
TYPE Original Research

PUBLISHED 16 June 2025

DOI 10.3389/feduc.2025.1585602

OPEN ACCESS

EDITED BY

Marko Hölbl,

University of Maribor, Slovenia

REVIEWED BY

Eila Burns,

JAMK University of Applied Sciences, Finland

Na Li,

Central China Normal University, China

*CORRESPONDENCE

Cristian Vidal-Silva

cvidal@utalca.cl

†These authors have contributed equally to

this work

RECEIVED 28 February 2025

ACCEPTED 14 May 2025

PUBLISHED 16 June 2025

CITATION

Castillo-Salvatierra L, Cárdenas-Cobo J, de la

Fuente-Burdiles C and Vidal-Silva C (2025)

Programming competencies in university

students through game development.

Front. Educ. 10:1585602.

doi: 10.3389/feduc.2025.1585602

COPYRIGHT

© 2025 Castillo-Salvatierra, Cárdenas-Cobo,

de la Fuente-Burdiles and Vidal-Silva. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Programming competencies in
university students through game
development

Luis Castillo-Salvatierra1,2†, Jesennia Cárdenas-Cobo2†,

Claudia de la Fuente-Burdiles3 and Cristian Vidal-Silva3*†

1Departamento Tecnologías de la Información y la Comunicación, Universidad Estatal de Milagro,

Milagro, Guayas, Ecuador, 2Facultad Ciencias e Ingeniería, Universidad Estatal de Milagro, Milagro,

Guayas, Ecuador, 3Departamento de Visualización Interactiva y Realidad Virtual, Universidad de Talca,

Talca, Chile

Introduction: The growing importance of programming in higher education

requires innovative approaches to facilitate learning. Video games have emerged

as an engaging tool that enhances problem-solving skills and logical thinking.

Methodology: This study examines the e�ectiveness of Unity Visual Scripting

in fostering programming competencies among university students. A project-

based methodology was employed in the course “Physics for Videogames”

during the third semester of the Engineering in Video Game Development and

Virtual Reality program at the Universidad de Talca, Chile.

Results: Through game development, students overcame challenges associated

with text-based programming. The results indicate significant improvements in

students’ computational thinking, motivation, and collaboration.

Discussion: By reducing syntactical barriers, Visual Scripting promotes an

accessible learning experience that supports the transition to advanced

programming concepts. These findings suggest that integrating game

development into university curricula enhances digital literacy and fosters

an inclusive programming education environment.

KEYWORDS

video games, higher education, programming, unity, visual scripting

1 Introduction

The development of programming skills is a fundamental competence in higher

education, fostering logical thinking, problem-solving, and creativity among students

(Wing, 2006). However, programming education has faced challenges due to the

complexity of text-based languages, leading to high dropout rates and decreased

motivation among beginners (Guzdial, 2019).

Programming has become a crucial skill across various disciplines beyond computer

science (Grover and Pea, 2013; Denning, 2017). Its applicability in fields such as

biomedicine, economics, engineering, and social sciences highlights its transdisciplinary

nature. In higher education, teaching programming not only enhances computational

thinking but also strengthens analytical and creative abilities essential for problem-

solving in diverse knowledge domains (Resnick et al., 2009). The incorporation of

innovative approaches, such as block-based programming through Visual Scripting in

Unity, represents an effective strategy to make these concepts more accessible and

encourage students to explore programming’s potential (Strodick and Schattkowsky, 2024).

The use of video games as an educational tool has proven effective in facilitating

programming learning, particularly in environments that reduce the cognitive load

of textual syntax (Resnick et al., 2009). Unity Visual Scripting allows programming

through visual blocks, eliminating syntactical barriers and enabling students to focus on

programming logic and game development (Strodick and Schattkowsky, 2024).

Frontiers in Education 01 frontiersin.org

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2025.1585602
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2025.1585602&domain=pdf&date_stamp=2025-06-16
mailto:cvidal@utalca.cl
https://doi.org/10.3389/feduc.2025.1585602
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feduc.2025.1585602/full
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Castillo-Salvatierra et al. 10.3389/feduc.2025.1585602

To evaluate the effectiveness of Visual Scripting in higher

education, this study poses the following research questions: (1)

To what extent does Visual Scripting improve programming skills

in university students? (2) How does Visual Scripting influence

student motivation and collaboration in programming education?

