Emirates 1 0.99

23 Ghana 1 0.99

24 Saudi Arabia 1 0.99

and aerospace engineering (5.88%) also contributed to the

research, with smaller contributions from fields like chemical

engineering, petroleum engineering, and industrial Engineering.

Only one article (0.98%) focused on environmental engineering.

The diversity of engineering disciplines shown in Table 1 highlights

TABLE 3 Breakdown of engineering disciplines represented in the

research articles applying deep learning techniques, including the count

(N) and percentage (%) of articles in each discipline.

# Engineering discipline N %

1 Civil Engineering 22 21.15

2 Electrical Engineering 15 14.42

3 Mechanical Engineering 12 11.54

4 Software Engineering 11 10.58

5 Structural Engineering 10 9.62

6 Network Engineering 7 6.73

7 Materials Engineering 6 5.77

8 Aerospace Engineering 6 5.77

9 Chemical Engineering 4 3.85

10 Petroleum Engineering 4 3.85

11 Industrial Engineering 3 2.88

12 Environmental Engineering 1 0.96

how broad deep learning is being applied across various domains

of engineering. From more traditional areas such as civil and

mechanical engineering to newer fields like network engineering,

deep learning is proving its worth broadly. This shows how versatile

technology is, helping tackle complex problems in all sorts of

engineering specialties.

Research methodology

Table 4 categorizes the methodologies researchers employed

in their studies. The most used methods fall into areas like

framework/algorithm design (21.36%), where new models or

frameworks were created or adapted for specific applications, and

model training/optimization (12.62%), which involved techniques

to improve model performance through tuning or optimization.

Methods such as data collection/preprocessing (10.68%) and

evaluation metrics/analysis (9.71%) also played significant
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TABLE 4 Breakdown of methodologies used in the reviewed studies,

categorized by the most common research approaches and techniques

employed.

# Methodology N %

1 Other 30 29.13

2 Framework/Algorithm design 22 21.36

3 Model training/Optimization 13 12.62

4 Data collection/Preprocessing 11 10.68

5 Evaluation metrics/Analysis 10 71

6 Simulation/Testing 10 71

7 Not mentioned 6 83

roles in various studies. The other category (30.10%) includes

methodologies that don’t fit neatly into the main categories,

encompassing unique, specialized, or highly specific approaches

that are less common or more difficult to generalize. These

methods often involve niche technical approaches, variations of

deep learning that weren’t fully captured by the primary categories,

or techniques used in very specific contexts or applications.

Thematic analysis

This section presents the four key themes that emerged

following the screening and analysis of the 101 sampled articles.

These themes represent the primary areas of focus within the

reviewed literature. The themes were identified by combining

codes that go together well. For each theme, we provide their

descriptions, and two exemplar studies which were selected for

each theme. These exemplar studies were chosen because they

closely aligned with the topics within each theme. Additionally, the

information under each theme also includes practical implications

for professionals in the deep learning field, as well as research

implications for future studies in this area. This thematic analysis

structure is informed by approaches used in recent systematic

literature reviews (Harris and Kittur, 2024; Kittur et al., 2024;

Nguyen and Kittur, 2024).

Coding and thematic grouping

Once the information was extracted from the articles, the data

analysis phase began. Through a comprehensive review of the

articles and extracted data, a total of 23 codes were identified, which

were then grouped into four overarching themes. These themes,

along with their associated codes and definitions, are presented in

Table 5.

The distribution of articles across the four themes provides

valuable insights into the progression and focus of deep learning

research over the years. By examining these themes through time,

we can observe shifts in the field’s priorities, emerging trends, and

areas that have garnered increased attention. Figure 4 illustrates

the temporal distribution of articles corresponding to each theme,

highlighting key periods of growth and evolution within the deep

learning domain.

Theme 1: strategic methodologies in
deep learning development

This theme focuses on the various strategies andmethodologies

used to develop and improve deep learning models. It encompasses

a broad range of topics, from algorithm design and framework

creation to optimization techniques aimed at advancing the field.

Of the 101 reviewed articles, 26 fell under this theme, highlighting

the critical role of structured approaches and innovative methods

in pushing deep learning forward.

Exemplar study 1

The first exemplar study presents a strategic approach to

enhancing the accuracy of deep learning models for non-stationary

time series prediction (Li et al., 2022). In this complex task,

traditional statistical methods and existing machine-learning

models often fall short. Li et al. (2022), propose a novel framework

that combines time series decomposition and different techniques

to extract more useful features, which are then utilized by a deep

learning model. This approach involves the application of first

order and second-order differencing to reduce volatility, followed

by the decomposition of the time series into periodic, trend,

and residual components. The framework employs a two-stage

training process, with a GRU network predicting the trend and

residual components, and an FCNnetwork refining the predictions.

The study’s findings indicate that this methodology significantly

outperforms traditional methods like ARIMA and other deep

learning models, achieving a 43% decrease in MSE, a 24% decrease

in RMSE, a 35% decrease in MAE, and a 3% increase in R-squared.

This research exemplifies the theme, with its innovative use of

algorithmic design, optimization techniques, and methodological

advancements. It contributes to the ongoing optimization of deep

learning models for complex, non-stationary time series data.

Exemplar study 2

In their study, Tabar and Halici (2016) address a significant

gap in the application of deep learning within brain-computer

interface (BCI) systems, an area in which traditional methods

have often fallen short. They propose an innovative solution

leveraging convolutional neural networks (CNNs) combined with

stacked autoencoders (SAEs) to enhance the classification of EEG

motor imagery signals—a critical component for improving BCI

performance. By introducing a novel data representation that

integrates time, frequency, and location information from EEG

signals, the researchers use a 1D CNN to capture activation

patterns, which are further refined by the SAE to boost classification

accuracy. Their approach outperforms previous state-of-the-art

methods, achieving a 9% improvement in kappa value on the

BCI Competition IV dataset 2b and superior accuracy on the
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TABLE 5 Themes, definitions, and codes for deep learning research.

Theme Definition Codes N

Strategic Methodologies in Deep Learning

Development

Topics encompassing various methodologies and strategic

approaches employed in the development and enhancement

of deep learning models. This includes the design and

implementation of algorithms, frameworks, optimization

techniques, and other methodological innovations that

advance the field.

Algorithm

Framework

Optimization

Techniques

Approach

Models

Methods

26

Practical Implementation and Evaluation of Deep

Learning Models

Topics related to the practical implementation and thorough

evaluation of deep learning models and systems. This theme

covers the processes and outcomes of applying these models,

including detailed analysis, assessment of results, and overall

effectiveness of the implemented solutions.

Implementation

Evaluation

Analysis

Results

31

Optimizing Efficiency and Effectiveness in Deep

Learning Systems

Topics related to the optimization of deep learning systems,

focusing on enhancing their overall efficiency and

effectiveness. This includes improving accuracy, speed,

scalability, performance, and training time. The theme also

covers detection capabilities and other improvements that

contribute to the robustness and reliability of these systems.

Accuracy

Speed

Scalability

Performance

Improvement Training time

Detection

11

Innovative Applications and Emerging Trends in

Deep Learning

Topics focused on the practical applications and innovative

uses of deep learning technologies. This includes the

exploration of new architecture, predictive capabilities, and

learning methods. The theme also highlights future

directions and emerging trends within the field.

Applications

Predictions

Architecture

Learning

Future

33
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Theme 4: Innovative

Applications and Emerging

Trends in Deep Learning

Theme 3: Optimizing Efficiency

and Effectiveness in Deep

Learning Systems

Theme 2: Practical

Implementation and Evaluation

of Deep Learning Models

Theme 1: Strategic

Methodologies in Deep Learning

Development

FIGURE 4

Distribution of articles by theme (2014–2024), highlighting trends and evolving research focus in deep learning.

BCI Competition II dataset III. Despite these promising results,

the study also highlights some limitations, including the small

training dataset and the limited number of electrodes, leaving room

for future research to explore larger datasets and more complex

CNN architectures. This study is a strong example of the theme,

demonstrating how innovative algorithmic approaches can push

the boundaries of BCI applications, particularly in enabling faster,

real-time classification for practical use (Tabar and Halici, 2016).