(3) Can Visual Scripting serve as a bridge for students to transition

to more advanced programming languages?

Figure 1 illustrates an example of a simple program in Unity

Visual Scripting. Figure 1a shows the “Hello World” program

implemented using a node-based structure, while part Figure 1b

displays the corresponding output. This example highlights the

accessibility of visual scripting, which reduces syntax-related

errors and enhances beginner-friendly programming experiences

(Miranda et al., 2021).

Table 1 compares traditional text-based programming and

Unity Visual Scripting. The table highlights key differences, such

as the reduced syntax complexity and debugging requirements in

visual scripting, making it a more accessible approach for novice

programmers (Zhang et al., 2022).

2 Theoretical framework

The development of computational thinking and programming

skills has gained increasing importance in higher education due

to its relevance in various scientific and technical disciplines

(Wing, 2006; Ogegbo and Ramnarain, 2021). Computational

thinking fosters problem-solving abilities, algorithmic reasoning,

and abstraction skills, essential in learning programming (Denning,

2017; Arslantaş, 2024).

However, teaching programming has traditionally faced

significant challenges, primarily due to the complexity of text-based

languages (Sun et al., 2024). High dropout rates among students in

introductory programming courses have been attributed to syntax

errors and the steep learning curve associated with traditional

programming approaches (Guzdial, 2019; Raj and Sharma, 2023).

In response, alternative methodologies such as block-based

FIGURE 1

Example of “Hello World” using Unity Visual Scripting. (a) Code for “Hello World” in Unity Visual Scripting. (b) Execution and output of “Hello World” in

Unity Visual Scripting.

programming and visual scripting have been introduced tomitigate

these challenges (Resnick et al., 2009; Vidal-Silva et al., 2024;

Vinueza-Morales et al., 2025).

Visual scripting tools, such as Unity Visual Scripting, enable

students to develop interactive applications without the need for

extensive coding experience (Cárdenas-Cobo et al., 2024; Rojas-

Valdés et al., 2022; Tupac-Yupanqui et al., 2022). Research suggests

that visual programming environments reduce cognitive load and

allow students to focus on understanding programming logic rather

than syntax (Strodick and Schattkowsky, 2024). Additionally,

these environments facilitate experimentation and foster creativity,

making programming more accessible for beginners (Miranda et

al., 2021).

Game-based learning has been identified as an effective strategy

to enhance programming education (Zhao et al., 2022). Video

game development provides a structured and engaging context

where students apply computational concepts while improving

problem-solving and teamwork skills (Martín-Hernández et al.,

2021; Laakso et al., 2021). Furthermore, gamification techniques

have increased student motivation and retention of programming

concepts (Montes et al., 2021).

Studies have also highlighted the importance of integrating

visual scripting tools into university curricula as a transitional

approach toward text-based programming (Noone and Mooney,

2018). By lowering entry barriers, visual scripting encourages

students to develop computational thinking and prepares them for

more advanced programming paradigms (Weintrop andWilensky,

2019).

Building upon these practical insights, this study anchors

its approach in established educational theories that support

the use of visual scripting in programming education. Papert’s

constructionism theory (Papert, 1980) emphasizes that meaningful

learning occurs when learners actively construct tangible products,

a process inherently supported by visual scripting environments.

Furthermore, Vygotsky’s (1978) theory of the Zone of Proximal

Development (ZPD) highlights the role of scaffolding in enabling

learners to engage with complex concepts progressively. Visual

Frontiers in Education 02 frontiersin.org

https://doi.org/10.3389/feduc.2025.1585602
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Castillo-Salvatierra et al. 10.3389/feduc.2025.1585602

scripting simplifies programming tasks, aligning with this

scaffolding approach by allowing early access to computational

concepts. Finally, as Wing (2006) posits, computational thinking

is a fundamental competency in contemporary education.

Visual scripting facilitates the development of computational

thinking by enabling students to focus on logical problem-

solving and algorithmic reasoning without being hindered by

syntax complexities.