Research implications

Regarding the theme of strategic methodologies in deep

learning development, future research could focus on advancing

algorithm design to enhance model robustness and adaptability

across diverse application domains. For instance, exploring novel

optimization techniques, such as those employed in IoT-enabled

smart manufacturing, could uncover ways to improve data

processing pipelines and integrate domain-specific insights to

refine model accuracy and scalability (Shah et al., 2020). Similarly,

studies investigating the implementation of hybrid frameworks,

like gated recurrent units combined with fully connected networks,

could provide valuable strategies to mitigate issues such as

lag and overfitting in non-stationary time series predictions,

pushing the boundaries of temporal data modeling (Li et al.,

2022).

Another promising direction involves the development of

spectral-spatial feature extraction frameworks, exemplified in
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hyperspectral image classification, to address challenges related

to high-dimensional data while maintaining computational

efficiency (Zhong et al., 2017). Additionally, research into

architectural innovations for complex tasks, such as those

applied to engineering drawings, can inspire the creation

of targeted methodologies that effectively handle intricate

datasets and domain-specific requirements (Bhanbhro

et al., 2022). These investigations collectively deepen our

understanding of how structured approaches and innovative

strategies drive the evolution of deep learning methodologies,

ultimately fostering advancements in model performance and

application versatility.

Practice implications

Practical applications of the methodologies discussed under

the theme 1 suggest several promising directions for real-

world implementation. For instance, leveraging deep learning

frameworks for symbol detection in complex engineering

drawings can streamline processes in fields like architecture and

industrial design by automating the interpretation of intricate

diagrams (Bhanbhro et al., 2022). Similarly, advancements

in EEG motor imagery classification using deep learning

highlight potential applications in brain-computer interface

systems, which could improve accessibility for individuals

with disabilities through more accurate signal recognition

(Tabar and Halici, 2016).

The development of frameworks for non-stationary time series

prediction addresses challenges in dynamic environments such

as energy systems and weather forecasting, offering practical

solutions to lag and prediction accuracy issues (Li et al.,

2022). In smart manufacturing, deep learning paired with

effective feature engineering enables enhanced data processing

and decision-making, paving the way for IoT-driven production

systems that are more efficient and adaptive (Shah et al.,

2020). Finally, the spectral-spatial residual network designed

for hyperspectral image classification provides a foundation for

advancements in remote sensing and agricultural monitoring

by improving the analysis of high-dimensional data (Zhong

et al., 2017). These practical uses illustrate the transformative

potential of structured methodologies in deep learning, driving

innovation across diverse industries and addressing real-world

challenges effectively.

Theme 2: practical implementation
and evaluation of deep learning
models

This theme delves into the hands-on application and rigorous

assessment of deep learning models across various contexts. With

31 articles included, the focus is on how these models are

applied, the processes involved in applying them, and how their

performance is measured. The studies under this theme emphasize

the practical challenges and successes in implementing deep

learning systems, offering insights into the tools and techniques

used to evaluate their overall effectiveness.

Exemplar study 1

The study by Chen et al. (2014) introduces a novel

application of deep learning for hyperspectral data classification,

emphasizing the practical challenges of feature extraction and

classification accuracy. The authors argue that existing methods

fail to effectively extract deep, hierarchical features, leading to

less robust classification outcomes. By employing autoencoders

(AEs) and stacked autoencoders (SAEs) to learn deep spectral

features in an unsupervised manner, this study pioneers the

use of deep learning for hyperspectral data. The methodology

combines these deep spectral features with spatial-dominated

features, forming a joint spectral-spatial deep learning framework.

The key findings indicate that this deep learning-based approach

significantly outperforms traditional methods like support vector

machines (SVMs), particularly when incorporating both spectral

and spatial information. However, the study also notes that

the deep learning approach is computationally expensive and

time-consuming, which may limit its practical applications. The

authors recommend further exploration of this joint framework,

highlighting its potential to advance the field of hyperspectral

data classification and opening new avenues for research (Chen

et al., 2014). This study exemplifies the effective application and

thorough evaluation of deep learning techniques in a complex

real-world scenario.