The data presented in Figure 2 and Table 2 highlight the

increasing adoption of visual programming tools in educational

settings. The figure illustrates a steady growth in the usage of block-

based and visual scripting tools, reflecting a shift in pedagogical

approaches toward more intuitive and accessible programming

environments. This trend aligns with recent studies emphasizing

the importance of reducing syntactic barriers to enhance student

engagement and learning outcomes (Montes et al., 2021). The

comparative analysis in Table 2 further reinforces this notion,

demonstrating that visual scripting tools strike a balance between

syntax complexity and engagement. While traditional text-based

programming remains essential for advanced development, visual

TABLE 1 Comparison of text-based programming and visual scripting.

Feature Text-based
programming

Visual
scripting

Syntax complexity High Low

Learning curve Steep Moderate

Debugging requirement High Low

Accessibility for beginners Low High

Application scope Advanced Introductory/intermediate

scripting provides a valuable entry point for beginners, offering

high engagement and retention rates. These findings support the

argument for integrating visual scripting tools like Unity Visual

Scripting into university curricula as a bridge towardmore complex

programming paradigms (Weintrop and Wilensky, 2019).

3 Materials and methods

Understanding the impact of visual scripting in programming

education requires a well-structured methodology. This section

presents the study’s design, participants, resources, experimental

process, and evaluation techniques.

3.1 Experimental process

The study followed a quasi-experimental design over a six-

week period. Participants were randomly assigned to two groups:

an experimental group (using Unity Visual Scripting) and a control

group (using traditional C# programming).

The experimental process involved the following stages:

• Pretest: all students completed an initial test assessing baseline

programming knowledge and problem-solving skills.

• Intervention: both groups completed identical programming

assignments (object creation, force application, collision

simulation). The experimental group implemented these

tasks using Unity Visual Scripting, while the control group

developed their solutions using C#.

• Posttest: after the intervention period, students completed a

final test evaluating their programming competencies.

FIGURE 2

Trends in the adoption of visual programming tools from 2015 to 2025.

Frontiers in Education 03 frontiersin.org

https://doi.org/10.3389/feduc.2025.1585602
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Castillo-Salvatierra et al. 10.3389/feduc.2025.1585602

The independent variable was the type of programming

environment (Visual Scripting vs. Text-Based). Dependent

variables included task completion time, project performance, and

survey-based measures of engagement and motivation.

The assignments were designed to be equivalent in complexity

across both groups to ensure a fair comparison. Weekly

progress tracking and post-intervention surveys were used to

evaluate outcomes.

3.2 Study design

A quasi-experimental design was implemented in the Physics

for Video Games course at Universidad de Talca, Chile (Ingeniería

en Desarrollo de Videojuegos y Realidad Virtual, 2025). The

study divided students into two groups: an experimental group

using Unity Visual Scripting and a control group using traditional

text-based programming with C#. Both groups received identical

assignments, ensuring direct comparison of their learning progress.

3.3 Participants

The study involved 40 undergraduate students in the early

semesters of their Engineering in Video Game Development and

Virtual Reality program. The division of students into groups

ensured that prior programming knowledge did not influence the

results, maintaining a fair evaluation of visual scripting as an

entry-level tool.

TABLE 2 Comparison of di�erent programming learning approaches.

Learning
approach

Syntax
complexity

Engagement Retention
rate

Text-based

programming

High Moderate Low

Block-based

programming

Low High Moderate

Visual scripting

(unity)

Moderate Very high High

FIGURE 3

Average time to complete programming tasks by group.

3.4 Software and hardware resources

The experimental group worked with Unity Visual Scripting

(Unity - Discussions, 2025), an intuitive, node-based development

tool. The control group used C# with MonoGame, requiring

direct text-based coding. Both groups utilized similar computer

specifications: Intel i5 processors, 8GB RAM, and dedicated

graphics cards, ensuring uniform performance conditions.

3.5 Evaluation metrics

Three key evaluation metrics were used:

• Knowledge improvement: measured via pre-tests and post-

tests covering programming logic and problem-solving.

• Project performance: assessed based on the complexity,

correctness, and functionality of student-developed game

projects.

• Engagement and perception: evaluated using surveys assessing

students’ motivation, perceived difficulty, and confidence.

Figure 3 highlights the benefits of Unity Visual Scripting

in beginner-level programming education. The experimental

group showed greater improvement in task efficiency and higher

engagement levels compared to the control group, reinforcing the

effectiveness of visual scripting as an entry point into programming

education (Umezawa et al., 2021; Marín-Lora and Chover, 2025).

4 Results

This section presents the results of the study, comparing the

effectiveness of Unity Visual Scripting against traditional text-based

programming methods. The findings include student performance

analysis, engagement levels, and trends in learning progress.

4.1 Performance analysis

The pre-test and post-test assessments demonstrated

significant learning improvements in both groups. Students

in the experimental group (Unity Visual Scripting) achieved an

average score improvement of 35%, while those in the control

group (text-based C# programming) improved by 20%.

Notably, the relative improvement of the experimental

group was ∼75% higher compared to the control group. This

suggests that visual scripting substantially enhanced students’

ability to understand and apply programming concepts within

a shorter learning curve. The reduction of syntax complexity

likely contributed to faster mastery of core computational skills,

aligning with the scaffolding principles of Vygotsky’s Zone of

Proximal Development.

Moreover, 85% of the experimental group students successfully

completed all assigned programming projects, compared to 70%

in the control group. Detailed task analysis revealed that the

assignments involving force application and collision simulation

exhibited the greatest differences in completion times, favoring

Frontiers in Education 04 frontiersin.org

https://doi.org/10.3389/feduc.2025.1585602
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Castillo-Salvatierra et al. 10.3389/feduc.2025.1585602

TABLE 3 Comparison of pre-test and post-test scores between

experimental and control groups.

Group Pre-test
score (%)

Post-test
score (%)

Visual scripting (experimental) 45% 80%

Text-based programming (control) 50% 70%

the experimental group. For instance, the experimental group

completed collision simulation tasks in 30min on average, while the

control group required 50min. Table 3 summarizes the pre-test and

post-test scores obtained by both groups. These results demonstrate

the relative advantage of Unity Visual Scripting in both conceptual

understanding and execution efficiency.

These performance differences indicate that students using

Unity Visual Scripting not only achieved better learning outcomes

but also demonstrated higher efficiency in task execution.

4.2 Student engagement and perception

Survey data collected at the end of the intervention showed

that students using Visual Scripting reported higher levels of

engagement, motivation, and perceived ease of learning compared

to their counterparts. Specifically, 90% of the experimental group

expressed satisfaction with the learning approach, while only 65%

of the control group did. As shown in Table 4, students using Unity

Visual Scripting reported significantly higher levels of satisfaction,

motivation, and confidence compared to those in the control group,

reinforcing the perceived benefits of a visual learning environment.

Furthermore, students in the experimental group indicated a

higher level of confidence in their programming abilities post-

intervention. These perceptions are consistent with constructionist

learning theories, where active creation and reduction of cognitive

load enhance learner engagement and motivation.

4.3 Trend analysis of learning progress

Figure 4 illustrates the trend analysis of performance

improvement over the six-week study period. The experimental

group exhibited a more consistent and steeper growth trend in

programming competency compared to the control group.

In the experimental group, performance improvement rose

steadily each week, reaching 35% by the end of the intervention.

In contrast, the control group’s improvement plateaued around

20%. This indicates that visual scripting supported more rapid and

sustained learning progression.

The steady weekly improvements in the experimental group

underscore the potential of visual scripting as an effective

transitional pedagogical tool, preparing students for subsequent

engagement with text-based programming environments.

Overall, these findings reinforce the educational value of visual

scripting tools in enhancing programming skills, fostering higher

engagement, and facilitating smoother learning curves in early

programming education.

FIGURE 4

Trend analysis of performance improvement over six weeks.

TABLE 4 Comparison of student engagement and perception.

Aspect Experimental
group (%
positive)

Control group
(% positive)

Satisfaction 90% 65%

Motivation 88% 62%

Confidence in programming 85% 60%

Table 5 summarizes the key learning outcomes and student

perceptions observed in both groups. The data consistently

show that the Visual Scripting group outperformed the Text-

Based Programming group across all measured dimensions,

reinforcing the effectiveness of visual scripting in enhancing

programming education.