Exemplar study 2

The Cha et al. (2017) study addresses the challenges

associated with traditional methods of structural health

monitoring, particularly for large-scale civil infrastructure,

where environmental effects and uncertainties can complicate

detection. The authors propose a vision-based method using deep

learning, specifically convolutional neural networks (CNNs), to

detect cracks in concrete structures, providing a more robust and

adaptable solution compared to conventional image processing

techniques. The methodology involves collecting a dataset of 332

raw concrete surface images under various conditions, annotating

them as “crack” or “intact,” and training a CNN classifier on a

cropped image database. The trained CNN, coupled with a sliding

window technique, demonstrated high accuracy (over 97%) in

detecting cracks, even under challenging conditions such as strong

lighting, shadows, and blur. However, the study also highlights

limitations, such as the inability to detect internal structural

features and the significant amount of training data required.

The authors recommend expanding this approach to detect other

types of structural damage and integrating it with autonomous

drones for more comprehensive monitoring (Cha et al., 2017).

This research showcases a practical application of CNNs in

civil engineering, where thorough evaluation and adaptation of

deep learning methods significantly enhance the detection of

structural defects.
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Research implications

Future research should explore the integration of hybrid

evaluation frameworks that merge explainability with

high-performance deep learning techniques, addressing

challenges in understanding model decisions and scalability.

Studies like Gulmez et al. (2024) highlight the potential of

Explainable Artificial Intelligence (XAI) in enhancing trust

and interpretability in deep learning applications. Similarly,

He et al. (2017) demonstrate the need for adaptive models

capable of addressing diverse attack scenarios in real-time.

Expanding these methodologies to broader contexts, such

as environmental monitoring or transportation systems,

could help address domain-specific challenges like variable

data quality and high computational demands. Additionally,

integrating dynamic learning mechanisms, inspired by

Chen et al. (2014), may enable more robust feature

extraction and improve performance under limited training

data scenarios.

Practice implications

From a practical perspective, tools leveraging convolutional

neural networks (CNNs) for specific tasks, such as real-time fault

detection or damage assessment, can transform operational

workflows. For instance, Cha et al. (2017) illustrates the

effectiveness of CNNs in monitoring infrastructure, achieving

high accuracy under diverse environmental conditions. XRan’s

(Gulmez et al., 2024) explainable framework offers actionable

insights into ransomware detection, potentially enhancing

cybersecurity defenses through transparent decision-making

processes. Moreover, the methods for spatio-temporal data

analysis, as reviewed by Wang C. et al. (2022); Wang S. et al.

(2022), highlight scalable approaches for urban planning and

public safety. Tailoring these applications to address domain-

specific needs, such as predictive maintenance in energy

grids or real-time alerts in transportation systems, could

significantly advance the adoption of deep learning models in

critical sectors.

Theme 3: optimizing e�ciency and
e�ectiveness in deep learning systems

Eleven articles fall under the theme of innovative applications

and emerging trends in deep learning, emphasizing their

transformative role across industries. From advancements

in fault diagnosis, traffic engineering, and cybersecurity to

innovations in feature engineering and overfitting mitigation, these

works demonstrate how deep learning optimizes processes and

addresses complex challenges. By solving problems in areas like

financial fraud detection, communication systems, and industrial

applications, the theme underscores deep learning’s growing

influence and its potential to shape the future of technology

and industry.

Exemplar study 1

The study published in 2020 by Zhai and Qiao, addresses

the critical issue of prolonged training times in deep learning

models, particularly within manufacturing fault diagnosis. The

authors introduce an innovative adaptive learning rate strategy that

individually adjusts weight and bias parameters, enhancing both

training efficiency and classification accuracy. Leveraging a Deep

Belief Network (DBN) and stochastic gradient descent (SGD), this

strategy notably reduces training time and reconstruction error,

while also boosting the model’s fault classification performance.

Specifically, the adaptive learning rate for weights accelerates

convergence, and the power exponential learning rate for

bias improves classification accuracy. While these advances are

promising, the authors suggest that the approach may require

modification for low-dimensional datasets and advocate for further

research into broader practical applications. This study exemplifies

the theme by offering a concrete method to improve both the speed

and accuracy of deep learning models, particularly in industrial

settings where efficiency is critical.