5 Discussion

The findings of this study highlight the advantages of using

Unity Visual Scripting in introductory programming education.

This section critically discusses the implications of the results,

situating them within the broader theoretical and empirical

context, and identifies key takeaways and limitations for future

curriculum development.

The improvements in test scores and project completion

rates observed in Table 5 suggest that Unity Visual Scripting

effectively lowers entry barriers for programming students. By

reducing syntactic complexity, students could focus more on

problem-solving and algorithmic reasoning, key components of

computational thinking as defined byWing (2006). This aligns with

Papert’s constructionism theory (Papert, 1980), which posits that

active creation of artifacts enhances learning, and Vygotsky’s (1978)

Zone of Proximal Development, emphasizing the importance of

scaffolding in acquiring complex skills.

The trend analysis depicted in Figure 4 further reinforces that

visual scripting supports sustained, progressive skill acquisition

over time. Students’ steady performance improvements align with

previous findings on the benefits of scaffolded, incremental learning

environments (Marín-Lora and Chover, 2025; Umezawa et al.,

2021).

Frontiers in Education 05 frontiersin.org

https://doi.org/10.3389/feduc.2025.1585602
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Castillo-Salvatierra et al. 10.3389/feduc.2025.1585602

TABLE 5 Summary of learning outcomes and student perceptions by

group.

Measured aspect Visual
scripting
group

Text-based
programming

group

Pre-test average score 45% 50%

Post-test average score 80% 70%

Improvement in test scores 35% 20%

Average task completion time (min) 25 min 41.7 min

Project completion rate 85% 70%

Satisfaction (survey) 90% 65%

Motivation (survey) 88% 62%

Confidence in programming (survey) 85% 60%

Survey results indicated higher motivation, satisfaction, and

confidence among students in the experimental group. These

findings are consistent with research on the motivational effects

of reducing cognitive load and promoting active learning

environments (Montes et al., 2021). Students reported that the

visual scripting interface made programming more accessible and

engaging, which corroborates prior studies on gamified and block-

based learning approaches (Resnick et al., 2009; Zhao et al., 2022).

5.1 Comparison with previous studies

The effectiveness of block-based programming environments

has been widely acknowledged. Tools such as Scratch and

Blockly have demonstrated positive impacts on early programming

education (Montes et al., 2021). The present findings extend these

insights to higher education contexts, demonstrating that Unity

Visual Scripting can play a similar role in fostering computational

thinking and programming competencies.

Moreover, the significant reduction in task completion times

observed in the experimental group reflects findings by Miranda et

al. (2021), who noted that intuitive, low-syntax interfaces facilitate

faster task execution and deeper conceptual understanding.

5.2 Limitations

While the findings are promising, several limitations must

be acknowledged. First, the sample size was limited to a single

university cohort, potentially constraining the generalizability of

the results. Future research should replicate this study across

diverse educational settings and larger sample sizes.

Second, the study focused primarily on short-term learning

outcomes. Longitudinal research is needed to assess the persistence

of skills acquired through visual scripting, particularly as students

transition to more advanced, text-based programming languages.

Third, although performance and engagement metrics were

evaluated, qualitative insights into students’ learning experiences

were not deeply explored. Future studies could incorporate

interviews or open-ended surveys to capture richer perspectives.

5.3 Implications for curriculum design

The results emphasize the importance of adopting progressive

instructional strategies in programming education. Visual scripting

can serve as an effective bridge to more complex programming

paradigms by initially reducing cognitive barriers and fostering

confidence.

Institutions should consider:

• Hybrid learning approaches: integrating both visual and text-

based programming progressively within the curriculum.

• Bridging strategies: designing transition modules that

gradually introduce textual elements to students comfortable

with visual representations.

• Gamified learning environments: leveraging game

development frameworks to sustain student engagement

and promote deeper computational thinking.

Overall, Unity Visual Scripting represents a promising

pedagogical tool for enhancing digital literacy, computational

competencies, and inclusive programming education

environments.

6 Conclusions

This study provides compelling evidence that Unity Visual

Scripting serves as an effective pedagogical tool for introducing

programming concepts in higher education. By reducing syntactic

barriers and promoting logical reasoning, visual scripting

environments facilitate deeper engagement with problem-solving

and computational thinking, aligning with key educational theories

such as Papert’s constructionism and Vygotsky’s scaffolding

principles.