Exemplar study 2

Elkhatib et al.’s (2024) study presents a cutting-edge approach

to signal modulation classification, a challenge often encountered

in telecommunications. The study proposes a hybrid deep learning

architecture combining Convolutional LSTM (ConvLSTM) and

Transformer-block neural networks, enabling the model to

directly process raw signals without denoising. This approach

significantly improves classification accuracy for signals across

both low and high Signal-to-Noise Ratio (SNR) conditions,

achieving 66% accuracy for low SNR signals and 93.5% for

high SNR signals. Furthermore, the adaptive weighted focal

loss function introduced in the study addresses class imbalance

and underflow issues, optimizing the classification process even

in challenging conditions. Although the study demonstrates

substantial improvements, the authors recognize that the model’s

performance could be further refined, particularly for noisy

signals. This research is a clear representation of the theme

showcasing how innovative deep learning architectures can bolster

both the accuracy and robustness of complex classification tasks

in real-world telecommunications scenarios (Elkhatib et al.,

2024).

Research implications

Future research in optimizing efficiency and effectiveness

in deep learning systems can explore hybrid methodologies

and adaptive strategies for performance enhancement. For

instance, Zhai and Qiao (2020) emphasize the importance of

adaptive learning rate strategies in reducing training time and

improving model accuracy, suggesting the need to investigate

parameter-specific adjustments across diverse applications.

Similarly, Chang et al. (2022) demonstrate the potential of

feature engineering in reducing computational complexity while
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maintaining high performance in adversarial environments.

Exploring the integration of these approaches with automated

feature selection techniques, as highlighted by Lee et al. (2023) for

carbon emissions prediction, could lead to more generalizable and

efficient models. Furthermore, the development of combinatorial

techniques, such as Elkhatib et al.’s (2024) transformer-based

modulation classification, opens avenues for cross-domain

applications, particularly in scenarios requiring high accuracy

under noisy conditions.

Practice implications

In practice, optimizing deep learning systems can significantly

advance real-world applications by improving process efficiency

and decision-making. For example, Dinh et al. (2022) highlight

the effectiveness of combining feature engineering with deep

learning for robust stereo vision in adverse driving conditions,

which could revolutionize autonomous vehicle navigation.

Similarly, Chang et al. (2022) propose feature-engineered

reinforcement learning for anti-jamming strategies, paving

the way for resilient communication systems in hostile

environments. These innovations can also extend to industrial

fault diagnosis, as demonstrated by Zhai and Qiao (2020),

who present adaptive learning strategies that enhance model

responsiveness and accuracy. Leveraging such advancements in

sectors like energy management, as noted in Lee et al.’s (2023)

work on carbon emissions prediction, could lead to significant

environmental and operational benefits. Lastly, applying dynamic

optimization techniques, like Elkhatib et al.’s (2024) approach

to signal modulation classification, could enhance wireless

communication networks, addressing challenges in signal quality

and bandwidth allocation.

Theme 4: innovative applications and
emerging trends in deep learning

Thirty-three articles were categorized under the theme

“Innovative Applications and Emerging Trends in Deep Learning.”

These articles explore a variety of practical applications of deep

learning across different fields, including automated systems,

molecular engineering, and product innovation. They also

highlight advancements in deep reinforcement learning for

optimization and traffic engineering, as well as innovations in

feature engineering and deep learning frameworks for specific

challenges in engineering and technology.

Exemplar study 1

The study published by Nguyen et al. (2023), offers a

comprehensive review of how deep learning (DL) and deep

reinforcement learning (DRL) are shaping the future of 6G wireless

networks. The paper explores various DL and DRL techniques,

such as convolutional neural networks (CNNs), recurrent neural

networks (RNNs), graph neural networks (GNNs), and deep Q-

networks (DQN), and how they are applied to solve critical

challenges in 6G networks. These challenges include resource

management, spectrum optimization, mobility management, and

security. While primarily reviewing current applications, the

study emphasizes the potential of these technologies to meet the

demanding requirements of 6G systems, such as ultra-low latency,

high reliability, and energy efficiency. The authors underscore

the successful application of DL and DRL in tasks like resource

allocation and channel prediction and propose further exploration

in areas like energy-efficient model training, federated learning,

and multi-agent DRL frameworks. This research exemplifies the

theme by illustrating how advanced deep learning techniques are

being tailored to the evolving demands of next-generation wireless

communication systems, paving the way for continued innovation

in the field (Nguyen et al., 2023).

Exemplar study 2

The study published in 2024 by Tsinganos et al., introduces

a groundbreaking system designed to detect and mitigate chat-

based social engineering (CSE) attacks using deep learning.

The study highlights that traditional cybersecurity measures are

insufficient against the increasingly sophisticated manipulation

tactics deployed in social engineering, which exploit human

psychology and behavior. To address this, the authors developed

CSE-ARS, a system that utilizes a late fusion strategy to combine the

outputs of several specialized deep learning models, each focused

on recognizing specific enablers of social engineering attacks, such

as information leakage, personality traits, dialogue acts, persuasion

techniques, and persistent behavior. By integrating insights from

social psychology and personality theory, including Cialdini’s

principles of persuasion and the Big Five Personality Traits, CSE-

ARS significantly improves the detection and mitigation of CSE

attacks. The study finds that the system outperforms individual

models by using multimodal fusion, making it a robust defense

against these threats. However, the authors acknowledge certain

limitations, such as the lack of deepfake detection and advanced

multimedia processing capabilities, which could further enhance its

effectiveness. This research exemplifies the theme by showcasing

how interdisciplinary approaches combining deep learning with

psychological theory can address emerging cybersecurity threats,

offering a more comprehensive and resilient defense mechanism

(Tsinganos et al., 2024).

Research implications

Future research should focus on interdisciplinary

advancements that combine domain-specific challenges with

emerging deep learning trends. For example, Nguyen et al. (2023)

highlight the transformative potential of deep reinforcement

learning (DRL) in optimizing 6G network architectures, while

Chang and Zhu (2024) demonstrate how deep learning frameworks

can address the complexities of defect and strain engineering in
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materials science. Investigating the cross-application of such

techniques to other domains, such as disaster management or

precision agriculture, could yield innovative methodologies.

Additionally, the integration of late fusion strategies for

multimodal data, as applied by Tsinganos et al. (2024) in social

engineering attack detection, suggests that similar approaches

could be tailored to fields like medical diagnostics or smart city

infrastructure. Further exploration into these methodologies could

refine their adaptability and robustness, enabling better scalability

across diverse fields.

Practice implications

From a practical perspective, the methodologies discussed in

these studies could revolutionize real-world applications. Jin et al.

(2023) demonstrate how deep learning-driven computer vision

frameworks can significantly improve post-earthquake structural

assessments, offering faster and more accurate damage evaluations.

Similarly, Sujatha et al. (2023) emphasize the efficacy of DRL for

network intrusion detection, suggesting that such systems could

enhance cybersecurity protocols in dynamic environments. These

innovations also extend to fields like telecommunications, where

Nguyen et al. (2023) propose DRL-enabled resource allocation

for 6G networks. Practical applications in materials science,

such as the strain and defect engineering frameworks developed

by Chang and Zhu (2024), could expedite the development of

advanced materials for industrial use. By adopting these advanced

tools and techniques, industries can address specific operational

challenges, enhance efficiency, and foster technological growth in

critical areas.

Pedagogical implications

The thematic findings of this review offer valuable insights

for instructional design in engineering and computer science

education. For instance, the theme on Strategic Methodologies in

Deep Learning Development can inform the structure of project-

based learning modules, where students design and optimize

algorithms or frameworks to solve real-world problems. The

Practical Implementation and Evaluation theme supports the

integration of case-based teaching strategies, enabling students to

critically assess the effectiveness of deep learning solutions across

domains such as infrastructure, cybersecurity, and urban planning.

Additionally, content from the Efficiency and Optimization theme

can be leveraged to teach model tuning, system performance

analysis, and resource-aware computing—key skills in advanced

AI curricula. Finally, the Emerging Applications theme could

inspire cross-disciplinary capstone projects, where students explore

cutting-edge applications of deep learning in fields ranging from

materials science to wireless networks. Incorporating these themes

into instructional strategies fosters applied learning, encourages

interdisciplinary thinking, and helps students bridge theory with

industry-relevant practice.

Conclusion

This systematic literature review provides a comprehensive

analysis of the current applications, trends, research gaps, and

future directions of deep learning across engineering disciplines.

By examining 101 peer-reviewed articles published between 2014

and 2024, the study identifies key disciplines, methodologies, and

thematic areas where deep learning is making significant impacts.

The findings reveal that deep learning is extensively applied across

various engineering disciplines, with civil engineering (21.15%)

being the most represented, followed by electrical engineering

(14.42%) and mechanical engineering (11.54%). This widespread

adoption underscores the versatility and transformative potential of

deep learning techniques in solving complex engineering problems.