The results demonstrated that students using Unity Visual

Scripting achieved a significantly higher improvement in test scores

(35%) and a greater project completion rate (85%) compared to

students in the text-based programming group (20% improvement

and 70% project completion rate, respectively). Furthermore,

students in the experimental group reported higher levels of

satisfaction, motivation, and confidence in their programming

abilities.

These findings confirm that visual scripting tools effectively

lower initial learning barriers, foster engagement, and promote the

development of computational competencies. They reinforce prior

research on the benefits of block-based and gamified programming

environments (Montes et al., 2021; Resnick et al., 2009; Zhao et al.,

2022) and demonstrate that visual scripting can act as a transitional

stage toward advanced programming paradigms (Weintrop and

Wilensky, 2019).

Despite these advantages, several challenges remain. The

transition from visual scripting to text-based programming

languages remains a critical hurdle, with some students initially

struggling to adapt to the increased syntactic complexity. Future

research should investigate structured transition models that

progressively integrate textual coding within visual environments

(Marín-Lora and Chover, 2025).

Frontiers in Education 06 frontiersin.org

https://doi.org/10.3389/feduc.2025.1585602
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Castillo-Salvatierra et al. 10.3389/feduc.2025.1585602

The study suggests several key implications for curriculum

design:

• Hybrid learning approaches: integrating visual and text-based

programming within the curriculum to support a progressive

learning curve.

• Bridging strategies: developing transition modules that ease

the shift from visual to textual programming paradigms.

• Game-based learning integration: leveraging interactive and

gamified environments to sustain student motivation and

engagement.

Future research should focus on evaluating the long-term

retention of skills acquired through visual scripting, exploring its

scalability across diverse educational contexts, and investigating

its integration with other instructional methodologies to optimize

programming education outcomes (Hu et al., 2021; Umezawa et al.,

2021).

In conclusion, Unity Visual Scripting represents a promising

and innovative approach to programming education. Its

implementation in university courses can significantly enhance

digital literacy, foster inclusive learning environments, and support

the development of computational thinking skills essential for

success in an increasingly digital world.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

LC-S: Writing – original draft, Writing – review & editing.

JC-C: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing. CF-B:

Writing – original draft, Writing – review & editing. CV-S:

Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Arslantaş, T. K. (2024). “Theoretical framework for integrating computational
thinking in education,” in Integrating Computational Thinking Through Design-Based
Learning, eds. M. Saritepeci, and H. Yildiz Durak (Singapore: Springer), 15–31.
doi: 10.1007/978-981-96-0853-9_2

Cárdenas-Cobo, J., Vidal-Silva, C., Arévalo, L., and Torres, M. (2024).
Applying recommendation system for developing programming competencies
in children from a non-weird context. Educ. Inf. Technol. 29, 9355–9386.
doi: 10.1007/s10639-023-12156-y

Denning, P. J. (2017). Computational thinking in science. Commun. ACM 60,
33–35. doi: 10.1515/9780691188720-006

Grover, S., and Pea, R. (2013). Computational thinking in k-12: a review of the state
of the field. Educ. Res. 42, 38–43. doi: 10.3102/0013189X12463051

Guzdial, M. (2019). Learner-Centered Design of Computing Education. San Rafael,
CA: Morgan & Claypool.

Hu, M., Assadi, T., and Mahroeian, H. (2021). “Teaching visualization-
first for novices to understand programming,” in 2021 IEEE International
Conference on Engineering, Technology & Education (TALE) (Wuhan), 654–660.
doi: 10.1109/TALE52509.2021.9678922

Ingeniería en Desarrollo de Videojuegos y Realidad Virtual (2025). IDVRV -
Ingeniería en Desarrollo de Videojuegos y Realidad Virtual. Available online at: http://
videojuegos.utalca (accessed February 20, 2025).