Methodologically, the reviewed studies predominantly focus on

framework and algorithm design (21.36%), model training and

optimization (12.62%), and data collection and preprocessing

(10.68%). These approaches highlight the ongoing efforts to

enhance model performance, efficiency, and applicability in real-

world scenarios.

The thematic analysis uncovers four key themes:

1. Strategic Methodologies in Deep Learning Development:

Emphasizes innovative strategies for developing and improving

deep learning models. Exemplar studies demonstrate how

novel frameworks, and algorithmic approaches can significantly

enhance prediction accuracy and classification performance in

complex tasks.

2. Practical Implementation and Evaluation of Deep Learning

Models: Focuses on the hands-on application and rigorous

assessment of deep learning models. Studies under this

theme showcase successful implementations in areas like

hyperspectral data classification and structural health

monitoring, highlighting both the potential and challenges

of applying deep learning in practice.

3. Optimizing Efficiency and Effectiveness in Deep Learning Systems:

Addresses the need for balancing efficiency and effectiveness

in deep learning applications. Exemplary research illustrates

how adaptive strategies and hybrid architectures can reduce

training times and improve accuracy, particularly in industrial

and telecommunications contexts.

4. Innovative Applications and Emerging Trends in Deep Learning:

Explores the frontier of deep learning applications and future

directions. Studies in this theme reveal how deep learning is

being leveraged to address emerging challenges in 6G networks

and cybersecurity, demonstrating the field’s adaptability and

potential for interdisciplinary integration.

Implications, limitations, and future
directions

The synthesis of the reviewed literature underscores the

transformative impact of deep learning on engineering research.

The integration of advanced deep learning methodologies

offers significant potential for solving complex engineering
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TABLE 6 Summary of research gaps and suggested future directions in deep learning for engineering contexts.

Theme Identified research gaps Suggested research directions

Strategic Methodologies in Deep Learning

Development

Limited robustness across application domains;

lack of scalable strategies for complex,

high-dimensional, or temporal data.

Develop hybrid algorithmic frameworks (e.g., GRU-FCN

combinations), spectral-spatial feature extraction

techniques, and task-specific architectures to enhance model

generalizability. These advancements can inform

computational thinking and model-building skills in

advanced AI courses.

Practical Implementation and Evaluation of DL

Models

Inadequate integration of interpretability and

performance; limited adaptability in dynamic or

uncertain environments.

Design evaluation frameworks combining explainable AI

and real-time performance analysis; extend adaptive learning

to areas such as infrastructure and environmental systems.

These findings may support the creation of instructional case

studies on real-world deployment challenges.

Optimizing Efficiency and Effectiveness in DL

Systems

High computational cost and limited adaptability

to adversarial inputs or system constraints.

Investigate automated feature engineering, dynamic learning

rate strategies, and optimization techniques for time- and

resource-constrained settings. These research paths can

enhance teaching modules focused on efficient and ethical

AI design.

Innovative Applications and Emerging Trends in

DL

Underutilization of DL in emerging

interdisciplinary domains; lack of multimodal and

fusion-based learning strategies.

Apply deep reinforcement learning and late fusion

approaches to domains such as disaster management, smart

cities, and healthcare. These innovations may inspire

cross-disciplinary curriculum development and capstone

project opportunities.

problems more effectively. Researchers are encouraged to focus on

developing robust and efficient models that can handle real-world

challenges such as data variability, computational constraints, and

the need for scalability.

Persistent gaps such as scalability, interpretability, and real-

world implementation challenges remain. These are often due to

computational limitations, the black-box nature of complexDEEP

LEARNINGmodels, lack of interpretability tools, and difficulties in

transferring research models to diverse engineering environments.

The absence of standardized benchmarking and domain-specific

constraints further complicates these issues, underscoring the

need for collaborative interdisciplinary research to overcome

these barriers.

The importance of interdisciplinary approaches is evident,

suggesting that combining deep learning with insights from other

fields can lead to innovative solutions and new applications. By

addressing these aspects, future research can contribute to the

advancement of engineering knowledge, fostering models that are

not only theoretically sound but also practically viable across

diverse engineering domains.