Laakso, N. L., Korhonen, T. S., and Hakkarainen, K. P. (2021). Developing students’
digital competences through collaborative game design. Comput. Educ. 174:104308.
doi: 10.1016/j.compedu.2021.104308

Marín-Lora, C., and Chover, M. (2025). GameScript: a simplified scripting language
for video game development.Multimed. Syst. 31:70. doi: 10.1007/s00530-024-01574-8

Martín-Hernández, P., Gil-Lacruz, M., Gil-Lacruz, A. I., Azkue-Beteta, J. L., Lira, E.
M., and Cantarero, L. (2021). Fostering university students’ engagement in teamwork
and innovation behaviors through game-based learning (GBL). Sustainability 13:13573.
doi: 10.3390/su132413573

Miranda, J., Navarrete, C., Noguez, J., Molina-Espinosa, J.-M., Ramírez-
Montoya, M.-S., Navarro-Tuch, S. A., et al. (2021). The core components
of education 4.0 in higher education: Three case studies in engineering
education. Comput. Electr. Eng. 93. doi: 10.1016/j.compeleceng.2021.1
07278

Montes, H., Hijón-Neira, R., Pérez-Marìn, D., and Montes, S. (2021). Using
an online serious game to teach basic programming concepts and facilitate
gameful experiences for high school students. IEEE Access 9, 12567–12578.
doi: 10.1109/ACCESS.2021.3049690

Noone, M., and Mooney, A. (2018). Visual and textual programming
languages: a systematic review of the literature. J. Comput. Educ. 5, 149–174.
doi: 10.1007/s40692-018-0101-5

Frontiers in Education 07 frontiersin.org

https://doi.org/10.3389/feduc.2025.1585602
https://doi.org/10.1007/978-981-96-0853-9_2
https://doi.org/10.1007/s10639-023-12156-y
https://doi.org/10.1515/9780691188720-006
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1109/TALE52509.2021.9678922
http://videojuegos.utalca
http://videojuegos.utalca
https://doi.org/10.1016/j.compedu.2021.104308
https://doi.org/10.1007/s00530-024-01574-8
https://doi.org/10.3390/su132413573
https://doi.org/10.1016/j.compeleceng.2021.107278
https://doi.org/10.1109/ACCESS.2021.3049690
https://doi.org/10.1007/s40692-018-0101-5
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Castillo-Salvatierra et al. 10.3389/feduc.2025.1585602

Ogegbo, A. A., and Ramnarain, U. (2021). A systematic review of
computational thinking in science classrooms. Stud. Sci. Educ. 58, 203–230.
doi: 10.1080/03057267.2021.1963580

Papert, S. (1980).Mindstorms: Children, Computers, and Powerful Ideas, Volume 14
of Harvester Studies in Cognitive Science. Hassocks: Harvester Press.

Raj, R., and Sharma, N. (2023). “Understanding syntax errors in C sharp using
game-based techniques at tertiary level,” in Big Data Intelligence and Computing.
DataCom 2022, volume 13864 of Lecture Notes in Computer Science, eds. C. Hsu, M.
Xu, H. Cao, H. Baghban, and A. Shawkat Ali (Singapore: Springer Singapore), 435–450.
doi: 10.1007/978-981-99-2233-8_31

Resnick, M., Maloney, J., Rusk, N., Silverman, B., and Eastmond, E. (2009). Scratch:
programming for all. Commun. ACM 52, 60–67. doi: 10.1145/1592761.1592779

Rojas-Valdés, P., Vidal-Silva, C., and Fuente, C. L. (2022). “Successful development
of problem-solving and computing programming competences in children using
arduino,” in 2022 International Symposium on Measurement and Control in Robotics
(ISMCR) (Houston, TX), 1–6. doi: 10.1109/ISMCR56534.2022.9950596

Strodick, K., and Schattkowsky, T. (2024). “Visual scripting in unity: a comparative
analysis of existing frameworks,” in Proceedings of the ACM/IEEE 8th International
Workshop on Games and Software Engineering (New York, NY: ACM), 44–49.
doi: 10.1145/3643658.3643921

Sun, D., Looi, C.-K., Li, Y., Zhu, C., Zhu, C., Cheng, M., et al. (2024). Block-based
versus text-based programming: a comparison of learners’ programming behaviors,
computational thinking skills and attitudes toward programming. Educ. Technol. Res.
Dev. 72, 1067–1089. doi: 10.1007/s11423-023-10328-8

Tupac-Yupanqui, M., Vidal-Silva, C., Pavesi-Farriol, L., Sánchez Ortiz,
A., Cardenas-Cobo, J., Pereira, F., et al. (2022). Exploiting arduino features
to develop programming competencies. IEEE Access 10, 20602–20615.
doi: 10.1109/ACCESS.2022.3150101

Umezawa, K., Ishii, Y., Nakazawa, M., Nakano, M., Kobayashi, M., and
Hirasawa, S. (2021). “Comparison experiment of learning state between visual
programming language and text programming language,” in 2021 IEEE International

Conference on Engineering, Technology & Education (TALE) (Wuhan), 1–5.
doi: 10.1109/TALE52509.2021.9678608

Unity - Discussions (2025). A space to Discuss All Things Unity. Available online at:
https://discussions.unity.com/ (accessed February 20, 2025).

Vidal-Silva, C., Cárdenas-Cobo, J., Tupac-Yupanqui, M., Serrano-Malebrán, J., and
Sánchez Ortiz, A. (2024). Developing programming competencies in school-students
with block-based tools in Chile, Ecuador, and Peru. IEEE Access 12, 118924–118936.
doi: 10.1109/ACCESS.2024.3449228

Vinueza-Morales, M., Cárdenas-Cobo, J., Cabezas-Quinto, J., and Vidal-Silva,
C. (2025). Applying the block-based programming language Alice for developing
programming competencies in university students. IEEE Access 13, 21471–21485.
doi: 10.1109/ACCESS.2025.3536279

Vygotsky, L. S. (1978). Mind in Society: Development of Higher Psychological
Processes. Cambridge, MA: Harvard University Press. Available in cloth, paper, and
electronic formats (ePub, Mobi, PDF).

Weintrop, D., and Wilensky, U. (2019). Transitioning from introductory block-
based and text-based environments to professional programming languages
in high school computer science classrooms. Comput. Edu. 142:103646.
doi: 10.1016/j.compedu.2019.103646

Wing, J. M. (2006). Computational thinking. Commun. ACM, 49, 33–35.
doi: 10.1145/1118178.1118215

Zhang, Y., Liang, R., Li, Y., and Zhao, G. (2022). “Improving java learning outcome
with interactive visual tools in higher education,” in Artificial Intelligence in Education:
Emerging Technologies, Models and Applications. AIET 2021. Lecture Notes on Data
Engineering and Communications Technologies, Vol. 104, eds. E. C. K. Cheng, R.
B. Koul, T. Wang, and X. Yu (Singapore: Springer). doi: 10.1007/978-981-16-7527-
0_17

Zhao, D., Muntean, C. H., Chis, A. E., Rozinaj, G., and Muntean, G.-M.
(2022). Game-based learning: Enhancing student experience, knowledge gain, and
usability in higher education programming courses. IEEE Trans. Educ. 65, 502–513.
doi: 10.1109/TE.2021.3136914

Frontiers in Education 08 frontiersin.org

https://doi.org/10.3389/feduc.2025.1585602
https://doi.org/10.1080/03057267.2021.1963580
https://doi.org/10.1007/978-981-99-2233-8_31
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1109/ISMCR56534.2022.9950596
https://doi.org/10.1145/3643658.3643921
https://doi.org/10.1007/s11423-023-10328-8
https://doi.org/10.1109/ACCESS.2022.3150101
https://doi.org/10.1109/TALE52509.2021.9678608
https://discussions.unity.com/
https://doi.org/10.1109/ACCESS.2024.3449228
https://doi.org/10.1109/ACCESS.2025.3536279
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/978-981-16-7527-0_17
https://doi.org/10.1109/TE.2021.3136914
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

	Programming competencies in university students through game development
	1 Introduction
	2 Theoretical framework
	3 Materials and methods
	3.1 Experimental process
	3.2 Study design
	3.3 Participants
	3.4 Software and hardware resources
	3.5 Evaluation metrics

	4 Results
	4.1 Performance analysis
	4.2 Student engagement and perception
	4.3 Trend analysis of learning progress

	5 Discussion
	5.1 Comparison with previous studies
	5.2 Limitations
	5.3 Implications for curriculum design

	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