For practitioners, the findings highlight the considerable

benefits of adopting deep learning techniques in engineering

applications. Implementing these advanced models can lead to

improvements in accuracy, efficiency, and overall performance

in tasks ranging from predictive maintenance to resource

optimization and cybersecurity. The versatility of deep learning

allows engineers to tackle complex problems that were previously

difficult to address with traditional methods. However, practical

adoption requires awareness of potential challenges, such as

the need for substantial computational resources and high-

quality data. By embracing deep learning technologies, engineering

professionals can enhance innovation, drive operational excellence,

and maintain a competitive edge in an increasingly technology-

driven landscape.

Limitations

While this review offers a comprehensive overview, it is

not without limitations. While the exclusion of books and

dissertations may omit some theoretical frameworks, this decision

was made to prioritize peer-reviewed studies with clearly

documented methodologies and empirical evidence. Similarly,

while pre-2014 research may contain foundational work, the

focus on post-2014 publications ensure alignment with current

deep learning technologies. Also, the sampled studies were not

assessed on their quality, and this might have introduced some

bias in our synthesis. Future studies are required to assess

the quality of the studies using standard frameworks such as

GRADE-based evaluation.

Additionally, the rapid evolution of deep learning technologies

means that new developments may quickly emerge beyond

the scope of this review. Furthermore, this review does not

include a formal bibliometric analysis, such impact factor metrics,

nor does it apply a systematic quality assessment framework

to evaluate the methodological rigor of the included studies.

Incorporating such analyses in future research could provide more

nuanced insights into the influence, credibility, and scholarly

impact of deep learning applications in engineering. Finally,

this review is limited to studies published in English, which

may have introduced regional and language bias by excluding

potentially relevant research conducted in other languages

or regions.

Future directions

Future research should consider expanding the scope to

include a broader range of publications and exploring the

impact of emerging technologies such as explainable AI, federated
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learning, and quantum computing on deep learning applications

in engineering. There is also a need for longitudinal studies

to assess the long-term effectiveness and sustainability of

deep learning solutions in engineering practice. While this

review focused on established deep learning applications within

engineering, future studies may consider expanding the scope to

include emerging areas such as model interpretability, federated

learning, and graph neural networks, which are poised to

play a significant role in advancing the field. To address

challenges related to reproducibility and scalability, future research

should also focus on establishing collaborative initiatives and

standardized benchmarking practices across engineering domains

to ensure consistency, transparency, and wider applicability of deep

learning models.

Since this review focuses on the applications of deep

learning in engineering domains, most of the sampled studies

did not explicitly address pedagogical strategies or educational

frameworks. As such, this paper does not evaluate the effectiveness

of deep learning in enhancing student learning outcomes

compared to traditional methods. Future studies are encouraged

to explore how deep learning can be integrated into engineering

education through real-world instructional tools such as AI-driven

tutoring systems, adaptive learning platforms, and simulations.

In doing so, scholars should consider applying pedagogical

models like Bloom’s Taxonomy and constructivist learning theory

to evaluate the impact of deep learning on student learning.

Moreover, as DL-based tools become more common in educational

settings, ethical concerns such as bias in automated assessment,

transparency in feedback, and the need for faculty training

must be addressed. These considerations are critical to ensuring

fair, responsible, and effective implementation of AI-driven

educational technologies.

To synthesize the thematic findings and guide future

work, Table 6 outlines key research gaps and corresponding

directions across the four identified themes. Each theme

reflects distinct but interconnected challenges in deep learning

research, from methodological development to real-world

application and optimization. The suggested directions

highlight opportunities for advancing model robustness,

interpretability, efficiency, and interdisciplinary integration.

Additionally, these insights can inform curriculum design,

instructional case studies, and student-led projects, reinforcing

the educational relevance of emerging deep learning research in

engineering contexts.

In conclusion, deep learning is profoundly influencing

engineering research and practice, offering innovative solutions to

complex problems across multiple disciplines. The identified

trends and themes reflect a vibrant and evolving field,

characterized by methodological advancements, practical

implementations, optimization efforts, and emerging applications.

By synthesizing current knowledge and highlighting future

directions, this study contributes to a deeper understanding

of deep learning’s role in engineering and serves as a

valuable resource for researchers and practitioners aiming

to leverage these technologies for continued innovation

and improvement.
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